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1. Introduction

Derivative nonlinear Schrödinger equation (DNLS) has the form:

iqt + qxx + i(|q|2q)x = 0,

where q(x, t) is a smooth complex-valued function. DNLS describes the
propagation of circular polarized nonlinear Alfvén waves in plasma.

DNLS is S-integrable [Kaup-Newell, 1977], i.e. it possesses a quadratic
bundle Lax pair:

L(λ) := i∂x + λQ(x, t) − λ2σ3,

A(λ) := i∂t +

3
∑

k=1

Ak(x, t)λk − 2λ4σ3,

where λ ∈ C is a spectral parameter and

Q(x, t) =

(

0 q(x, t)
q∗(x, t) 0

)

, σ3 =

(

1 0
0 −1

)

.

Purpose of the talk: Study of certain examples of multicomponent
generazitations of DNLS related to Hermitian symmetric spaces.
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2. Preliminaries

• Multicomponent DNLS equation related to A.III symmetric space

Our main object of study is:

iqt + qxx +
2i

n + 1

((

qT q∗
)

q
)

x
= 0,

where q : R
2 → C

n is an infinitely smooth function. It is also
assumed that q obeys zero boundary conditions, i.e.

lim
x→±∞

q(x, t) = 0.
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• Lax representation and connection with Hermitian symmetric spaces

L(λ) := i∂x + λQ(x, t) − λ2J,

A(λ) := i∂t +

4
∑

k=1

λkAk(x, t).

All coefficients above are Hermitian traceless (n + 1) × (n + 1)
matrices. Moreover, the following Z2 reduction is imposed on the
Lax pair:

CL(−λ)C = L(λ),

CA(−λ)C = A(λ),

where C = diag (1,−1 . . . ,−1). Due to the form of C the potential
Q has the block structure:

Q(x, t) =

(

0 qT (x, t)
q∗(x, t) 0

)

.

while J is block diagonal. More particularly, we pick it up in the
form J = diag (n,−1, . . . ,−1).
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The matrix C represents action of Cartan’s involutive automor-
phism to define SU(n+1)/S(U(1)×U(n)) symmetric space of the
type A.III. It induces a Z2 grading in sl(n + 1) as follows

sl(n+1) = sl
0(n+1)+sl

1(n+1), [slσ(n+1), slσ
′

(n+1)] = sl
σ+σ′

(n+1),

where

sl
σ(n + 1) := {X ∈ sl(n + 1)|CXC−1 = (−1)σX}.

It is easy to see that Q as well as A1 and A3 belong to sl
1(n + 1)

while J , A2 and A4 belong to sl
0(n + 1). The subspace sl

0(n + 1)
coincides with the centralizer of J .
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• Direct scattering problem

In order to formulate the direct scattering theory one introduces
auxilary linear problem:

L(λ)ψ(x, t, λ) = i∂xψ(x, t, λ) + λ(Q(x, t) − λJ)ψ(x, t, λ) = 0.

It is evident that detψ = 1. Since [L, A] = 0 any fundamental
solution satisfies as well

A(λ)ψ = i∂tψ +

4
∑

k=1

λkAkψ = ψf(λ),

where

f(λ) = lim
x→±∞

4
∑

k=1

λkAk(x, t) = −(n + 1)λ4J.

is called dispersion law. It is a fundamental property of any soliton
equation.
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A special case of solutions are Jost solutions defined as follows:

lim
x→±∞

ψ±(x, t, λ)eiλ2Jx = 11.

The Jost solutions are defined only on the real and imaginery axes
in the λ-plane (continuous spectrum of L(λ)). The transition ma-
trix

ψ−(x, t, λ) = ψ+(x, t, λ)T (t, λ)

is called scattering matrix. Its time evolution is given by:

i∂tT + [f(λ), T ] = 0 ⇒ T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t.

• Fundamental analytic solutions There exist two fundamental solu-
tions χ+(x, λ) and χ−(x, λ) to be analytic in the upper and lower
half-plane of the λ2-plane respectively. They can be constructed
from Jost solutions through the formulae:

χ±(x, λ) = ψ−(x, λ)S±(λ) = ψ+(x, λ)T∓(λ)D±(λ).
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The matrices S±(λ), T±(λ) and D±(λ) are involved in the gener-
alized Gauss decomposition

T (λ) = T∓(λ)D±(λ)(S±(λ))−1.

