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Overview

The study of the mechanical response of carbon nanotubes subjected to
different types of loading has attracted a lot of attention in the last two
decades.

This interest emerged shortly after the experimental discovery of multi
wall [Iijima, 1991] and single wall [Iijima and Ichihashi, 1993]
[Bethune et al., 1993] carbon nanotubes and the reported progress in
their large-scale synthesis [Ebbesen and Ajayan, 1992].

It is motivated to a large extend by the observed remarkable mechanical
and shape-dependent thermal, optical and electrical properties of these
carbon allotropes with promising applications in nanotechnology.

In this work, we use a continuum model to determine in analytic form a
class of unduloid-like equilibrium shapes of single-wall carbon nanotubes
subjected to uniform hydrostatic pressure. The parametric equations of
the profile curves of the foregoing shapes are presented in explicit form by
means of elliptic functions and integrals.
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Carbon Nanostructures (CNS’)
Graphenes, Fullerenes, Nanotube, Nanotori, Wormholes, Schwartzites, ...

Stable configuration of curved (bent and/or stretched) graphene

Graphene Buckyball Nanotubes

Nanotorus Wormhole Schwartzite
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Carbon Nanostructures (CNS’)
Graphenes, Fullerenes, Nanotube, Nanotori, Wormholes, Schwartzites, ...

The Nobel Prize in Chemistry 1996 was awarded to Robert F. Curl Jr., Sir
Harold W. Kroto and Richard E. Smalley for discovery of fullerenes in 1985.
Nowadays, it is a common opinion among the scientists that this discovery is
the onset of “carbon nano-research”.

C60 fullerene, with remarkable stability and symmetry.

Experimental observations of peculiar CNS’ were reported prior to 1985:
[Radushkevich & Lukyanovich, 1952], [Oberlin, Endo & Koyama, 1976–1977]

The Nobel Prize in Physics 2010 was awarded to Andre Geim and Konstantin
Novoselov for groundbreaking experiments regarding the two-dimensional

material graphene.
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Carbon Nanostructures (CNS’)
Graphenes, Fullerenes, Nanotube, Nanotori, Wormholes, Schwartzites, ...

Utilization

Some of these CNS’ (especially CNT’s) are utilized as basic ingredients of
nano-structured materials such as nano-tube-based nano-composites or
functionalized CNT membranes used in water desalination, for instance.

Others are basic building blocks of nano-electromechanical systems
(NEMS), nano-sensors and other nano-devices.

Materials, devices and technologies based on CNS’ are now distributed in
a wide variety of human activities.

Nano-junctions.
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Modelling of CNS’ Equilibrium Shapes
Interatomic Potentials, MD simulations

One of the most widely used approaches for determining the mechanical
response of CNS’s is the molecular dynamic (MD) simulation.

Within this approach, a CNS is considered as a multibody system in
which the interaction of a given atom with the neighbouring ones is
regarded. The energy of this interaction is modelled through certain
empirical interatomic potentials.

[Tersoff, 1988] suggested a general approach for derivation of such
potentials and applied it to silicon.

[Brenner,1990] adapted and modified Tersoff’s results and suggested an
interatomic potential for carbon atomic bonds.

Another potential of this kind was introduced in [Lenosky et al., 1992].

Recently, a modification of the Lenosky potential was introduced in
[Tu and Ou-Yang, 2008].
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Modelling of CNS’ Equilibrium Shapes
Lenosky Potential

According to [Lenosky et al., 1992], the deformation energy of a single layer of
curved graphite carbon has the form

F = ε0
∑

(ij)

1

2
(rij − r0)

2 + ε1
∑

i





∑

(j)

uij





2

+ ε2
∑

(ij)

(1 − ni · nj)
2 + ε3

∑

(ij)

(ni · uij) (nj · uji) ,

rij is the bond length between atoms i and j after the deformation

r0 is the initial bond length of planar graphite

uij is a unit vector pointing from carbon atom i to its neighbor j

ni is a unit vector normal to the plane determined by the three
neighbors of atom i

