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HARMONIC MAPS

Harmonic self-maps of the Riemann sphere. Suppose that at any =z =
(r1,72) € R? we have a unit vector p(z) € R? depending smoothly on z, i.e.

we are given with a smooth map
p:R*— 5% 2 o)

Define the energy of ¢ by the Dirichlet integral

1
]R2
where , ,
dip|? = dp 9y
o= 852?1 8:52

Problem. Find all smooth maps ¢ : R* — S? with a finite energy F(p) < co which

are extremal with respect to E(y).



| p(x) p(x)
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Because of the condition F(y) < oo it is natural to impose on ¢ the following

asymptotic condition

o(xr) — o uniformly for |x| — oo

where g is a fixed point of SZ.



Under this condition our maps ¢ : R? — S? extend to continuous maps
p: 5% =R*U {00} — 5=

Such maps ¢: S? — S? have a topological invariant, called the degree of the map,

degp = / P w
R2

where w is the normalized volume form on the sphere S? and ¢*w is the preimage

given by

of w under the map .
Taking into account this invariant, we can reformulate our original problem as

follows:

Problem. Find all extremals of the energy E(y) in the class of smooth maps

¢ : R* — S? with finite energy and given degree k = deg .



To solve this problem, let us introduce the complex coordinate z = x; + 125 In

the definition domain R? ~ C and stereographic complex coordinate w in the image

S\ {oo}.

In these coordinates the energy of ¢ = w(z) is written as

w. | + |wz|? :
E(p) = dz N\ dz
() )y | |
where
ow ow
Wy — —, Wz — —.
0z 0z
The formula for the degree of ¢ takes the form
1 z 2 — z ’
degp = — w]” = Jws| |dz A dZ|.
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Comparing these two formulae, we arrive at inequality

E(p) = 4m|deg ¢|.

Moreover, the equality here can be attained only on:
e holomorphic functions ¢ = w(z) for k = degy > 0, satisfying w; = 0;

e anti-holomorphic functions ¢ = w(z) for k < 0, satisfying w, = 0.

So holomorphic maps ¢ = w(z) realize the minima of E(y) in topological classes
with £ > 0, while anti-holomorphic functions ¢ = w(z) realize the minima of E(¢p)

in topological classes with k < 0.

For minimizing maps E(yp) is equal to 4w|k| = is an integer modulo 47. In other
words, the energy in our problem is “quantized” which happens often in classical,

but nonlinear physical systems.



We find now find explicit formulas for the minimizing maps. Suppose, for def-
initeness, that k& > 0. Using the invariance of E(y) under rotations of S? in the

image, we fix the asymptotic value ¢y by setting it equal to ¢y = wy = 1.

So we have to describe holomorphic maps of the Riemann sphere S = R? U {oc}
into itself of degree k, equal to 1 at infinity. Such maps are given by rational

functions of the form )

p=uwiz) =[]~}

Z—bj

J=1
where a; # b; are arbitrary complex numbers.

Note that the space of solutions of our problem depends on 4k real parameters

(or 4k + 2 real parameters if we add rotations of S* in the image).

Remark. We have described all local minima of E(y). It can be proved that this
functional has no other critical points apart from the local minima (which is an

effect of two-dimensionality of the target manifold S?).



General definition of harmonic maps. Let M be an oriented Riemannian
manifold of dimension m, provided with a Riemannian metric g with metric tensor
(gij), and N is an oriented Riemannian manifold of dimension n, provided with a

Riemannian metric h with metric tensor (hqg).

For a smooth map ¢: (M,g) — (N,h) we define its energy by the Dirichlet

integral

B(¢) = 5 | 1d¢() v,

where dy is the differential of ¢ and vol, is the volume element of metric g.



To compute the norm of dy we choose local coordinates (') at p € M and (u®)
at ¢ = p(p) € N. Then

i O 090
die(p) ZZQ] oxt axﬂ

] o,

where ¢® = ¢“(x) are the components of ¢, (¢") = (¢7');; are the entries of the

inverse matrix of (g;;), vol, is the volume element of g, given by

vol, = \/| det(g;)| dx' A -+ A dz™.

Remark. There is also an invariant description of dyp. Namely, ¢: M — N generates
the tangent map ¢, : T'M — T'N which may be identified with a section dy of the

bundle
T*M @ ¢ Y(TN) — N,

where ¢ 1 (T'N) is the inverse image of T'N under the map . The fibre of o' (T'N)
at p € M coincides with the fibre T, N at ¢ = ¢(p).