As a simple consequence of their construction we see that

χ+(x, λ) = χ−(x, λ)G(λ)

for some sewing function G(λ) = (S−(λ))−1S+(λ).

• Reduction conditions on the Jost solutions, the scattering matrix
and fundamental analytic solutions

[

ψ†
±(x, λ∗)

]−1

= ψ±(x, λ),
[

T †(λ∗)
]−1

= T (λ),

Cψ±(x,−λ)C = ψ±(x, λ), CT (−λ)C = T (λ),

(χ+)†(x, λ∗) = [χ−(x, λ)]−1, Cχ+(x,−λ)C = χ−(x, λ).

0-7



3. Dressing method and special solutions

• Dressing method

Concept of the dressing method:

Q0 → L0 → ψ0 → ψ1 → Q1.

Realization: let ψ0 be a fundamental solution of

L0ψ0 = i∂xψ0 + λ(Q0 − λJ)ψ0 = 0

where

Q0(x) =

(

0 q0(x)
q∗

0(x) 0

)

, J = diag (n,−1, . . . ,−1).

for some vector qT
0 = (q1

0 , . . . , qn
0 ) assumed to be known. Now

construct another function ψ1(x, λ) := g(x, λ)ψ0(x, λ) and assume
it satisfies the linear system

L1ψ1 = i∂xψ1 + λ(Q1 − λJ)ψ1 = 0
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for some potential

Q1(x) :=

(

0 q1(x)
q∗

1(x) 0

)

.

to be found. Therefore the dressing factor g satisfies:

i∂xg + λQ1 g − λgQ0 − λ2[J, g] = 0.

The Z2 reductions imposed on the Lax pair implies that g is obliged
to fulfill similar set of symmetry conditions:

[

g†(x, λ∗)
]−1

= g(x, λ),

Cg(x,−λ)C = g(x, λ).

We pick up the dressing factor in the form:

g(x, λ) = 11 +
λB(x)

µ(λ − µ)
+

λCB(x)C

µ(λ + µ)
, Re µk 6= 0, Im µk 6= 0.
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The inverse of the dressing factor reads

[g(x, λ)]−1 = 11 +
λB†(x)

µ∗(λ − µ∗)
+

λCB†(x)C

µ∗(λ + µ∗)
.

There exists the following connection between Q1 and Q0

λQ1 = −i∂xgg−1 + λgQ0g
−1 + λ2[J, g]g−1.

After dividing by λ and taking |λ| → ∞ we obtain

Q1 = AQ0A
† + [J, B − CBC]A†,

where

A = 11 +
1

µ
(B + CBC).
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From the obvious identity gg−1 = 11 it follows that the residue B
satisfies:

B

(

11 +
µB†

µ∗(µ − µ∗)
+

µCB†C

µ∗(µ + µ∗)

)

= 0.

B(x, t) is a degenerate matrix. Therefore we have B = XFT for
some (n + 1) × k rectangular matrices X(x) and F (x). Then the
algebraic relation obtains the form

F ∗ =
µ∗

µ

(

FT F ∗

µ − µ∗
−

FT CF ∗

µ + µ∗
C

)

X.

It can be solved easily to give

X =
µ

µ∗

(

FT F ∗

µ − µ∗
−

FT CF ∗

µ + µ∗
C

)−1

F ∗.

Thus we have expressed X through F . In order to find the latter
we consider the differential equation for g. After calculating the
residue at λ = µ we obtain

i∂xFT − µFT (Q0 − µJ) = 0 ⇒ FT (x) = FT
0 [ψ0(x, µ)]−1.
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What remains is to recover the time evolution. For this to be done
one must analyse some properties of the second Lax operator A(λ).
Any fundamental solution of the bare linear problem also satisfies:

i∂tψ0 +
∑

k

λkA
(0)
k ψ0 = ψ0f(λ)

while the dressed fundamental solution solves

i∂tψ1 +
∑

k

λkA
(1)
k ψ1 = ψ1f(λ).

As a result the dressing factor satisfies:

i∂tg +

2N
∑

k=1

λkA
(1)
k g − g

2N
∑

k=1

λkA
(0)
k = 0.

Detailed analysis shows that

i∂tF
T − FT

2N
∑

k=1

µkAk = 0.
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Therefore we have

i∂tF
T
0 − FT

0 f(µ) = 0.

