Varna, 8-13 June 2012

Groupoid of partially invertible elements of W^* -algebras

Aneta Sliżewska Institut of Mathematics University in Białystok

REFERENCES:

- K. Mackenzie. *General Theory of Lie Groupoids and Lie Algebroids*, Cambridge University Press, 2005.
- A. Odzijewicz, A. Sliżewska. Groupoids and inverse semigroups associated to W*-algebra, arXiv:1110.6305.

• • = • • = •

Introduction Banach manifold structures Groupoid W*-algebra Supports and polar decomposition Groupoid of partially invertible elements Groupoid representations

BASIC DEFINITIONS

Aneta Sliżewska Groupoid of partially invertible elements of W*-algebra

イロト イポト イヨト イヨト

э

Groupoid over the base set B is a set \mathcal{G} with actions:

(i) source map $s: \mathcal{G} \to B$ and target map $t: \mathcal{G} \to B$ (ii) product $m: \mathcal{G}^{(2)} \to \mathcal{G}$

$$m(g,h) =: gh,$$

defined on the set of composable pairs

$$\mathcal{G}^{(2)} := \{ (g,h) \in \mathcal{G} \times \mathcal{G} : \ \mathbf{s}(g) = \mathbf{t}(h) \},\$$

(iii) injective identity section $\varepsilon : B \to \mathcal{G}$, (iv) inverse map $\iota : \mathcal{G} \to \mathcal{G}$,

which satisfy the following conditions:

$$\mathbf{s}(gh) = \mathbf{s}(h), \quad \mathbf{t}(gh) = \mathbf{t}(g), \tag{1}$$

$$k(gh) = (kg)h,$$
 (2)

$$\varepsilon(\mathbf{t}(g))g = g = g\varepsilon(\mathbf{s}(g)),$$
 (3)

$$\iota(g)g = \varepsilon(\mathbf{s}(g)), \qquad g\iota(g) = \varepsilon(\mathbf{t}(g)), \tag{4}$$

where $g, k, h \in \mathcal{G}$. Notation: $\mathcal{G} \rightrightarrows B$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Banach manifold structures W*-algebra Supports and polar decomposition Groupoid of partially invertible elements Groupoid representations

$\textbf{GROUPOID} \ \mathcal{G}(\mathfrak{M})$

Groupoid

Aneta Sliżewska Groupoid of partially invertible elements of W^* -algebra

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Introduction Banach manifold structures Groupoid W*-algebra Supports and polar decomposition Groupoid of partially invertible elements Groupoid representations

Left support $l(x) \in \mathcal{L}(\mathfrak{M})$ (right support $r(x) \in \mathcal{L}(\mathfrak{M})$) of $x \in \mathfrak{M}$ is the least projection in \mathfrak{M} , such that

$$l(x)x = x$$
 (resp. $x r(x) = x$). (5)

If $x \in \mathfrak{M}$ is selfadjoint, then support s(x)

$$s(x) := l(x) = r(x).$$

Polar decomposition for $x \in \mathfrak{M}$

$$x = u|x|,\tag{6}$$

where $u\in\mathfrak{M}$ is partial isometry and $|x|:=\sqrt{x^*x}\in\mathfrak{M}^+.$ Then

$$l(x) = s(|x^*|) = uu^*, \quad r(x) = s(|x|) = u^*u.$$

イロト イポト イラト イラト

Let $G(p\mathfrak{M}p)$ - the group of all invertible elements in W^* -subalgebra $p\mathfrak{M}p \subset \mathfrak{M}$. We define the set $\mathcal{G}(\mathfrak{M})$ of **partially invertible** elements in \mathfrak{M}

 $\mathcal{G}(\mathfrak{M}) := \{ x \in \mathfrak{M}; \ |x| \in G(p\mathfrak{M}p), \text{ where } p = s(|x|) \}$

Remark: $\mathcal{G}(\mathfrak{M}) \subsetneq \mathfrak{M}$.