The bundle T*M ® @ '(T'N) is provided with a natural Riemannian metric, in-
duced by Riemannian metrics g and h. (The local expression for this metric can be

read from the local formula for |dp(p)|*.)



Example. Let M be an open subset in R™ and N is an open subset in R™. Then
the squared norm of the differential of a smooth map ¢ = (¢',..., ") : M — N is

given by
2 9

[ 5|2

: ox?
1=1

) =33 | %

1=1 a=1

oxt

and the energy is equal to

dx AL ANdx™.

Extremals of F(y) are given by the maps ¢ = (%) with components ¢ being the

harmonic functions.



Definition. A smooth map ¢: M — N is called harmonic if it is extremal for
the energy functional E(y) with respect to all smooth variations of ¢ with compact

supports.

Let us write down the Euler-Lagrange equations for E(y) in local coordinates
(z*) on M and (u®) on N.

Denote by ¥V the Levi-Civita connection of M, represented locally by the Christof-
fel symbol ¥ Ffj, and by V'V the Levi-Civita connection of N, represented locally by
the Christoffel symbol ¥I") ;.
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In these coordinates the Euler—Lagrange equations take the form
;) o W 3@@“ Jy
17 MF NF

S0 { = 3T S A0 a%}

(990 0"
. 1 N -
AMQO—Fg gjg [ 8:1328:133 =0, ~v=1,...,n.

The operator

g 82907 dp”
v _ ij Mk
Aug’ = sz:g {8@8:1:] Z i B 01 }

is the standard Laplace—Beltrami operator ot M, determined by metric g. Note that
it i1s a linear differential operator of 2nd order in ¢”7. The second term in Euler—

Lagrange equations depends on the geometry of the target space N and is quadratic

with respect to derivatives of 7.
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Example. For N = R" the Euler-Lagrange equations reduce to the Laplace—
Beltrami equations on the components of . Their solutions are given by harmonic
functions ¢7. For m = dim M = 1 harmonic maps ¢: M — N coincide with

geodesics of NV, parameterized by the arc length.

Remark. One can write down the Euler-Lagrange equations for F(¢) in an invariant
form. Recall that dp may be identified with a section of the bundle T*M @y (T'N).
This bundle can be provided with a natural connection V, generated by Levi-Civita
connections ¥V and VV.

Then Euler-Lagrange equations in terms of this connection are written as

tr(Vdy) =0

where 7, = tr(Vdyp) is called the stress tensor of .
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Harmonic maps of almost complex manifolds. Let M be an almost complex
Riemannian manifold, provided with an almost complex structure M.J, compatible
with Riemannian metric g, and N is an almost complex Riemannian manifold,
provided with an almost complex structure *»J, compatible with Riemannian

metric h.

Recall that an almost compler structure J on M is a smooth family {.J,},ear of
endomorphisms J, : T, M — T, M such that J]f = —[. This structure J is integrable
if it generates the 9;-operator, satisfying the integrability condition 9% = 0.

The compatibility of J with Riemannian metric g means that the 2-form w on M,
defined by

W(X,Y) = g(X, JY),

is symplectic and the metric g is Hermitian. A manifold (M, g, J,w) with such an
almost complex structure is called almost Kahler and it is called Kahler if J is

integrable.

13



Definition. Let ¢ : M — N be a smooth map of almost Kahler manifolds. It is
holomorphic if the tangent map ¢,: TM — TN commutes with almost complex

structures MJ and MJ, i.e.

p.oMIT="Joo,.

It is called anti-holomorphic if ¢, anti-commutes with J and J.

Theorem (Lichnerowicz theorem). Holomorphic and anti-holomorphic maps
@: M — N realize local minima of the energy functional E(p) among smooth maps

i a given topological class.

However, in general, the energy functional E(p) has also non-minimal critical

points (harmonic maps).

We are going to describe harmonic spheres ¢: P! — N, i.e. harmonic maps of
the Riemann sphere P! = 52 to a given Riemannian manifold N, by reducing this

problem to the description of holomorphic spheres in almost Kahler manifolds.
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INSTANTONS AND YANG-MILLS FIELDS

Yang—Mills equations on R*. Let G be a compact Lie group (gauge group).

A gauge G-potential on R* is a connection in a principal G-bundle over R*, iden-
tified with a 1-form A on R* with values in the Lie algebra g of G.
If G coincides with the group U(n) of unitary (n x n)-matrices then this form may

be written as

A= Z A, (x)dz,

p=1

where © = (21, z2, x3,x4) are coordinates on R* A, (r) are smooth functions on R*

with values in skew-Hermitian (n X n)-matrices.