Thus we are able to propose a simple rule to derive the time de-
pendence of potential, namely:

FT
0 → FT

0 e−if(µ)t.

For the DNLS equation f(λ) = −(n + 1)λ4J .
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• Soliton solutions

In the soliton sector Q0 ≡ 0. Therefore we have:

ψ0(x, t, λ) = e−iλ2Jx.

We shall resrict ourselves with the case when the rank of B is 1.
Then the column-vector F is given by

F =













eniµ2xF0,1

e−iµ2xF0,2

...

e−iµ2xF0,n+1













.

It proves to be convenient to adopt polar parametrization of the
pole, i.e. µ = ρ exp(iϕ). Then the potential acquires the form:
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qj−1
1 (x) = (Q1)1 j(x) = 2i(n + 1)

n+1
∑

l=2

ρ sin(2ϕ)e−iσl(x)eθl(x)

e−2iϕ +
∑n+1

p=2 e2θp(x)
×

(

δjl − 2i sin(2ϕ)
eθj(x)+θl(x)ei(δj−δl−2ϕ)

e−2iϕ +
∑n+1

p=2 e2θp(x)

)

,

where

θp(x) = (n + 1)ρ2 sin(2ϕ)x − ξ0,p,

σp(x) = (n + 1) cos(2ϕ)x + δ1 − δp − ϕ.

ξ0,p = ln |F0,1/F0,p|, δ1 = arg F0,1, δp = arg F0,p.

In order to recover the time dependence one uses the following rule:

ξ0,p → ξ0,p − 2(n + 1)ρ4 sin(4ϕ)t,

δ1 → δ1 + 2nρ4 cos(4ϕ)t,

δp → δp − 2ρ4 cos(4ϕ)t.
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Remark 1 In the simplest case when n = 1 one can derive the
soliton of the DNLS equation [Kaup-Newell, 1977]. Indeed, one
should use the following dressing factor

g(x, t, λ) = 11 +
λB(x, t)

µ(λ − µ)
+

λσ3B(x, t)σ3

µ(λ + µ)
.

As a result we reproduce the Kaup-Newel soliton

q1 = 4i
ρ sin(2ϕ)e−2i(ρ2 cos(2ϕ)x+δ0)e2ρ2 sin(2ϕ)x−ξ0

[

e2iϕ + e2(2ρ2 sin(2ϕ)x−ξ0)
]

[

e−2iϕ + e2(2ρ2 sin(2ϕ)x−ξ0)
]2 ,

where µ = ρ exp(iϕ) and

δ0 =
δ1 − δ2 + 3ϕ

2
, ξ0 = ln |F0,1/F0,2|

for DNLS equation. The time dependence is recovered by using the
rule:

ξ0 → ξ0 − 4ρ4 sin(4ϕ)t, δ0 → δ0 + 2ρ4 cos(4ϕ)t.
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• Multisoliton solutions

– One can apply the dressing procedure to build a sequence of
exact solutions to the system:

Q0
g0

−→ Q1
g1

−→ Q2 → . . .
gm−1

−→ Qm,

where gk is constructed by using the fundamental solution

ψk(x, t, λ) =

←
∏

l=0,...,k−1

gl(x, t, λ)ψ0(x, t, λ).

– Multiple poles dressing factor

In this case one uses the following factor:

g(x, t, λ) = 11 +
N

∑

k=1

λ

µk

(

Bk(x, t)

λ − µk

+
CBk(x, t)C

λ + µk

)

,

where µ ∈ C, Re µk 6= 0, Im µk 6= 0. In order to determine
Bk one analyse the identity gg−1 = 11. After introducing the

0-17



factorization Bk = XkFT
k it reduces to a linear system for Xk,

namely:

F ∗
k =

m
∑

l=1

µ∗
k

µl

(

Xl

FT
l F ∗

k

µl − µ∗
k

− CXl

F l|CF ∗
k

µl + µ∗
k

)

.

Next one determines the vectors Fk from the p.d.e.

i∂xg + λQ1 g − λgQ0 − λ2[J, g] = 0.

The result reads:

FT
k (x, t) = FT

k,0[ψ0(x, t, µk)]−1.

Thus the dressing factor is determined if one knows the seed
solution ψ0(x, t, λ). The multisoliton solution itself can be
derived through the following formula

Q1 =

m
∑

k=1

[J, Bk − CBkC]A†,
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where

A = 11 +

m
∑

k=1

1

µk

(Bk + CBkC).