3

Theorem

- The set $\mathcal{G}(\mathfrak{M})$ with
 - ${\rm \textcircled{O}}$ the source and target maps ${\rm \textbf{s}},{\rm \textbf{t}}:\mathcal{G}(\mathfrak{M})\to\mathcal{L}(\mathfrak{M})$

$$\mathbf{s}(x) := r(x), \qquad \quad \mathbf{t}(x) := l(x),$$

 ${f 2}$ the product defined as the product in ${\mathfrak M}$ on the set

 $\mathcal{G}(\mathfrak{M})^{(2)} := \{ (x, y) \in \mathcal{G}(\mathfrak{M}) \times \mathcal{G}(\mathfrak{M}); \ \mathbf{s}(x) = \mathbf{t}(y) \},\$

- ${f 0}$ the identity section $arepsilon: {\cal L}({\mathfrak M}) \hookrightarrow {\cal G}({\mathfrak M})$ as the identity,
- () the inverse map $\iota:\mathcal{G}(\mathfrak{M})\to\mathcal{G}(\mathfrak{M})$ defined by

$$\iota(x) := |x|^{-1} u^*,$$

is the groupoid over $\mathcal{L}(\mathfrak{M})$.

Introduction Banach manifold structures Groupoid W^{*}-algebra Supports and polar decomposition Groupoid of partially invertible elements Groupoid representations

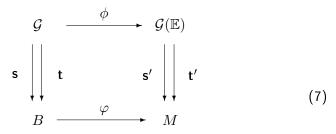
GROUPOID REPRESENTATIONS

The set $\mathcal{G}(\mathbb{E})$ of linear isomorphisms $e_m^n : \mathbb{E}_m \xrightarrow{\sim} \mathbb{E}_n$ between the fibres of a vector bundle $\pi : \mathbb{E} \to M$ has the groupoid structure over M.

It is called the structural groupoid of the bundle $\pi : \mathbb{E} \to M$.

(日) (同) (三) (三)

Let \mathcal{G} be a groupoid over B. Representation of $\mathcal{G} \rightrightarrows B$ on a vector bundle $\pi : \mathbb{E} \to M$ is a groupoid morphism of \mathcal{G} into the structural groupoid $\mathcal{G}(\mathbb{E})$ of this bundle:



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

One has the bundle $\pi:\mathcal{M}_R(\mathfrak{M})
ightarrow\mathcal{L}(\mathfrak{M})$, where

$$\mathcal{M}_R(\mathfrak{M}) := \{ (y, p) \in \mathfrak{M} \times \mathcal{L}(\mathfrak{M}) : p \ r(y) = r(y) \}$$

and $\pi := pr_2$. The fibre $\pi^{-1}(p)$ over $p \in \mathcal{L}(\mathfrak{M})$ is isomorphic to the right W^* -ideal (= \mathfrak{M} -modul) $p\mathfrak{M}$ of \mathfrak{M} generated by p.

Fact

For $x \in \mathcal{G}(\mathfrak{M})_p^q$ the left action

$$L_x: p\mathfrak{M} \xrightarrow{\sim} q\mathfrak{M}$$

is the isomorphism of the right W^* -ideals.

Theorem

• The structural groupoid $\mathcal{G}(\mathcal{M}_R(\mathfrak{M}))$ of the bundle $\pi : \mathcal{M}_R(\mathfrak{M}) \to \mathcal{L}(\mathfrak{M})$ of the right W^* -ideals is isomorphic to $\mathcal{G}(\mathfrak{M})$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Theorem

- The structural groupoid $\mathcal{G}(\mathcal{M}_R(\mathfrak{M}))$ of the bundle $\pi : \mathcal{M}_R(\mathfrak{M}) \to \mathcal{L}(\mathfrak{M})$ of the right W^* -ideals is isomorphic to $\mathcal{G}(\mathfrak{M})$.
- The structural groupoid $\mathcal{G}(\mathcal{M}_L(\mathfrak{M}))$ of the bundle $\pi : \mathcal{M}_L(\mathfrak{M}) \to \mathcal{L}(\mathfrak{M})$ of the left W^* -ideals is isomorphic to $\mathcal{G}(\mathfrak{M})$.

