XIV -th International Conference "Geometry, Integrability and Quantization" June 8–13, 2012, "St. Constantin and Elena", Varna

On Multicomponent Derivative Nonlinear Schrödinger Equation Related to Symmetric Spaces

Tihomir Valchev

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

1. Introduction

Derivative nonlinear Schrödinger equation (DNLS) has the form:

$$
iq_t + q_{xx} + i(|q|^2 q)_x = 0,
$$

where $q(x, t)$ is a smooth complex-valued function. DNLS describes the propagation of circular polarized nonlinear Alfvén waves in plasma.

DNLS is S-integrable [Kaup-Newell, 1977], i.e. it possesses ^a quadratic bundle Lax pair:

$$
L(\lambda) := i\partial_x + \lambda Q(x, t) - \lambda^2 \sigma_3,
$$

\n
$$
A(\lambda) := i\partial_t + \sum_{k=1}^3 A_k(x, t)\lambda^k - 2\lambda^4 \sigma_3,
$$

where $\lambda \in \mathbb{C}$ is a spectral parameter and

$$
Q(x,t) = \begin{pmatrix} 0 & q(x,t) \\ q^*(x,t) & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$

Purpose of the talk: Study of certain examples of multicomponent generazitations of DNLS related to Hermitian symmetric spaces.

2. Preliminaries

 $+$

• Multicomponent DNLS equation related to **A.III** symmetric space Our main object of study is:

$$
i\mathbf{q}_t + \mathbf{q}_{xx} + \frac{2i}{n+1} \left(\left(\mathbf{q}^T \mathbf{q}^* \right) \mathbf{q} \right)_x = 0,
$$

where $\mathbf{q}: \mathbb{R}^2 \to \mathbb{C}^n$ is an infinitely smooth function. It is also assumed that q obeys zero boundary conditions, i.e.

$$
\lim_{x \to \pm \infty} \mathbf{q}(x, t) = \mathbf{0}.
$$

• Lax representation and connection with Hermitian symmetric spaces

$$
L(\lambda) := i\partial_x + \lambda Q(x, t) - \lambda^2 J,
$$

$$
A(\lambda) := i\partial_t + \sum_{k=1}^4 \lambda^k A_k(x, t).
$$

All coefficients above are Hermitian traceless $(n + 1) \times (n + 1)$ matrices. Moreover, the following \mathbb{Z}_2 reduction is imposed on the Lax pair:

$$
CL(-\lambda)C = L(\lambda),
$$

$$
CA(-\lambda)C = A(\lambda),
$$

where $\mathbf{C} = \text{diag}(1, -1, \ldots, -1)$. Due to the form of \mathbf{C} the potential Q has the block structure:

$$
Q(x,t) = \begin{pmatrix} 0 & \mathbf{q}^T(x,t) \\ \mathbf{q}^*(x,t) & 0 \end{pmatrix}.
$$

while J is block diagonal. More particularly, we pick it up in the form $J = diag(n, -1, \ldots, -1)$.

The matrix ^C represents action of Cartan's involutive automorphism to define $SU(n+1)/S(U(1) \times U(n))$ symmetric space of the type **A.III.** It induces a \mathbb{Z}_2 grading in $\mathfrak{sl}(n+1)$ as follows

$$
\mathfrak{sl}(n+1)=\mathfrak{sl}^0(n+1)+\mathfrak{sl}^1(n+1),\ [\mathfrak{sl}^\sigma(n+1),\mathfrak{sl}^{\sigma'}(n+1)]=\mathfrak{sl}^{\sigma+\sigma'}(n+1),
$$

where

$$
\mathfrak{sl}^\sigma(n+1):=\{X\in\mathfrak{sl}(n+1)|{\rm \bf C} X{\rm \bf C}^{-1}=(-1)^\sigma X\}.
$$

It is easy to see that Q as well as A_1 and A_3 belong to $\mathfrak{sl}^1(n+1)$ while J, A_2 and A_4 belong to $\mathfrak{sl}^0(n+1)$. The subspace $\mathfrak{sl}^0(n+1)$ coincides with the centralizer of J.