For n = 1 the gauge potential is the FEuclidean analogue of the electromagnetic

4-potential.
15



A gauge G-field F' is the curvature of connection A, given by a 2-form on R* with

values in g of the form

F:DA:dAJr%[A,A]

where D : Q1 (R* g) — Q2*(R*, g) is the covariant exterior derivative, generated by

the connection A. In the case G = U(n) this form is equal to

F = Z F.(z)dz, Adzx,

where F,, =0,A, —0, A, + [A,, A

with 0, := 0/0x,, p = 1,2,3,4. For n = 1 the form {F},} coincides with the

Fuclidean analogue of the Maxwell tensor of electromagnetic field.

A gauge transform is a smooth map ¢ : R* — G, acting on gauge potentials and

fields by the formula

Av— Ay =g dg+ g~ Ay,

g:FI—>Fg ::g_ng

where G acts on g by the adjoint representation. In the case G = U(1) the gauge

transform coincides with the multiplication by the factor g(z) = @) so that

A+ A —1df and F' does not change under this map.

16



Define the Yang-M:lls action tunctional by the formula

4
1
SA) =3 |, |F||*d* where [[F[I?= )  [|Ful’
w,rv=1

and the norm ||F),, || is computed with the help of an invariant inner product on g.
In the case G = U(n) one can take for such a product (X,Y,) := tr(XY'). Then the

formula for S(A) will rewrite as

S(A) = % /R tr(F A SF)

where * is the Hodge star-operator on R*.

The functional S(A) is invariant under gauge transformations so that S(A) de-
pends on the class of connection A modulo gauge transformations rather than A
itself.

Definition. Yang—M:ills fields are the gauge fields F' with finite Yang—Mills action
S(A) < oo, realizing the extremals of S(A). The corresponding gauge potentials A

are called the Yang-Mills connections.

17



Yang—Mills fields satisfy the Euler-Lagrange equations for S(A) which have the

form
D*F =0
where D* : Q*(R*, g) — Q'(R%, g) is the formal adjoint of D. It is equal to
D* = — x Dx and the Euler-Lagrange equations for S(A) may be rewritten as
D x F =0.

This equation is called the Yang—M:ills equation and is often supplemented with the
Bianchi identity

DF =0

which is automatically satisfied for gauge fields F'.

18



Instantons. A gauge field F is called selfdual (resp. anti-selfdual) if
= F  (resp. * F'= —F).
Bianchi identity implies that solutions of duality equations

xF =+ F
satisty Yang—Mills equations.

If we write down the form F' as a sum
F=F_+F_

with Fy = («xF £ F) then Yang-Mills action will be rewritten as

1
S =5 [ (RIP+ IE ) d'a
For gauge fields /' with finite Yang—Mills action the quantity
1 1
k(A) = — —Fe|? + |F-)P)d*s = =— [ tr(FAF
) =g [ CIRP+ PR do = o5 [ (P ar)

is an integer-valued topological invariant, called the topological charge ot F.

19



Evidently,

S(A) > 4n?|k(A)).

The minimum of S(A), equal to 47?|k| in the topological class of gauge potentials
with finite Yang—Mills action and fixed topological charge k(A) = k, may be attained
for £ > 0 only on anti-selfdual fields and for £ < 0 only on selfdual ones.

Definition. Anti-selfdual fields with finite action S(A) < oo are called the instan-

tons while selfdual fields with finite action S(A) < oo are called the anti-instantons.

Instantons and anti-instantons realize local minima of the action S(A), however,

there exist also non-minimal critical points of this functional.

20



One of the main objects in Yang—Mills theory is the moduli space of Yang Muills
fields which is the quotient of the space of all Yang—Mills fields modulo gauge trans-
forms. The structure of this space is far from being understood and one of our goals

is to approach this problem on the base of harmonic spheres conjecture.

However, an analogous problem for instantons, i.e. the description of the moduli
space of instantons on R?, was solved by Atiyah-Drinfeld-Hitchin-Manin with the
help of the twistor approach.

Comparing Yang—Mills fields with harmonic maps, we observe the following

evident analogy between:
{(anti)holomorphic maps} «— {(anti)instantons }

and

{harmonic maps } «— {Yang Mills fields } .

As we shall see from the Atiyah theorem and harmonic spheres conjecture, this

formal analogy has, in fact, a much deeper meaning.

21



TWISTOR INTERPRETATION OF INSTANTONS

Basic twistor bundle over S*. We shall identify the 4-sphere S* with the
quaternion projective line by analogy with the identification of the 2-sphere S*
with the complex projective line CP!.

