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Groupoid over the base set B is a set G with actions:

(i) source map s : G → B and target map t : G → B

(ii) product m : G(2) → G

m(g, h) =: gh,

de�ned on the set of composable pairs

G(2) := {(g, h) ∈ G × G : s(g) = t(h)},

(iii) iniective identity section ε : B → G,
(iv) inverse map ι : G → G,
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which satisfy the following conditions:

s(gh) = s(h), t(gh) = t(g), (1)

k(gh) = (kg)h, (2)

ε(t(g))g = g = gε(s(g)), (3)

ι(g)g = ε(s(g)), gι(g) = ε(t(g)), (4)

where g, k, h ∈ G.
Notation: G ⇒ B.
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Left support l(x) ∈ L(M) (right support r(x) ∈ L(M)) of
x ∈M is the least projection in M, such that

l(x)x = x (resp. x r(x) = x). (5)

If x ∈M is selfadjoint, then support s(x)

s(x) := l(x) = r(x).

Polar decomposition for x ∈M

x = u|x|, (6)

where u ∈M is partial isometry and |x| :=
√
x∗x ∈M+. Then

l(x) = s(|x∗|) = uu∗, r(x) = s(|x|) = u∗u.
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Let G(pMp) - the group of all invertible elements in

W ∗-subalgebra pMp ⊂M.

We de�ne the set G(M) of partially invertible elements in M

G(M) := {x ∈M; |x| ∈ G(pMp), where p = s(|x|)}

Remark: G(M)  M.
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Theorem

The set G(M) with

1 the source and target maps s, t : G(M)→ L(M)

s(x) := r(x), t(x) := l(x),

2 the product de�ned as the product in M on the set

G(M)(2) := {(x, y) ∈ G(M)× G(M); s(x) = t(y)},

3 the identity section ε : L(M) ↪→ G(M) as the identity,

4 the inverse map ι : G(M)→ G(M) de�ned by

ι(x) := |x|−1u∗,

is the groupoid over L(M).
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The set G(E) of linear isomorphisms enm : Em →̃ En between the

�bres of a vector bundle π : E→M has the groupoid structure

over M .

It is called the structural groupoid of the bundle π : E→M .
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Let G be a groupoid over B. Representation of G ⇒ B on a

vector bundle π : E→M is a groupoid morphism of G into the

structural groupoid G(E) of this bundle:

G G(E)

B M

?? ??

-

-

s t t′s′

φ

ϕ
(7)
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One has the bundle π :MR(M)→ L(M), where

MR(M) := {(y, p) ∈M× L(M) : p r(y) = r(y)}

and π := pr2. The �bre π−1(p) over p ∈ L(M) is isomorphic to

the right W ∗-ideal (=M-modul) pM of M generated by p.

Fact

For x ∈ G(M)qp the left action

Lx : pM →̃ qM

is the isomorphism of the right W ∗-ideals.
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Theorem

1 The structural groupoid G(MR(M)) of the bundle

π :MR(M)→ L(M) of the right W ∗-ideals is isomorphic to

G(M).

2 The structural groupoid G(ML(M)) of the bundle

π :ML(M)→ L(M) of the left W ∗-ideals is isomorphic to

G(M).

3 The structural groupoid G(A(M)) of the bundle

π : A(M)→ L(M) of W ∗-subalgebras is isomorphic to G(M),
where A(M) := {(y, p) ∈M× L(M) : y ∈ pMp}.
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We consider the following locally convex topologies, for which hold:

σ−topology ≺ s−topology ≺ s∗−topology ≺ uniform topology

where for ω ∈M+
∗

1 σ-topology is de�ned by a family of semi-norms

‖x‖σ := |〈x, ω〉|,
2 s-topology is de�ned by a family of semi-norms

‖x‖ω :=
√
〈x∗x, ω〉; x ∈M ;

3 s∗-topology is de�ned by a family of semi-norms

{‖·‖ω , ‖·‖
∗
ω : ω ∈M+

∗ } where ‖x‖
∗
ω :=

√
〈xx∗, ω〉; x ∈M.
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Theorem

For an in�nite dimmentional W ∗-algebra M the groupoid G(M) is

not topological with respect to above topologies of M.

Example: Let p ∈ L(M) and xn ∈ G(M) as

xn = p+
1

n
(1− p), n ∈ N.

Then

s(xn) = t(xn) = 1 and s(p) = t(p) = p.

The uniform limit limn→∞ xn = p, so the source and target

maps are not continuous.
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L(M) as a BANACH MANIFOLD
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For p ∈ L(M) let us de�ne the set

Πp := {q ∈ L(M) : M = qM⊕ (1− p)M}

then q ∧ (1− p) = 0, q ∨ (1− p) = 1
and q = x− y ∈ qM⊕ (1− p)M.

De�ne the maps

σp : Πp → qMp, ϕp : Πp →̃ (1− p)Mp

by

σp(q) := x, ϕp(q) := y.