ε0, ε1, ε2, ε3 are the so-called bond-bending parameters

The summation
∑

(j) is taken over the three nearest-neighbor atoms j to i

atom and
∑

(ij) is taken over all nearest-neighbor atoms.
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Modelling of CNS’ Equilibrium Shapes
Deformation Energy in Continuum Limit

In continuum limit, both [Lenosky et al., 1992] potential and its modification,
introduced in [Tu and Ou-Yang, 2008] in order to take into account that the
energy costs due to the in-plane and out-of plane bond angle changes are quite
different, yield one and the same expression for the deformation energy (see
[Tu and Ou-Yang, 2002, Tu and Ou-Yang, 2008]), namely

F =

∫

S

[

kc

2
(2H)2 + kGK +

kd

2
(2J)2 + k̃Q

]

dA (1)

S surface representing the atomic lattice of the deformed nanotube
as a two-dimensional continuum;

H mean curvature

K Gaussian curvature

J “mean” strain

Q “Gaussian” strain

dA the area element on the surface S
kc, kG, kd, k̃ constants given through the bond-bending parameters used in

the respective atomic lattice model
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Modelling of CNS’ Equilibrium Shapes
Continuum Models Based on Shell Theory

It is noteworthy that the functional F is quite similar to the deformation
energy of an isotropic thin elastic shell modelled within the framework of
the nonlinear Kirchhoff-Love shell theory (cf. [Landau & Lifshitz, 1986])
and coincides with it if kG/kc = k̃/kd (see [Tu and Ou-Yang, 2006] and
[Tu and Ou-Yang, 2008] for more details). This corresponds fairly well to
the observed elastic behaviour of CNT’s.

The findings provided by high-resolution transmission electron microscopy
demonstrated that these nanostructures can sustain large deformations of
their initial circular-cylindrical shape without occurrence of irreversible
atomic lattice defects. As noticed in [Iijima, 1996]: “Thus, within a wide

range of bending, the tube retains an all-hexagonal structure and reversibly

returns to its initial straight geometry upon removal of the bending force.”

Actually, [Yakobson et al., 1996] developed a continuum mechanics
approach based on this shell theory for exploration of the mechanical
properties and deformed configurations of CNT’s, although, they noted:
“its relevance for a covalent-bonded system of only a few atoms in

diameter is far from obvious”.
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Modelling of CNS’ Equilibrium Shapes
Variational Statement of a Continuum Model

Within the present study:

The second term in the deformation energy F accounting for the in-plane
deformation is neglected since the contribution of the bond stretching to
the deformation energy is less than 1% (see [Lenosky et al., 1992]).
Instead of this, the carbon nanotube is assumed to be inextensible upon
deformation. Moreover, we assume that a uniform hydrostatic pressure p
is applied to the deformed surface S.

According to these assumptions, the equilibrium shapes of a CNT are
determined by the extremals of the bending part of the deformation energy F
under the constraints of fixed total area A and enclosed volume V :

Fb =

∫

S

[

1

2
kc(2H + c0)

2 + kGK

]

dA + λ

∫

S

dA + p

∫

dV (2)

where λ is the Lagrange multiplier corresponding to the constraint of fixed
total area, which is interpreted as a tensile stress, the pressure p appears as
another Lagrange multiplier corresponding to the constraint of fixed enclosed
volume V and the extra constant c0 is added to take into account the screw
dislocation core-like deformation as it was suggested in [Xie et al., 1996].
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Modelling of CNS’ Equilibrium Shapes
Variational Statement of a Continuum Model

The corresponding Euler-Lagrange equation, further referred to as the shape
equation, was derived in [Ou-Yang and Helfrich, 1989] and reads

∆H + (2H + c0)
(

H2 − c0

2
H − K

)

− λ

kc
H = − p

2kc
· (3)

Here ∆ is the Laplace-Beltrami operator on the surface S.
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Axisymmetric Equilidrium Shapes
Sketch of a Surface of Revolution

 