Recall that the space of quaternions H consists of elements
q=r1+ 122+ jr3 + kiy

where 21, 29, 23,24 € R, i° = 72 = k* = —1 and the multiplication law is defined by

the relation

1] = —j1 = k.
The space H is a non-commutative field isomorphic, as a vector space, to R*. As
a complex vector space H can be identified with C? by writing quaternions in the
form

q =21+ 22)

where 21 = 1 + 129, 29 = 23 + 1204 € C.

22



Quaternion projective line HIP* consists of pairs [q, ¢'] of quaternions (not equal
to zero simultaneously) which are defined up to multiplication (from the right) by
a nonzero quaternion. We identify the Euclidean sphere S* = R* U {oo} with the

quaternion projective line HP! and define the basic twistor bundle over S*:
m: CP3 < Hp!

by the tautological formula

[21722723724] — [Zl + Z2j7 <3 + 24]]

where the 4-tuple [z1, 29, 23, 24] € CP? is defined up to multiplication by a nonzero
complex number while the pair [z + 297, 23 + 247] € HIP! is defined up to multiplica-
tion by a nonzero quaternion. The fibre of m coincides with the complex projective

line CP!, invariant under multiplication from the right by 4, i.e. under the map

j: [21722723724] = [_227217 _Z47Z3]°

23



The constructed bundle 7: CP? — S* has a nice interpretation in terms of
complex structures on R* due to Atiyah.

To describe it, consider the restriction of 7 to the Euclidean space R* =~ H:
m: CP*\ CP! — R*
where the omitted complex projective line CP._ is identified with the fibre 7 !(c0)
of the twistor bundle at co € S*.

The space CP?\ CP._ is foliated by parallel complex projective planes CIP?. These
planes intersect in CP? on the projective line CP!  so that each point p of CP
defines one family of parallel planes. The tangent map m, provides the tangent
space T,R* at a point ¢ € R* with the complex structure, induced from these
parallel planes. Different families, determined by points p € CP._, define different

complex structures on T,R* so that the space of all complex structures on T,R*,

compatible with metric, can be identified with CP._.

Summing up, we can consider the twistor bundle 7: CP’\ CP! —— R*
as a bundle of complex structures on R*, compatible with metric. The fibre of this
bundle at a point ¢ € R* consists of complex structures on the tangent space T,R*,

compatible with metric, and can be identified, as above, with CP!_. 24



Atiyah—Hitchin—Singer construction and Penrose twistor program. We
use the interpretation of basic twistor bundle as a bundle of complex structures for

the extension of the twistor bundle construction to general Riemannian manifolds.

Let N be an even-dimensional oriented Riemannian manifold of dimension 2n.
Consider the bundle 7: J(N) — N of complex structures on N, compatible with
Riemannian metric. The fibre of this bundle at ¢ € N coincides with the space
J(TyN) of complex structures .J, on the tangent space T,N, compatible with the

metric.

The bundle 7: J(N) — N is associated with the principal bundle O(N) — N
of orthonormal frames on N and its fibre 77'(¢) can be identified with the complex

homogeneous space O(2n)/U(n).

25



The bundle 7: J(N) — N can be provided with a natural almost complex
structure, introduced by Atiyah—Hitchin—Singer.
Namely, the Levi-Civita connection ¥V on N generates a natural connection on

O(N), hence on J(N). This connection determines a vertical-horizontal decompo-

sition

TI(N)=V @ H.

In terms of this decomposition, we define an almost complex structure J' on
J(N) by setting

Jt=7"eJ"

where J' at z € J(N) coincides with the canonical complex structure on the vertical
space V., identified with O(2n)/U(n).

The horizontal component J" at z coincides with the complex structure J(z)
on the horizontal space H,, given by the point z of the twistor bundle with H,,
identified with the tangent space T, (,)N by m.. We recall that the fibre 77'(q) of
m: J(N) — N at ¢ = m(z) € N consists of complex structures on 7T, N and we
denote by J(z) the complex structure on T, N, corresponding to the point z € 7 *(q).
This construction provides (J(N),J') with the structure of an almost complex

manifold.

26



We formulate now an heuristic Penrose twistor program:

Construct for a given Riemannian manifold N a twistor bundle = :
Z — N, where the twistor space Z is an almost complex manifold,
with the following characterictic property: there should be a 1-1
correspondence between

{ objects of Riemannian } { objects of holomorphic }
<—> o

geometry on N geometry on Z

Such a correspondence, being established, yields a method of studying the real

geometry of the Riemannian manifold N via the complex geometry of its twistor

space /.
The above Atiyah—Hitchin—Singer construction gives an example of such a twistor
bundle J(N) — N with the twistor space Z = J(N) provided with the almost

complex structure J*.