The map ϕp is the bijection of Πp onto the Banach space

(1− p)Mp.
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In order to �nd the transitions maps

ϕp ◦ ϕ−1p′ : ϕp′(Πp ∩Πp′)→ ϕp(Πp ∩Πp′)

in the case Πp ∩Πp′ 6= ∅, let us take for q ∈ Πp ∩Πp′ the following

splittings

M = qM⊕ (1− p)M = pM⊕ (1− p)M
M = qM⊕ (1− p′)M = p′M⊕ (1− p′)M.

(8)

The splittings (9) lead to the corresponding decompositions of p
and p′

p = x− y p = a+ b
p′ = x′ − y′ 1− p = c+ d

(9)

where x ∈ qMp, y ∈ (1− p)Mp, x′ ∈ qMp′, y′ ∈ (1− p′)Mp′,
a ∈ p′Mp, b ∈ (1− p′)Mp, c ∈ p′M(1− p) and

d ∈ (1− p′)M(1− p).
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Combining equations from (10) we obtain

q = ι(x′) + y′ι(x′) (10)

q = (a+ cy)ι(x) + (b+ dy)ι(x). (11)

Comparing (11) and (12) we �nd that

ι(x′) = (a+ cy)ι(x) (12)

y′ι(x′) = (b+ dy)ι(x). (13)

After substitution (13) into (14) and noting that t(a+ cy) 6 p′ we
�nally get the formula

y′ = (ϕp′ ◦ ϕ−1p )(y) = (b+ dy)ι(a+ cy).
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Theorem

The family of maps

(Πp, ϕp) p ∈ L(M)

de�nes a smooth atlas on a L(M). This atlas is modeled by the

family of Banach spaces (1− p)Mp, for p ∈ L(M).

Fact: If p′ ∈ Op then (1− p)Mp ∼= (1− p′)Mp′.
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For projections p̃, p ∈ L(M) we de�ne the set

Ωp̃p := t−1(Πp̃) ∩ s−1(Πp)

and a map

ψp̃p : Ωp̃p → (1− p̃)Mp̃⊕ p̃Mp⊕ (1− p)Mp

in the following way

ψp̃p(x) := (ϕp̃(t(x)), ι(σp̃(t(x)))xσp(s(x)), ϕp(s(x))) ,

where p = σp(q)− ϕp(q) ∈ qM⊕ (1− p)M.
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Theorem

The family of maps

(Ωp̃p, ψp̃p) p̃, p ∈ L(M)

de�nes a smooth atlas on the groupoid G(M). The complex

Banach manifold structure of G(M) has type G, where G is the set

of Banach spaces

(1− p̃)Mp̃⊕ p̃Mp⊕ (1− p)Mp

indexed by the pair of equivalent projections of L(M).

Aneta Sli»ewska Groupoid of partially invertible elements of W∗-algebra



Introduction
Banach manifold structures

Complex Banach manifold structure on L(M)
Complex Banach manifold structure on G(M)
Banach manifold structure on U(M)
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The groupoid U(M) is the set of �xed points of the automorphism

J : G(M)→ G(M) de�ned by

J(x) := ι(x∗).

Expressing J : Ωp̃p → Ωp̃p in the coordinates

ψp̃p(x) = (ỹ, z, y) ∈ (1− p̃)Mp̃⊕ ipMhp⊕ (1− p)Mp

we �nd that (
ψp̃p ◦ J ◦ ψ−1p̃p

)
(ỹ, z, y) =

=
(
ỹ, ι(σp̃(ϕ

−1
p̃ (ỹ))∗σp̃(ϕ

−1
p̃ (ỹ)))ι(z∗)σp(ϕ

−1
p (y))∗σp(ϕ

−1
p (y)), y

)
,

where z ∈ G(M)p̃p ⊂ p̃Mp. Since J2(x) = x for x ∈ U(M) one has

(DJ(x))2 = 1

for DJ(x) : TxG(M)→ TxG(M).
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Thus one obtains a splitting of the tangent space

TxG(M) = T+
x G(M)⊕ T−x G(M) (14)

de�ned by the Banach space projections

P±(x) :=
1

2
(1±DJ(x)) . (15)

The Frechét derivative Dι(z) of the inversion map

ι : G(M)p̃p 3 z 7→ ι(z) ∈ G(M)pp̃ at the point z is given by

Dι(z) Mz = −ι(z) Mz ι(z),

where Mz ∈ p̃Mp.
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Theorem

The groupoid U(M) of partial isometries has a natural structure of

the real Banach manifold of the type G, where the family G consist

of the real Banach spaces

(1− p̃)Mp̃⊕ p̃Mhp⊕ (1− p)Mp

parameterized by the pairs (p̃, p) ∈ L(M)× L(M) of equivalent

projections.

Corollary

The groupoid G(M) is the complexi�cation of U(M).
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THANK YOU
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