Sketch of a surface of revolution obtained by revolving around the z-axis a
plane curve Γ laying in the xOz-plane, which is defined by the graph (x, z(x))
of a function z = z(x). Here, ϕ is the (tangent) slope angel.
Suppose that a part of an axisymmetrically deformed SWCNT admits graph
parametrization. This means that it may be thought of as a surface of
revolution obtained by revolving around the z-axis a plane curve Γ laying in
the xOz-plane, which is determined by the graph (x, z(x)) of a function
z = z(x).
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Axisymmetric Equilidrium Shapes
Shape Equation

For each such surface the general shape equation (3) reduces to the following
nonlinear third-order ordinary differential equation

cos3 ϕ
d3ϕ

dx3
= 4 sinϕ cos2 ϕ

d2ϕ

dx2

dϕ

dx
− cosϕ

(

sin2 ϕ − 1

2
cos2 ϕ

) (

dϕ

dx

)3

+
7 sinϕ cos2 ϕ

2x

(

dϕ

dx

)2

− 2 cos3 ϕ

x

d2ϕ

dx2
(4)

+

(

λ

kc
+

c2
0

2
− 2c0 sin ϕ

x
− sin2 ϕ − 2 cos2 ϕ

2x2

)

cosϕ
dϕ

dx

+

(

λ

kc
+

c2
0

2
− sin2 ϕ + 2 cos2 ϕ

2x2

)

sin ϕ

x
− p

kc

(derived in [Hu & Ou-Yang, 1993]) where ϕ is the angle between the x-axis
and the tangent vector to the profile curve Γ, i.e., the tangent (slope) angel,
considered as a function of the variable x.
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Axisymmetric Equilidrium Shapes
Exact Solutions of the Shape Equation

[Naito at al., 1995] discovered that the shape equation (4) has the following
class of exact solutions

sin ϕ = ax + b + dx−1, (5)

provided that a, b and d are real constants, which meet the conditions

p

kc
− 2a2c0 − 2a

(

c2
0

2
+

λ

kc

)

= 0, (6)

b

(

2ac0 +
c2
0

2
+

λ

kc

)

= 0, (7)

b
(

b2 − 4ad − 4c0d − 2
)

= 0, (8)

and
d

(

b2 − 4ad − 2c0d
)

= 0. (9)
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Exact Solutions of the Shape Equation

Six types of solutions of form (5) to Eq. (4) can be distinguished on the
ground of conditions (6) – (9) depending on the values of c0, λ and p.
Case A. If c0 = 0, λ = 0, p = 0, then the solutions to Eq. (4) of the form (5)
are sinϕ = ax, sin ϕ = ax ±

√
2 and sinϕ = dx−1, the respective surfaces

being spheres, Clifford tori and catenoids.
Case B. If c0 = 0, λ 6= 0, p = 0, then the solutions of the considered type
reduces to sin ϕ = dx−1 (catenoids).
Case C. If c0 = 0, λ 6= 0, p 6= 0 and p = 2aλ, then only one branch of the
regarded solutions remains, namely sinϕ = ax (spheres).
Case D. If c0 6= 0, λ = 0, p = 0, then one arrives at the whole family of
Delaunay surfaces corresponding to the solutions of the form

sinϕ = −1

2
c0x +

d

x
· (10)

Case E. If c0 6= 0, λ 6= 0, p = 0 and

λ

kc
= −1

2
c0 (2a + c0) ,

one gets only solutions of the form sinϕ = ax (spheres).
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Exact Solutions of the Shape Equation

Case F. If c0 6= 0, λ 6= 0, p 6= 0, then four different types of solutions of form
(5) to Eq. (4) are encountered: (a) sinϕ = ax (spheres) if

p

kc
= 2a

(

λ

kc
+ ac0 +

c2
0

2

)

; (11)

(b) sinϕ = ax ±
√

2 (Clifford tori) if

p

kc
= −2a2c0,

λ

kc
= −1

2
c0 (4a + c0) ; (12)

(c) solutions of the form (10) (Delaunay surfaces) if

p + c0λ = 0; (13)