27



Atiyah—Ward and Donaldson theorems. Since from now on we deal only
with the complex projective spaces CPt and CP?, we shorten their notation to P*

and P3.

Return to the problem of description of

moduli space of ~ {G-instantons on R*}
- {gauge transforms}

G-instantons on R*

Using the basic twistor bundle 7: P°\ P! — R*, Atiyah and Ward have reduced
this problem to a problem of description of certain holomorphic bundles over the
3-dimensional complex projective space P3. Namely, according to Atiyah-Ward

theorem, there is a 1-1 correspondence between:

{ moduli space of } { based equivalence classes of holomorphic}
< .

G-instatons on R* G“-bundles over P3, trivial on w-fibers

Here, G* is the complexification of the group G and the term “based” means that

the equivalence of G*-bundles over P? is defined “modulo” P!

oo

i.e. all mappings,

defining the equivalence of the bundles, should be equal to identity on P!_.
28



This result has the following 2-dimensional reduction to the space P! x P!, given

by the Donaldson theorem:

{ moduli space of } { based equivalence classes of holomorphic }
<
G-instantons on R*

GC-bundles over P! x P!, trivial on PL UPL

where P._ U P! denotes the union of two complex projective lines “at infinity” of
Pt x PL.

29



TWISTOR INTERPRETATION OF HARMONIC SPHERES

Fells-Salamon theorem. Guided by the Penrose twistor program, we may sup-
pose that the problem of construction of harmonic spheres ¢: P! — N in a given
Riemannian manifold N should reformulate as a problem of construction of holomor-
phic spheres ¢: P! — Z in its twistor space (Z = J(N), J"') such that ¢ = 7o ¢:

Z = J(N)
(L l
1/
P! ——— N

And it is almost true. In fact, projections of holomorphic spheres ¢ : P! — Z
to N do satisty some partial differential equations of 2nd order on N. However,
these equations are not harmonic but ultrahyperbolic, i.e. “harmonic with a wrong

signature” (n,n) instead of the required signature (2n,0).

30



By this reason, we have to change the definition of the almost complex structure
on Z if we want to construct harmonic spheres in /N as projections of holomorphic

spheres in Z.

Namely, we provide Z with a new almost complex structure J?2 which is given in

terms of the vertical-horizontal decomposition

TI(N)=V @ H

by
T = (=T e J"

This particular almost complex structure, introduced by Eells and Salamon, is re-

sponsible for the twistor description of harmonic spheres.

31



Here is a formal definition of the twistor bundle which will be used in the sequel.

Definition. A smooth bundle 7 : Z — N of an almost complex manifold (Z, [J) over
a Riemannian manifold N will be called the twistor bundle of N if the projection

@ = m o1 of any holomorphic sphere ¢: P! — Z to N is a harmonic sphere
@: Pt — N.

Theorem (Eells-Salamon). The twistor bundle
m: Z =J(N)— N,

provided with the almost complex structure J?, is the twistor bundle, 1.e. projection
@ = mo 1 of any holomorphic sphere ¢ : P — Z to N is a harmonic sphere
w: Pt - N.

32



Using this theorem, we can construct harmonic spheres in N from holomorphic
spheres in its twistor space Z.

However, we note that the almost complex structure 7' on 7 (N) is integrable < N
is conformally flat while the almost complex structure 72 is never integrable.

Taking this into account, Eells—Salamon theorem may look not helpful as a method
of construction of harmonic spheres in N. Indeed, it reduces the problem of con-
struction of harmonic spheres in the Riemannian manifold N to the problem of
construction of holomorphic spheres in the almost complex manifold (Z, 72).

But the almost complex structure J2, being non-integrable, might be quite bizarre.
For example, such a structure may have no non-constant holomorphic functions
even locally. Our advantage is that we are dealing not with holomorphic functions,
i.e. holomorphic maps f: Z — C, but with a dual object — holomorphic maps

Y: C — Z. Such a map is holomorphic with respect to the almost complex structure

J? on Z <= it satisfies the Cauchy Riemann equation 050 =0

with respect to the pulled-back almost complex structure J := ¢*(7*) on C. And
this structure J is integrable as any almost complex structure in complex dimension 1.

In particular, the above Cauchy—Riemann equation has many local solutions.