In order to recover the time evolution we use the rule:

FT
k,0 → FT

k,0e
−if(µk)t.
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4. Integrals of Motion

Let us consider the Lax pair

L(λ) := i∂x + λQ(x, t) − λ2J,

A(λ) := i∂t +
∑2N

k=1 Ak(x, t)λk.

In order to derive the integrals of motion we shall apply method of di-
agonalization of the Lax pair [Drinfel’d and Sokolov, 1985]. For this to
be done one uses the following transformation:

P(x, t, λ) = 11 +

∞
∑

k=1

pk(x, t)

λk
.

To avoid umbiguities we assume that all pk ∈ sl
1(n + 1).

The transformed Lax operators look as follows:

L = P
−1L̃P = i∂x − λ2J + λL−1 + L0 +

L1

λ
+ · · · ,

A = P
−1ÃP = i∂t +

2N
∑

k=1

λk
A−k + A0 +

A1

λ
+ · · · ,
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where all coefficients are block diagonal, i.e. elements of sl
0(n + 1). The

zero curvature representation is written as

∂tLk − ∂xAk +

k
∑

l

[Ll, Ak−l] = 0.

Hence the matrix element (Lk)11 as well as the trace of the n × n block
of Lk are (local) densities of the integrals of motion.

It is evident that equality can be rewritten in the following manner

(

11 +
p1

λ
+

p2

λ2
+ · · ·

)

(

i∂x − λ2J + λL−1 + L0 +
L1

λ
+ · · ·

)

=
(

i∂x + λQ − λ2J
)

(

11 +
p1

λ
+

p2

λ2
+ · · ·

)

.
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The latter is equivalent to the following set of recurrence relations:

λ : L−1 − p1J = Q − Jp1,

λ0 : L0 + p1L−1 − p2J = Qp1 − Jp2,

λ−1 : L1 + p1L0 + p2L−1 − p3J = ip1,x + Qp2 − Jp3,

λ−2 : L2 + p1L1 + p2L0 + p3L−1 − p4J = ip2,x + Qp3 − Jp4,

· · ·

λ−k : Lk +

k
∑

l=1

plLk−l + pk+1L−1 − pk+2J = ipk,x + Qpk+1 − Jpk+2,

· · ·

After projecting the first recurrence relation into a part in sl
0(n + 1)

and another one in sl
1(n + 1) we deduce that:

L−1 = 0, p1 = ad−1
J Q =

1

n + 1

(

0 qT

−q∗ 0

)

.
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Similarly, from the second relation we get

L0 = Qp1 =
1

n + 1

(

−qT q∗ 0
0 qT qT

)

, p2 = 0.

Thus the first integral density is I1 = q†q.

Theorem 1 All conserved densities Lk corresponding to odd indices
vanish.

Proof: By induction. It is easy to see that pk vanish whenever k is even.
Indeed, after splitting the k-th recurrence relation one is able to express
pk the following recursive formula:

pk = ad−1
J

(

ipk−2,x −

k−2
∑

l=1

plLk−2−l

)

.

Then the statement of theorem follows immediately from formula:

Lk = Qpk+1.✷
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Taking into account all this for the second nonzero integral we have:

L2 =
i

(n + 1)2

(

qT q∗
x 0T

0 q∗qT
x

)

+
q†q

(n + 1)3

(

q†q 0T

0 −q∗qT

)

.

Hence as an integral density can be chosen

I2 = H = iq†qx −
1

n + 1
(q†q)2.

It represents the Hamiltonian H of the multicomponent DNLS equation
if Poisson bracket is defined as:

{F, G} :=

∫ ∞

−∞

d y tr

(

δF

δQ
∂x

δG

δQT

)

.

Thus DNLS equation can be written in a Hamiltonian form as follows:

qk,t = ∂x

δH

δq∗k
, k = 1, . . . , n.
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Conclusions

• The direct scattering problem for quadratic bundle related to Her-
mitian symmetric space has been formulated.

• The soliton solutions have been constructed analytically. For that
purpose we have used the dressing technique.

• The first two integrals of motion have been derived explicitly. The
second integral represents the Hamiltonian of DNLS equation. A
general recursion formula to calculate k-th integral has been ob-
tained.
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