• Direct scattering problem

In order to formulate the direct scattering theory one introduces auxilary linear problem:

$$
L(\lambda)\psi(x,t,\lambda) = i\partial_x\psi(x,t,\lambda) + \lambda(Q(x,t) - \lambda J)\psi(x,t,\lambda) = 0.
$$

It is evident that det $\psi = 1$. Since $[L, A] = 0$ any fundamental solution satisfies as well

$$
A(\lambda)\psi = \mathrm{i}\partial_t \psi + \sum_{k=1}^4 \lambda^k A_k \psi = \psi f(\lambda),
$$

where

$$
f(\lambda) = \lim_{x \to \pm \infty} \sum_{k=1}^{4} \lambda^k A_k(x, t) = -(n+1)\lambda^4 J.
$$

is called dispersion law. It is ^a fundamental property of any soliton equation.

A special case of solutions are Jost solutions defined as follows:

$$
\lim_{x \to \pm \infty} \psi_{\pm}(x, t, \lambda) e^{i\lambda^2 Jx} = \mathbb{1}.
$$

The Jost solutions are defined only on the real and imaginery axes in the λ -plane (continuous spectrum of $L(\lambda)$). The transition matrix

$$
\psi_{-}(x,t,\lambda) = \psi_{+}(x,t,\lambda)T(t,\lambda)
$$

is called scattering matrix. Its time evolution is given by:

$$
i\partial_t T + [f(\lambda), T] = 0 \quad \Rightarrow \quad T(t, \lambda) = e^{if(\lambda)t} T(0, \lambda) e^{-if(\lambda)t}.
$$

• Fundamental analytic solutions There exist two fundamental solutions $\chi^+(x,\lambda)$ and $\chi^-(x,\lambda)$ to be analytic in the upper and lower half-plane of the λ^2 -plane respectively. They can be constructed from Jost solutions through the formulae:

$$
\chi^{\pm}(x,\lambda) = \psi_{-}(x,\lambda)S^{\pm}(\lambda) = \psi_{+}(x,\lambda)T^{\mp}(\lambda)D^{\pm}(\lambda).
$$

The matrices $S^{\pm}(\lambda)$, $T^{\pm}(\lambda)$ and $D^{\pm}(\lambda)$ are involved in the generalized Gauss decomposition

$$
T(\lambda) = T^{\mp}(\lambda)D^{\pm}(\lambda)(S^{\pm}(\lambda))^{-1}.
$$

As ^a simple consequence of their construction we see that

$$
\chi^+(x,\lambda) = \chi^-(x,\lambda)G(\lambda)
$$

for some sewing function $G(\lambda) = (S^-(\lambda))^{-1}S^+(\lambda)$.

• Reduction conditions on the Jost solutions, the scattering matrix and fundamental analytic solutions

$$
\begin{aligned}\n\left[\psi_{\pm}^{\dagger}(x,\lambda^{*})\right]^{-1} &= \psi_{\pm}(x,\lambda), & \left[T^{\dagger}(\lambda^{*})\right]^{-1} &= T(\lambda), \\
\mathbf{C}\psi_{\pm}(x,-\lambda)\mathbf{C} &= \psi_{\pm}(x,\lambda), & \mathbf{C}T(-\lambda)\mathbf{C} &= T(\lambda), \\
(\chi^{+})^{\dagger}(x,\lambda^{*}) &= [\chi^{+}(x,\lambda)]^{-1}, & \mathbf{C}\chi^{+}(x,-\lambda)\mathbf{C} &= \chi^{-}(x,\lambda).\n\end{aligned}
$$