33



Complex Grassmann manifolds and flag bundles. We apply the twistor ap-
proach to the description of harmonic spheres in the complex Grassmann manifolds
G,(C?). In this case it is natural to choose as their twistor spaces the bundles of

complex structures over G,(C?), invariant under the action of the unitary group
U(d). Such bundles coincide with the flag bundles defined below.

Definition. The flag manifold F.(C?%) in C% of type r = (ry,...,r,) with d =
r1+ -+ -+ 7, consists of flags W = (Wq,...,W,), i.e. nested sequences of complex

subspaces
WycC---cw,=C

such that the dimension of the subspace V; := W is equal to r; and dimensions of

the subspaces V; := W, © W;_; are equal to r; for 1 <1 < n.

34



The flag manifold F,(C%) admits a description as a homogeneous space of the

unitary group U(d):

F.(CH =U(d)/U(ry) x - x U(ry).

[t is a compact Kéhler manifold which has an U(d)-invariant complex structure,

denoted by J!.

Definition. For the construction of a flag bundle over the Grassmann manifold
G,(C%) we fix an ordered subset o C {1,...,n}, such that >, _r; = r, and define
the flag bundle
Ty: Fp(CY) — G,.(CY
by
o W= (Wy,..., Wy,)— W ::@\/;.
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Harmonic spheres in Grassmann manifolds: Burstall-Salamon theorem.

The flag bundle 7, can be provided with an almost complex structure 7?2 so that

the following analogue of Eells—Salamon theorem holds.

Theorem (Burstall-Salamon). The flag bundle

mo: (Fr(CY), T2 — G,(CY),

provided with the almost complex structure J?, is a twistor bundle, i.e. the projection

o = my 01 of any holomorphic sphere : P! — F.(C?) to G,.(C?) is a harmonic

sphere p: P! — G,.(C%) in G,(CY).

Moreover, the converse is also true: any harmonic sphere ¢: P! — G,.(C%) in

G, (C% may be obtained in this way from some flag bundle 7,: F,(C?) — G,(C?).
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Using this twistor interpretation of harmonic spheres in G, (C?%), we can reduce

their description to the description of holomorphic spheres in flag manifolds F,(C%).

The latter problem was solved by Wood. The idea of his construction is roughly
the following. A map v: P! — F,(C?) may be considered as a decomposition of

the trivial bundle P' x C% into the direct sum of subbundles
P!xCl=uyy @ ®U,

where v; := ¢*T; with T} being the 7th tautological bundle over F.(C?%).

A map ¢: P! — F.(C% is J'-holomorphic <= all subbundles ¥, ..., are
holomorphic. Wood has proposed a procedure which allows to rebuild the above

decomposition into a decomposition
P'xCl =)y @ ® U,

corresponding to a J*-holomorphic sphere, where subbundles 12@ are either holomor-

phic or anti-holomorphic.
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ATIYAH THEOREM AND HARMONIC SPHERES CONJECTURE

Loop spaces of compact Lie groups. We switch now to the infinite-dimensional tar-

get manifolds IV, namely, we take for /N the loop space Q2G of a compact Lie group G.

Definition. Let G be a compact Lie group. Then its loop space is | QG = LG /G

where LG = C*(S*, G) is the loop group of G, i.e. the space of C*°-smooth maps
St — @, and G in the denominator is identified with the subgroup of constant maps
St — go € G. Otherwise, QG can be thought of as the space of based loops, i.e. the
maps S! — G, sending 1 € St — e € G.

The space QG is an infinite-dimensional Kahler manifold. A complex structure

on ()G is induced from its representation as a homogeneous space of a complex Lie

SHOUP OG = LG®/ L,.G°

where G* is the complexification of G, LG* = C*°(S!, GY) is the complexified loop
group of G, and L G = Hol(A, GY) is a subgroup of LG®, consisting of the maps
which may be holomorphically extended to the unit disc A. 38



Holomorphic spheres in loop spaces: theorem of Atiyah. Recall that,

according to Donaldson theorem:

( based equivalence classes of holo- )

moduli space of . - o
. «— <« morphic G“-bundles over P*xP! ;.
G-instantons on R*

\ trivial on the union P UP!

Atiyah theorem asserts that the right hand side of this correspondence can be iden-
tified with the space of based holomorphic spheres in {2G. In other words, there is

a 1-1 correspondence:

( based equivalence classes of holo- ( based holomorphic spheres )
{ morphic G®-bundles over P x P! 3 «— { f: P! — QG, sending co .
| trivial on the union P UPL | \ to the origin of QG )
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The proof of Atiyah theorem is based on the following construction.