3

Theorem

- The structural groupoid $\mathcal{G}(\mathcal{M}_R(\mathfrak{M}))$ of the bundle $\pi : \mathcal{M}_R(\mathfrak{M}) \to \mathcal{L}(\mathfrak{M})$ of the right W^* -ideals is isomorphic to $\mathcal{G}(\mathfrak{M})$.
- The structural groupoid $\mathcal{G}(\mathcal{M}_L(\mathfrak{M}))$ of the bundle $\pi : \mathcal{M}_L(\mathfrak{M}) \to \mathcal{L}(\mathfrak{M})$ of the left W^* -ideals is isomorphic to $\mathcal{G}(\mathfrak{M})$.
- The structural groupoid $\mathcal{G}(\mathcal{A}(\mathfrak{M}))$ of the bundle $\pi : \mathcal{A}(\mathfrak{M}) \to \mathcal{L}(\mathfrak{M})$ of W^* -subalgebras is isomorphic to $\mathcal{G}(\mathfrak{M})$, where $\mathcal{A}(\mathfrak{M}) := \{(y, p) \in \mathfrak{M} \times \mathcal{L}(\mathfrak{M}) : y \in p\mathfrak{M}p\}.$

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) = (回 > (回 >)) (回 >) (回 >)) = ((u = (u

DIFFERENTIAL STRUCTURES

Aneta Sliżewska Groupoid of partially invertible elements of W^* -algebra

(日) (同) (三) (三)

We consider the following locally convex topologies, for which hold:

 $\sigma\text{-topology} \prec s\text{-topology} \prec s^*\text{-topology} \prec \text{ uniform topology}$

where for $\omega \in \mathfrak{M}^+_*$

- σ -topology is defined by a family of semi-norms $\|x\|_{\sigma} := |\langle x, \omega \rangle|,$
- $\begin{array}{ll} @ s$-topology is defined by a family of semi-norms \\ \|x\|_{\omega} := \sqrt{\langle x^*x, \omega \rangle}; & x \in \mathfrak{M}; \end{array}$
- s*-topology is defined by a family of semi-norms $\{\|\cdot\|_{\omega}, \|\cdot\|_{\omega}^*: \omega \in \mathfrak{M}^+_*\}$ where $\|x\|_{\omega}^*:=\sqrt{\langle xx^*, \omega \rangle}; x \in \mathfrak{M}.$

Theorem

For an infinite dimmentional W^* -algebra \mathfrak{M} the groupoid $\mathcal{G}(\mathfrak{M})$ is not topological with respect to above topologies of \mathfrak{M} .

Example: Let $p \in \mathcal{L}(\mathfrak{M})$ and $x_n \in \mathcal{G}(\mathfrak{M})$ as

$$x_n = p + \frac{1}{n}(1-p), \quad n \in \mathbb{N}.$$

Then

$$\mathbf{s}(x_n) = \mathbf{t}(x_n) = 1$$
 and $\mathbf{s}(p) = \mathbf{t}(p) = p$.

The uniform limit $\lim_{n\to\infty} x_n = p$, so the source and target maps are not continuous.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\mathcal{L}(\mathfrak{M})$ as a BANACH MANIFOLD

For
$$p \in \mathcal{L}(\mathfrak{M})$$
 let us define the set

$$\Pi_p := \{ q \in \mathcal{L}(\mathfrak{M}) : \mathfrak{M} = q \mathfrak{M} \oplus (1-p) \mathfrak{M} \}$$

then $q \wedge (1-p) = 0$, $q \vee (1-p) = 1$ and $q = x - y \in q\mathfrak{M} \oplus (1-p)\mathfrak{M}$. Define the maps

$$\sigma_p: \Pi_p \to q\mathfrak{M}p, \qquad \varphi_p: \Pi_p \to (1-p)\mathfrak{M}p$$

by

$$\sigma_p(q) := x, \qquad \varphi_p(q) := y.$$

The map φ_p is the bijection of Π_p onto the Banach space $(1-p)\mathfrak{M}p$.