3. Dressing method and special solutions

• Dressing method

Concept of the dressing method:

$$
Q_0 \to L_0 \to \psi_0 \to \psi_1 \to Q_1.
$$

Realization: let ψ_0 be a fundamental solution of

$$
L_0\psi_0 = i\partial_x\psi_0 + \lambda(Q_0 - \lambda J)\psi_0 = 0
$$

where

$$
Q_0(x) = \begin{pmatrix} 0 & \mathbf{q}_0(x) \\ \mathbf{q}_0^*(x) & 0 \end{pmatrix}, \qquad J = \text{diag}(n, -1, \dots, -1).
$$

for some vector $\mathbf{q}^T_0\ =\ (q^1_0,\ldots,q^n)$ $\binom{n}{0}$ assumed to be known. Now construct another function $\psi_1(x,\lambda) := g(x,\lambda)\psi_0(x,\lambda)$ and assume it satisfies the linear system

$$
L_1\psi_1 = i\partial_x\psi_1 + \lambda(Q_1 - \lambda J)\psi_1 = 0
$$

for some potential

$$
Q_1(x) := \begin{pmatrix} 0 & \mathbf{q}_1(x) \\ \mathbf{q}_1^*(x) & 0 \end{pmatrix}.
$$

to be found. Therefore the dressing factor g satisfies:

$$
i\partial_x g + \lambda Q_1 g - \lambda g Q_0 - \lambda^2 [J, g] = 0.
$$

The \mathbb{Z}_2 reductions imposed on the Lax pair implies that g is obliged to fulfill similar set of symmetry conditions:

$$
\begin{array}{rcl}\n\left[g^{\dagger}(x,\lambda^{*})\right]^{-1} & = & g(x,\lambda), \\
\mathbf{C}g(x,-\lambda)\mathbf{C} & = & g(x,\lambda).\n\end{array}
$$

We ^pick up the dressing factor in the form:

$$
g(x,\lambda) = 1 + \frac{\lambda B(x)}{\mu(\lambda - \mu)} + \frac{\lambda CB(x)C}{\mu(\lambda + \mu)}, \quad \text{Re}\,\mu_k \neq 0, \text{ Im}\,\mu_k \neq 0.
$$

The inverse of the dressing factor reads

$$
[g(x,\lambda)]^{-1} = 1 + \frac{\lambda B^{\dagger}(x)}{\mu^*(\lambda - \mu^*)} + \frac{\lambda \mathbf{C} B^{\dagger}(x) \mathbf{C}}{\mu^*(\lambda + \mu^*)}.
$$

There exists the following connection between Q_1 and Q_0

$$
\lambda Q_1 = -\mathrm{i}\partial_x g g^{-1} + \lambda g Q_0 g^{-1} + \lambda^2 [J, g] g^{-1}.
$$

After dividing by λ and taking $|\lambda| \to \infty$ we obtain

$$
Q_1 = AQ_0A^{\dagger} + [J, B - \mathbf{CBC}]A^{\dagger},
$$

where

$$
A = \mathbb{1} + \frac{1}{\mu}(B + \mathbf{CBC}).
$$

From the obvious identity $gg^{-1} = 1$ it follows that the residue B satisfies:

$$
B\left(\mathbb{1}+\frac{\mu B^{\dagger}}{\mu^*(\mu-\mu^*)}+\frac{\mu CB^{\dagger}C}{\mu^*(\mu+\mu^*)}\right)=0.
$$

 $B(x, t)$ is a degenerate matrix. Therefore we have $B = XF^T$ for some $(n + 1) \times k$ rectangular matrices $X(x)$ and $F(x)$. Then the algebraic relation obtains the form

$$
F^* = \frac{\mu^*}{\mu} \left(\frac{F^T F^*}{\mu - \mu^*} - \frac{F^T \mathbf{C} F^*}{\mu + \mu^*} \mathbf{C} \right) X.
$$