(d) solutions of the form

sin ϕ = −1

4
c0

(

b2 + 2
)

x + b − 1

c0x
, (14)

which take place provided that

p

kc
= −1

8
c3
0

(

b2 + 2
)2

,
λ

kc
=

1

2
c2
0

(

b2 + 1
)

. (15)
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Parametric Equations of the Unduloid-Like Surfaces

Below, we derive the parametric equations of the surfaces corresponding to the
solutions of form (14) to Eq. (4).
First, it is clear that the variable x must be strictly positive or negative,
otherwise the right-hand side of Eq. (5) is both undefined and its absolute
value is greater than one, which is in contradiction with the sin-function
appearing in the left-hand side of this relation.
Next, according to the meaning of the tangent angle

dz

dx
= tanϕ (16)

which for the foregoing class of solutions (14) implies

(

dz

dx

)2

=

[

b − 1
c0x − 1

4 c0

(

b2 + 2
)

x
]2

1 −
[

b − 1
c0x − 1

4c0 (b2 + 2)x
]2 · (17)
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Parametric Equations of the Unduloid-Like Surfaces

In terms of an appropriate new variable t, relation (17) may be written in the
form

(

dx

dt

)2

= − 1

u2
Q1(x)Q2(x) (18)

(

dz

dt

)2

=
1

4u2
(Q1(x) + Q2(x))2 (19)

where

u = − 4

c0 (2 + b2)3/4

Q1(x) = x2 − 4 (b + 1)

c0 (b2 + 2)
x +

4

c2
0 (b2 + 2)

(20)

Q2(x) = x2 − 4 (b − 1)

c0 (b2 + 2)
x +

4

c2
0 (b2 + 2)

· (21)
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Parametric Equations of the Unduloid-Like Surfaces

It should be noticed that the roots of the polynomial Q(x) = Q1(x)Q2(x) read

α =
2 sign (b)

c0

√
b2 + 2

h − 1

h + 1
, β =

2 sign (b)

c0

√
b2 + 2

h + 1

h − 1
(22)

γ =
4b

c0 (b2 + 2)
− α + β

2
+ i

2
√

2|b|+ 1

c0 (b2 + 2)

δ =
4b

c0 (b2 + 2)
− α + β

2
− i

2
√

2|b| + 1

c0 (ε2 + 2)

where

h =

√

1 + |b| +
√

2 + b2

1 + |b| −
√

2 + b2
· (23)

Hence, Eq. (18) has real-valued solutions if and only if at least tow of these
roots are real and different. Evidently, the roots γ and δ can not be real, but
α and β are real provided that |b| > 1/2 as follows be relations (22) and (23).
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Parametric Equations of the Unduloid-Like Surfaces

Now, using the standard procedure for handling elliptic integrals (see
[Whittaker and Watson, 1922, 22.7]), one can express the solution x(t) of
equation (18) in the form

x(t) =
2 sign (b)

c0

√
b2 + 2

(

1 − 2h

h + cn(t, k)

)

(24)

where

k =

√

1

2
− 3

4
√

2 + b2
·

Consequently, using expressions (20) and (21), one can write down the
solution z(t) of equation (19) in the form

z (t) =
1

u

∫ [

x2(t) − 4 b x(t)

c0 (b2 + 2)
+

4

c2
0 (b2 + 2)

]

dt. (25)
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Parametric Equations of the Unduloid-Like Surfaces

Finally, performing the integration in the right-hand-side of Eq. (25), one
obtains

z(t) = u

[

E(am(t, k), k) − sn(t, k) dn(t, k)

h + cn(t, k)
− t

2

]

· (26)

Thus, for each couple of values of the parameters c0 and b, (24) and (26) are
the sought parametric equations of the contour of an axially symmetric
unduloid-like surface corresponding to the respective solution of the membrane
shape equation (4) of form (14).
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Examples

(a) (b)
Unduloid-like surfaces obtained using the parametric equations (24) and (26)
for: (a) p/kc = 1.75, (b) p/kc = 12.1.
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