In order to find the transitions maps

$$\varphi_p \circ \varphi_{p'}^{-1} : \varphi_{p'}(\Pi_p \cap \Pi_{p'}) \to \varphi_p(\Pi_p \cap \Pi_{p'})$$

in the case $\Pi_p\cap\Pi_{p'}\neq \emptyset,$ let us take for $q\in\Pi_p\cap\Pi_{p'}$ the following splittings

$$\mathfrak{M} = q\mathfrak{M} \oplus (1-p)\mathfrak{M} = p\mathfrak{M} \oplus (1-p)\mathfrak{M}$$
$$\mathfrak{M} = q\mathfrak{M} \oplus (1-p')\mathfrak{M} = p'\mathfrak{M} \oplus (1-p')\mathfrak{M}.$$
(8)

The splittings (9) lead to the corresponding decompositions of p and p^\prime

$$p = x - y$$
 $p = a + b$
 $p' = x' - y'$ $1 - p = c + d$ (9)

where $x \in q\mathfrak{M}p$, $y \in (1-p)\mathfrak{M}p$, $x' \in q\mathfrak{M}p'$, $y' \in (1-p')\mathfrak{M}p'$, $a \in p'\mathfrak{M}p$, $b \in (1-p')\mathfrak{M}p$, $c \in p'\mathfrak{M}(1-p)$ and $d \in (1-p')\mathfrak{M}(1-p)$.

Combining equations from (10) we obtain

$$q = \iota(x') + y'\iota(x') \tag{10}$$

$$q = (a + cy)\iota(x) + (b + dy)\iota(x).$$
 (11)

Comparing (11) and (12) we find that

$$\iota(x') = (a + cy)\iota(x) \tag{12}$$

$$y'\iota(x') = (b + dy)\iota(x).$$
 (13)

After substitution (13) into (14) and noting that $\mathbf{t}(a+cy)\leqslant p'$ we finally get the formula

$$y' = (\varphi_{p'} \circ \varphi_p^{-1})(y) = (b + dy)\iota(a + cy).$$

4 冊 ト 4 三 ト 4 三 ト

Theorem

The family of maps

$$(\Pi_p, \varphi_p) \quad p \in \mathcal{L}(\mathfrak{M})$$

defines a smooth atlas on a $\mathcal{L}(\mathfrak{M})$. This atlas is modeled by the family of Banach spaces $(1-p)\mathfrak{M}p$, for $p \in \mathcal{L}(\mathfrak{M})$.

Fact: If $p' \in \mathcal{O}_p$ then $(1-p)\mathfrak{M}p \cong (1-p')\mathfrak{M}p'$.

$\mathcal{G}(\mathfrak{M})$ as a BANACH MANIFOLD

For projections $\widetilde{p}, p \in \mathcal{L}(\mathfrak{M})$ we define the set

$$\Omega_{\tilde{p}p} := \mathbf{t}^{-1}(\Pi_{\tilde{p}}) \cap \mathbf{s}^{-1}(\Pi_p)$$

and a map

$$\psi_{\tilde{p}p}:\Omega_{\tilde{p}p}\to (1-\tilde{p})\mathfrak{M}\tilde{p}\oplus\tilde{p}\mathfrak{M}p\oplus (1-p)\mathfrak{M}p$$

in the following way

$$\begin{split} \psi_{\tilde{p}p}(x) &:= (\varphi_{\tilde{p}}(\mathbf{t}(x)), \iota(\sigma_{\tilde{p}}(\mathbf{t}(x)))x\sigma_p(\mathbf{s}(x)), \varphi_p(\mathbf{s}(x)))\,, \end{split}$$
 where $p = \sigma_p(q) - \varphi_p(q) \in \ q\mathfrak{M} \oplus (1-p)\mathfrak{M}.$

Theorem

The family of maps

$$(\Omega_{\tilde{p}p},\psi_{\tilde{p}p}) \quad \tilde{p},p \in \mathcal{L}(\mathfrak{M})$$

defines a smooth atlas on the groupoid $\mathcal{G}(\mathfrak{M})$. The complex Banach manifold structure of $\mathcal{G}(\mathfrak{M})$ has type \mathfrak{G} , where \mathfrak{G} is the set of Banach spaces

$$(1-\tilde{p})\mathfrak{M}\tilde{p}\oplus\tilde{p}\mathfrak{M}p\oplus(1-p)\mathfrak{M}p$$

indexed by the pair of equivalent projections of $\mathcal{L}(\mathfrak{M})$.