It can be solved easily to give

$$
X = \frac{\mu}{\mu^*} \left(\frac{F^T F^*}{\mu - \mu^*} - \frac{F^T \mathbf{C} F^*}{\mu + \mu^*} \mathbf{C} \right)^{-1} F^*.
$$

Thus we have expressed X through F . In order to find the latter we consider the differential equation for g . After calculating the residue at $\lambda = \mu$ we obtain

$$
i\partial_x F^T - \mu F^T (Q_0 - \mu J) = 0 \quad \Rightarrow \quad F^T(x) = F_0^T [\psi_0(x, \mu)]^{-1}.
$$

What remains is to recover the time evolution. For this to be done one must analyse some properties of the second Lax operator $A(\lambda).$ Any fundamental solution of the bare linear problem also satisfies:

solution of the bare integral plot
\n
$$
i\partial_t \psi_0 + \sum_k \lambda^k A_k^{(0)} \psi_0 = \psi_0 f(\lambda)
$$

while the dressed fundamental solution solves
\n
$$
i\partial_t \psi_1 + \sum_k \lambda^k A_k^{(1)} \psi_1 = \psi_1 f(\lambda).
$$

As ^a result the dressing factor satisfies:

$$
i\partial_t g + \sum_{k=1}^{2N} \lambda^k A_k^{(1)} g - g \sum_{k=1}^{2N} \lambda^k A_k^{(0)} = 0.
$$

Detailed analysis shows that

$$
i\partial_t F^T - F^T \sum_{k=1}^{2N} \mu^k A_k = 0.
$$

$$
0-12
$$

Therefore we have

$$
i\partial_t F_0^T - F_0^T f(\mu) = 0.
$$

Thus we are able to propose ^a simple rule to derive the time dependence of potential, namely:

$$
F_0^T \to F_0^T e^{-if(\mu)t}.
$$

For the DNLS equation $f(\lambda) = -(n+1)\lambda^4 J$.

• Soliton solutions

In the soliton sector $Q_0 \equiv 0$. Therefore we have:

$$
\psi_0(x,t,\lambda) = e^{-i\lambda^2 Jx}.
$$

We shall resrict ourselves with the case when the rank of B is 1. Then the column-vector F is given by

$$
F = \begin{pmatrix} e^{ni\mu^2 x} F_{0,1} \\ e^{-i\mu^2 x} F_{0,2} \\ \vdots \\ e^{-i\mu^2 x} F_{0,n+1} \end{pmatrix}.
$$

It proves to be convenient to adopt polar parametrization of the pole, i.e. $\mu = \rho \exp(i\varphi)$. Then the potential acquires the form:

$$
q_1^{j-1}(x) = (Q_1)_{1j}(x) = 2i(n+1) \sum_{l=2}^{n+1} \frac{\rho \sin(2\varphi) e^{-i\sigma_l(x)} e^{\theta_l(x)}}{e^{-2i\varphi} + \sum_{p=2}^{n+1} e^{2\theta_p(x)}} \times \left(\delta_{jl} - 2i \sin(2\varphi) \frac{e^{\theta_j(x) + \theta_l(x)} e^{i(\delta_j - \delta_l - 2\varphi)}}{e^{-2i\varphi} + \sum_{p=2}^{n+1} e^{2\theta_p(x)}}\right),
$$

where

$$
\begin{array}{rcl}\n\theta_p(x) & = & (n+1)\rho^2 \sin(2\varphi)x - \xi_{0,p}, \\
\sigma_p(x) & = & (n+1)\cos(2\varphi)x + \delta_1 - \delta_p - \varphi. \\
\xi_{0,p} & = & \ln|F_{0,1}/F_{0,p}|, \qquad \delta_1 = \arg F_{0,1}, \qquad \delta_p = \arg F_{0,p}.\n\end{array}
$$