P! A o0
A A,
z S a— /_\ gl
Sl IP)l
Z
- : g/t
o0 P! 0

Restrict a given holomorphic G®-bundle over P! x P! to the projective line P!,
passing through a point P! x {z} parallel to P . This restricted bundle is determined
by a transition function )

for St — G©
which is holomorphic in a neighborhood of the equator S' in P.. Hence, f, e LGE©

and we have a map
f:Pls 2 f, € LG* — f(2) € QG = LG* /L, G .

This map is holomorphic and based <=> the original G“-bundle over P! x P! is

holomorphic and trivial on P! U P! .
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Harmonic spheres conjecture. Atiyah and Donaldson theorems imply that

there is a 1-1 correspondence between:

{ moduli space of } { based holomorphic spheres }
< .
f: Pt - QG

G-instantons on R*

So we have a correspondence between local minima of two functionals, namely:

{ Yang—Mills action on } { energy of smooth }
and :

gauge G-fields on R? spheres in QG

their local minima being given correspondingly by:

{ instantons and } { hOlOHlOl“phiC and anti- }
— .

anti-instantons holomorphic spheres

If we replace here the local minima by the critical points of the corresponding
functionals, we shall arrive at the formulation of the harmonic spheres conjecture,

asserting that it should exist a 1-1 correspondence between:

{ moduli space of Yang— } { based harmonic spheres }
< .

Mills G-fields on R* f: P - QG
41



We can consider the described transition from the local minima to the critical
points of our functionals as a “realification” procedure. Indeed, if we replace smooth
spheres in the right hand side of the above diagram by smooth functions f: C — C
then the described transition will reduce to the replacement of holomorphic and
anti-holomorphic functions by arbitrary harmonic functions (which are the sums of
holomorphic and anti-holomorphic functions). In the case of smooth spheres in QG
this transition from holomorphic and anti-holomorphic spheres to harmonic ones
becomes non-trivial due to the non-linear character of Euler—Lagrange equations for
the energy.

Unfortunately, a direct extension of Atiyah—Donaldson proof to the harmonic case
is not possible. The reason is that the proof of Donaldson theorem, based on the
monad method of construction of holomorphic vector bundles on complex projective
spaces, is purely holomorphic. However, one can attempt to reduce the proof of the
harmonic spheres conjecture to the holomorphic case by “pulling-up” both sides of

the correspondence in this conjecture to their twistor spaces.
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TWISTOR BUNDLE OVER THE LOOP SPACE

Hilbert—Schmidt Grassmannian. In order to construct a twistor bundle over
the loop space G we shall first embed ()G into an infinite-dimensional Grassman-
nian and then construct its twistor bundle by analogy with the finite-dimensional

case.

The role of the infinite-dimensional Grassmannian will be played by the Hilbert—
Schmidt Grassmannian of a complex Hilbert space H, provided with a polarization.

That is a complex Hilbert space H together with a decomposition
H=H, ® H_

into the direct orthogonal sum of closed infinite-dimensional subspaces H.. In the
case of the space H = L(S',C) of square integrable functions on S' with zero

average such subspaces are given by

Hy :{’yE H:~v= Z fykeike}.
+k>0
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Definition. The Hilbert-Schmidt Grassmannian Grys(H) consists of closed sub-
spaces W C H such that the orthogonal projection m.: W — H, is a Fredholm

operator and orthogonal projection m_: W — H_ is a Hilbert—Schmidt operator.

Given a subspace W € Grgg(H) we call the Fredholm index of the projection
w: W — H, the virtual dimension of W.
Similar to the finite-dimensional case, the Hilbert-Schmidt Grassmannian Gryg(H )

admits the following homogeneous representation

Uns(H)
U(H.) x U(H_)

GTHS (H) =

where the unitary Hilbert—Schmidt group Ups(H ) is defined by
Ups(H) ={A € U(H) : 7_ o Aom, is Hilbert—Schmidt}.

The Grassmannian Gryg(H) is a Hilbert Kéahler manifold, consisting of a count-
able number of connected components of a fixed virtual dimension:

Grus(H) = U Ga(H)  where Gu(H)=A{W € Gryg(H) : virt.dim W = d}.
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Virtual flag bundles and harmonic spheres in the Hilbert—Schmidt (GGrass-
mannian. The virtual flag manifold and flag bundles are defined by analogy with

the finite-dimensional case.