(1日) (1日) (1日)

$\mathcal{U}(\mathfrak{M})$ as a BANACH MANIFOLD

The groupoid $\mathcal{U}(\mathfrak{M})$ is the set of fixed points of the automorphism $J: \mathcal{G}(\mathfrak{M}) \to \mathcal{G}(\mathfrak{M})$ defined by

$$J(x) := \iota(x^*).$$

Expressing $J:\Omega_{\widetilde{p}p}\to\Omega_{\widetilde{p}p}$ in the coordinates

$$\psi_{\tilde{p}p}(x) = (\tilde{y}, z, y) \in (1 - \tilde{p})\mathfrak{M}\tilde{p} \oplus ip\mathfrak{M}^h p \oplus (1 - p)\mathfrak{M}p$$

we find that

$$\begin{split} \left(\psi_{\tilde{p}p} \circ J \circ \psi_{\tilde{p}p}^{-1}\right)(\tilde{y}, z, y) = \\ &= \left(\tilde{y}, \iota(\sigma_{\tilde{p}}(\varphi_{\tilde{p}}^{-1}(\tilde{y}))^* \sigma_{\tilde{p}}(\varphi_{\tilde{p}}^{-1}(\tilde{y})))\iota(z^*)\sigma_p(\varphi_p^{-1}(y))^* \sigma_p(\varphi_p^{-1}(y)), y\right), \\ \text{where } z \in \mathcal{G}(\mathfrak{M})_p^{\tilde{p}} \subset \tilde{p}\mathfrak{M}p. \text{ Since } J^2(x) = x \text{ for } x \in \mathcal{U}(\mathfrak{M}) \text{ one has} \\ &\quad (DJ(x))^2 = \mathbf{1} \end{split}$$

for $DJ(x): T_x\mathcal{G}(\mathfrak{M}) \to T_x\mathcal{G}(\mathfrak{M}).$

4 冊 ト 4 三 ト 4 三 ト

Thus one obtains a splitting of the tangent space

$$T_x \mathcal{G}(\mathfrak{M}) = T_x^+ \mathcal{G}(\mathfrak{M}) \oplus T_x^- \mathcal{G}(\mathfrak{M})$$
(14)

defined by the Banach space projections

$$P_{\pm}(x) := \frac{1}{2} \left(\mathbf{1} \pm DJ(x) \right).$$
(15)

The Frechét derivative $D\iota(z)$ of the inversion map $\iota: \mathcal{G}(\mathfrak{M})_p^{\tilde{p}} \ni \ z \mapsto \ \iota(z) \in \mathcal{G}(\mathfrak{M})_{\tilde{p}}^p$ at the point z is given by

$$D\iota(z) \vartriangle z = -\iota(z) \vartriangle z \iota(z),$$

where $\Delta z \in \tilde{p}\mathfrak{M}p$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

The groupoid $\mathcal{U}(\mathfrak{M})$ of partial isometries has a natural structure of the real Banach manifold of the type \mathfrak{G} , where the family \mathfrak{G} consist of the real Banach spaces

$$(1-\tilde{p})\mathfrak{M}\tilde{p}\oplus\tilde{p}\mathfrak{M}^hp\oplus(1-p)\mathfrak{M}p$$

parameterized by the pairs $(\tilde{p}, p) \in \mathcal{L}(\mathfrak{M}) \times \mathcal{L}(\mathfrak{M})$ of equivalent projections.

Corollary

The groupoid $\mathcal{G}(\mathfrak{M})$ is the complexification of $\mathcal{U}(\mathfrak{M})$.

・ロト ・ 同ト ・ ヨト ・ ヨ

THANK YOU

Aneta Sliżewska Groupoid of partially invertible elements of W^* -algebra

(日) (同) (三) (三)

э