In order to recover the time dependence one uses the following rule:

$$
\xi_{0,p} \rightarrow \xi_{0,p} - 2(n+1)\rho^4 \sin(4\varphi)t,\n\delta_1 \rightarrow \delta_1 + 2n\rho^4 \cos(4\varphi)t,\n\delta_p \rightarrow \delta_p - 2\rho^4 \cos(4\varphi)t.
$$

Remark 1 In the simplest case when $n = 1$ one can derive the *soliton of the DNLS equation [Kaup-Newell, 1977]. Indeed, one should use the following dressing factor*

$$
g(x, t, \lambda) = 1 + \frac{\lambda B(x, t)}{\mu(\lambda - \mu)} + \frac{\lambda \sigma_3 B(x, t) \sigma_3}{\mu(\lambda + \mu)}.
$$

As ^a result we reproduce the Kaup-Newel soliton

$$
q_1 = 4i \frac{\rho \sin(2\varphi) e^{-2i(\rho^2 \cos(2\varphi)x + \delta_0)} e^{2\rho^2 \sin(2\varphi)x - \xi_0} \left[e^{2i\varphi} + e^{2(2\rho^2 \sin(2\varphi)x - \xi_0)} \right]}{\left[e^{-2i\varphi} + e^{2(2\rho^2 \sin(2\varphi)x - \xi_0)} \right]^2},
$$

where $\mu = \rho \exp(i\varphi)$ *and*

$$
\delta_0 = \frac{\delta_1 - \delta_2 + 3\varphi}{2}, \qquad \xi_0 = \ln|F_{0,1}/F_{0,2}|
$$

for DNLS equation. The time dependence is recovered by using the rule:

$$
\xi_0 \to \xi_0 - 4\rho^4 \sin(4\varphi)t, \qquad \delta_0 \to \delta_0 + 2\rho^4 \cos(4\varphi)t.
$$

- Multisoliton solutions
	- One can apply the dressing procedure to build ^a sequence of exact solutions to the system:

$$
Q_0 \xrightarrow{g_0} Q_1 \xrightarrow{g_1} Q_2 \to \dots \xrightarrow{g_{m-1}} Q_m,
$$

where g_k is constructed by using the fundamental solution

$$
\psi_k(x,t,\lambda) = \prod_{l=0,\ldots,k-1}^{\leftarrow} g_l(x,t,\lambda) \psi_0(x,t,\lambda).
$$

– Multiple poles dressing factor In this case one uses the following factor:

$$
g(x, t, \lambda) = \mathbb{1} + \sum_{k=1}^{N} \frac{\lambda}{\mu_k} \left(\frac{B_k(x, t)}{\lambda - \mu_k} + \frac{\mathbf{C}B_k(x, t)\mathbf{C}}{\lambda + \mu_k} \right),
$$

where $\mu \in \mathbb{C}$, Re $\mu_k \neq 0$, Im $\mu_k \neq 0$. In order to determine B_k one analyse the identity $gg^{-1} = 1$. After introducing the factorization $B_k = X_k F_k^T$ it reduces to a linear system for X_k , namely:

$$
F_k^* = \sum_{l=1}^m \frac{\mu_k^*}{\mu_l} \left(X_l \frac{F_l^T F_k^*}{\mu_l - \mu_k^*} - \mathbf{C} X_l \frac{F_l |\mathbf{C} F_k^*}{\mu_l + \mu_k^*} \right).
$$

Next one determines the vectors F_k from the p.d.e.

$$
i\partial_x g + \lambda Q_1 g - \lambda g Q_0 - \lambda^2 [J, g] = 0.
$$

The result reads:

$$
F_k^T(x,t) = F_{k,0}^T[\psi_0(x,t,\mu_k)]^{-1}.
$$

Thus the dressing factor is determined if one knows the seed solution $\psi_0(x, t, \lambda)$. The multisoliton solution itself can be derived through the following formula

$$
Q_1 = \sum_{k=1}^m [J, B_k - \mathbf{C} B_k \mathbf{C}] A^{\dagger},
$$

0-18

where

$$
A = \mathbb{1} + \sum_{k=1}^{m} \frac{1}{\mu_k} (B_k + \mathbf{C} B_k \mathbf{C}).
$$