Definition. The wvirtual flag manifold F4(H) in H of type r = (r1,...,7,) with
d =ry+ - -+ r, consists of flags W = (Wy,...,W,), i.e. nested sequences of

complex subspaces
W,c.---cW, CH,

such that the virtual dimension of the subspace V; := W, is equal to r;, and dimen-

sions of subspaces V; := W, © W;_; are equal to r; for 1 < < n.

Definition. For the construction of a flag bundle over the Grassmann manifold
G, (H) we fix an ordered subset o C {1,...,n}, so that )
virtual flag bundle

ico Ti = T, and define the

by
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As in the finite-dimensional case, we can provide the virtual flag bundle 7w, with
an almost complex structure J? so that the following analogue of Burstall-Salamon
theorem holds.

Theorem. The virtual flag bundle
mo: (FH), J2) — Gu(H),

provided with the almost complex structure J2, is a twistor bundle, i.e. the projection
o = Ty 01 of any almost holomorphic sphere : P! — FY(H) to G.(H) is a
harmonic sphere @: P* — G.(H) in G,.(H).

We think that the converse of this Theorem is also true, as in the finite-dimensional

case.
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Embedding of loop spaces into the Hilbert—Schmidt Grassmannian. Sup-

pose that our compact Lie group G is realized as a subgroup of the unitary group

U(N) and construct an embedding of QG into the Grassmannian Gryg(H) where

H = L2(S',CN).

Construct first an embedding of the loop group LG into the unitary Hilbert—

Schmidt group Ugg(H). For that we associate with a loop v, belonging to the space
LG = C*(SY, G) c C*(S*,U(N)), the multiplication operator M, in the Hilbert

space H = LZ(S',CY), acting by the formula:

he H=L(S",C") — M,h(z) :=v(2)h(z),

2 e St

In other words, M. h is a vector function from H = L3(S',CV), obtained by the
pointwise application of the matrix function v € C*°(S*, U(N)) to the vector func-
tion h € H = L§(S*,C"). The operator M, belongs to the unitary group Uns(H)

if v € C<(S*, U(N)).

The constructed embedding LG — Uys(H ) generates an isometric embedding

QG — Grys(H).
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IDEA OF THE PROOF OF HARMONIC SPHERES CONJECTURE

Harmonic analogue of Atiyah theorem. Using the constructed isometric em-
bedding QG — Grys(H), we can consider an arbitrary harmonic map ¢: P! — QG
as taking its values in the Grassmannian Grgg(H ), hence, in one of its connected

components G,(H) and use the twistor method.

We start from a harmonic version of Atiyah theorem, relating based harmonic
spheres ¢: P! — QG to harmonic G*-bundles over P! x P!'. For a fixed z € P! we
pull back the value ¢(2) € QG to @(z) € LG® and consider ¢(z) as a transition
function of a bundle over the projective line P.. By changing z € P!, we obtain a
GC-bundle E over P! x P! which is harmonic and trivial over P UPL iff the

original map ¢ is based and harmonic.

If we consider the map ¢: P! — QG as taking values in Grpg(H) then the

value p(2) at a fixed z € P! is interpreted in terms of Grus(H) as a subspace
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Twistor interpretation of the moduli space of Yang—Mills fields. Here is

a twistor interpretation of the above construction.

A harmonic sphere ¢: P! — QG may be considered as a harmonic sphere in
a submanifold G,.(H) C Grygs(H), consisting of subspaces W C H of some fixed

virtual dimension r.

In terms of the twistor flag bundle the harmonic sphere ¢ : P' — G,.(H) is
the projection of some J2-holomorphic sphere 1: P! — F%(H) so that there is a

commutative diagram

We pull back the value ¥(2) = (¢1(2),...,1¥,.(2)) at a fixed z € P! to

U(2) = (1(2),- . ¥n(2))

where 1;(2) € LGE.
Yi(2) 49



In terms of F¢(H) the value ¥(z) = (¢1(2),...,%¥n(2)) is given by a virtual flag
W(z) = (Wi(z),...,W,(z) where Wi(z) = My . Hy.

The functions v;(z) € LG®, being considered as transition functions, determine
some bundles over P!. By changing z € P!, we obtain for ¢ = 1,...,n the G*-
bundles E; over P! x P! trivial over PLUPL. It follows from the definition of the
almost complex structure j(f that these bundles F; should be either holomorphic or
anti-holomorphic. So by Atiyah theorem they should correspond to instantons or

anti-instantons on R*.

In this way we can associate with any Yang Mills field on R* a finite collection
of instantons and anti-instantons on R*. This construction may be considered as a

twistor interpretation of the moduli space of Yang-Mills fields on R%.
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