In order to recover the time evolution we use the rule:

$$
F_{k,0}^T \to F_{k,0}^T e^{-if(\mu_k)t}.
$$

4. Integrals of Motion

Let us consider the Lax pair

$$
L(\lambda) := \mathrm{i}\partial_x + \lambda Q(x, t) - \lambda^2 J,
$$

$$
A(\lambda) := \mathrm{i}\partial_t + \sum_{k=1}^{2N} A_k(x, t)\lambda^k.
$$

In order to derive the integrals of motion we shall apply method of diagonalization of the Lax pair [Drinfel'd and Sokolov, 1985]. For this to be done one uses the following transformation:

$$
\mathcal{P}(x,t,\lambda) = \mathbb{1} + \sum_{k=1}^{\infty} \frac{p_k(x,t)}{\lambda^k}.
$$

To avoid umbiguities we assume that all $p_k \in \mathfrak{sl}^1(n+1)$. The transformed Lax operators look as follows:

$$
\mathcal{L} = \mathcal{P}^{-1} \tilde{L} \mathcal{P} = i \partial_x - \lambda^2 J + \lambda \mathcal{L}_{-1} + \mathcal{L}_0 + \frac{\mathcal{L}_1}{\lambda} + \cdots,
$$

$$
\mathcal{A} = \mathcal{P}^{-1} \tilde{A} \mathcal{P} = i \partial_t + \sum_{k=1}^{2N} \lambda^k A_{-k} + \mathcal{A}_0 + \frac{\mathcal{A}_1}{\lambda} + \cdots,
$$

where all coefficients are block diagonal, i.e. elements of $\mathfrak{sl}^0(n+1)$. The zero curvature representation is written as

$$
\partial_t \mathcal{L}_k - \partial_x \mathcal{A}_k + \sum_l^k [\mathcal{L}_l, \mathcal{A}_{k-l}] = 0.
$$

Hence the matrix element $(\mathcal{L}_k)_{11}$ as well as the trace of the $n \times n$ block of \mathcal{L}_k are (local) densities of the integrals of motion.

It is evident that equality can be rewritten in the following manner

$$
\left(\mathbb{1} + \frac{p_1}{\lambda} + \frac{p_2}{\lambda^2} + \cdots\right) \left(i\partial_x - \lambda^2 J + \lambda \mathcal{L}_{-1} + \mathcal{L}_0 + \frac{\mathcal{L}_1}{\lambda} + \cdots\right)
$$

= $(i\partial_x + \lambda Q - \lambda^2 J) \left(\mathbb{1} + \frac{p_1}{\lambda} + \frac{p_2}{\lambda^2} + \cdots\right).$

The latter is equivalent to the following set of recurrence relations:

$$
\lambda : \mathcal{L}_{-1} - p_1 J = Q - J p_1,
$$
\n
$$
\lambda^0 : \mathcal{L}_0 + p_1 \mathcal{L}_{-1} - p_2 J = Q p_1 - J p_2,
$$
\n
$$
\lambda^{-1} : \mathcal{L}_1 + p_1 \mathcal{L}_0 + p_2 \mathcal{L}_{-1} - p_3 J = i p_{1,x} + Q p_2 - J p_3,
$$
\n
$$
\lambda^{-2} : \mathcal{L}_2 + p_1 \mathcal{L}_1 + p_2 \mathcal{L}_0 + p_3 \mathcal{L}_{-1} - p_4 J = i p_{2,x} + Q p_3 - J p_4,
$$
\n
$$
\dots
$$
\n
$$
\lambda^{-k} : \mathcal{L}_k + \sum_{k=1}^k p_k \mathcal{L}_{k-l} + p_{k+1} \mathcal{L}_{-1} - p_{k+2} J = i p_{k,x} + Q p_{k+1} - J p_k
$$

$$
\lambda^{-k} \qquad : \qquad \mathcal{L}_k + \sum_{l=1} p_l \mathcal{L}_{k-l} + p_{k+1} \mathcal{L}_{-1} - p_{k+2} J = \mathrm{i} p_{k,x} + Q p_{k+1} - J p_{k+2},
$$

After projecting the first recurrence relation into a part in $\mathfrak{sl}^0(n+1)$ and another one in $\mathfrak{sl}^1(n+1)$ we deduce that:

$$
\mathcal{L}_{-1} = 0
$$
, $p_1 = \mathrm{ad}^{-1} Q = \frac{1}{n+1} \begin{pmatrix} 0 & \mathbf{q}^T \\ -\mathbf{q}^* & 0 \end{pmatrix}$.

Similarly, from the second relation we get

$$
\mathcal{L}_0 = Qp_1 = \frac{1}{n+1} \begin{pmatrix} -\mathbf{q}^T \mathbf{q}^* & 0 \\ 0 & \mathbf{q}^T \mathbf{q}^T \end{pmatrix}, \qquad p_2 = 0.
$$

Thus the first integral density is $I_1 = \mathbf{q}^{\dagger}$ ${\bf q}.$

 $\bf Theorem~1~\textit{All}~\textit{conserved}~\textit{densities}~\mathcal{L}_k~\textit{corresponding}~\textit{to}~\textit{odd}~\textit{indices}$ *vanish.*

Proof: By induction. It is easy to see that p_k vanish whenever k is even. Indeed, after splitting the k -th recurrence relation one is able to express p_k the following recursive formula:

$$
p_k = \text{ad}\, \overline{\jmath}^1 \left(i p_{k-2,x} - \sum_{l=1}^{k-2} p_l \mathcal{L}_{k-2-l} \right).
$$

Then the statement of theorem follows immediately from formula:

$$
\mathcal{L}_k = Qp_{k+1}.\Box
$$

$$
0-23
$$

Taking into account all this for the second nonzero integral we have:

$$
\mathcal{L}_2 = \frac{\mathrm{i}}{(n+1)^2} \left(\begin{array}{cc} \mathbf{q}^T \mathbf{q}^*_x & \mathbf{0}^T \\ \mathbf{0} & \mathbf{q}^* \mathbf{q}^T_x \end{array} \right) + \frac{\mathbf{q}^\dagger \mathbf{q}}{(n+1)^3} \left(\begin{array}{cc} \mathbf{q}^\dagger \mathbf{q} & \mathbf{0}^T \\ \mathbf{0} & -\mathbf{q}^* \mathbf{q}^T \end{array} \right).
$$

Hence as an integral density can be chosen

$$
I_2=H=\mathrm{i}\mathbf{q}^\dagger\mathbf{q}_x-\frac{1}{n+1}(\mathbf{q}^\dagger\mathbf{q})^2.
$$

It represents the Hamiltonian H of the multicomponent DNLS equation if Poisson bracket is defined as:

$$
\{F, G\} := \int_{-\infty}^{\infty} \mathrm{d} \, y \, \mathrm{tr}\, \left(\frac{\delta F}{\delta Q} \partial_x \frac{\delta G}{\delta Q^T}\right).
$$

Thus DNLS equation can be written in ^a Hamiltonian form as follows:

$$
q_{k,t} = \partial_x \frac{\delta H}{\delta q_k^*}, \qquad k = 1, \dots, n.
$$

$$
0-24
$$

Conclusions

- The direct scattering problem for quadratic bundle related to Hermitian symmetric space has been formulated.
- The soliton solutions have been constructed analytically. For that purpose we have used the dressing technique.
- The first two integrals of motion have been derived explicitly. The second integral represents the Hamiltonian of DNLS equation. A general recursion formula to calculate k-th integral has been obtained.