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In this talk, we give a brief review on star products.

1 We introduce a star product on complex polynomials.
2 We can extend the product to functions by two different ways.

One is to extend by means of formal power series,
Another is nonformal extension.

3 Also we give some resent results in nonformal star products.

Based on the joint works with H. Omori, Y. Maeda, N. Miyazaki.
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1. Star product on polynomials

Star product is regarded as an idea to introduce an
associative product on polynomials.

In this talk, we mainly consider functions of two variables
(u, v) = (u1, u2) for simplicity. Generalization to an arbitrary
number of variables is direct.
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1. Star product on polynomials
1.1. Moyal products

The Moyal product is a typical example of star product, which
is attached to the canonical coordinate:

f ∗0 g = f exp
(

i~
2

←−
∂Λ
−→
∂
)
g

= f g+ i~
2 f

(←−
∂Λ
−→
∂
)
g+ · · · + 1

n!

(
i~
2

)n
f
(←−
∂Λ
−→
∂
)n

g+ · · · (1)

where Λ =

(
0 −1
1 0

)
and
←−
∂Λ
−→
∂ = (

←−−
∂u1,
←−−
∂u2)

(
0 −1
1 0

)  −−→∂u1−−→
∂u2

 is

a biderivation given by

f
←−
∂Λ
−→
∂g = f

(←−−
∂u2

−−→
∂u1 −

←−−
∂u1

−−→
∂u2

)
g = ∂u2 f∂u1g− ∂u1 f∂u2g (2)

The Moyal product is well-defined on complex polynomials.
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1. Star product on polynomials
1.2. Definition

By replacing the matrix Λ with an arbitrary complex matrix, we
define a product on complex polynomials such that

f ∗
Λ

g = f exp
(

i~
2

←−
∂Λ
−→
∂
)
g (3)

It is easy to see

Proposition

For an arbitrary Λ, the product ∗Λ is associative.

We call ∗Λ a star product given by Λ.
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1. Star product on polynomial
1.3. Remark

We remark here that

Remark

1 when Λ = 0, ∗Λ is a usual multiplication of polynomials

2 when Λ is symmetric, ∗Λ is commutative.

f ∗Λ g = f exp
(

i~
2

←−
∂Λ
−→
∂
)
g

= f g+ i~
2 f

(←−
∂Λ
−→
∂
)
g+ · · · + 1

n!

(
i~
2

)n
f
(←−
∂Λ
−→
∂
)n

g+ · · ·
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1. Star product on polynomial
1.4. Equivalence

We consider matrices Λ and Λ′ with the common skew
symmetric part. We put the difference of these as K = Λ′ − Λ
and we define a linear isomorphism of polynomials

TK f = exp
(

i~
4 ∂K∂

)
f =

∑
n≥0

1
n!

(
i~
4

)n
(∂K∂)n f , ∂K∂ =

∑
i j

Ki j∂ui∂u j

Proposition

TK is an intertwiner between the products ∗Λ and ∗Λ′ ;

(TK f ∗Λ′ TKg) = TK( f ∗Λ g).

Then the algebraic structure of ∗Λ on polynomials depends
only on the skew symmetric part of Λ. Λ = K + J =⇒ K = 0.
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2. Formal extension

We consider to extend the star product to some space of functions.

We have two directions.

1 One is formal star product– star product on the space of all
formal power series of ~ with coefficients in smooth functions

2 another is nonformal deformation.

We extend the star product ∗Λ to the space of all formal power
series with coefficients in smooth functions on R2.
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2. Formal extension
2.1. Extended product

Let us consider the space of all formal power series

A~ = C∞(R2)[[~]] (4)

Then we have

Proposition

The star product ∗Λ is well-defined on A~ such that

f ∗Λ g = f g+ i~
2 C1( f , g) + · · · + ( i~

2 )nCn( f ,g) + · · · (5)

where Cn =
1
n! (
←−
∂Λ
−→
∂ )n is a bidifferential operator. And we have an

associative algebra (A~, ∗Λ).

Note that { f , g} = 1
2(C1( f , g) −C1(g, f )) is the Poisson bracket given

by the skew symmetric part of Λ.
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2. Formal extension
2.1. Deformation quantization on manifolds

The concept of formal star product leads to deformation
quantization on Poisson manifolds.

Let us consider a Poisson manifold (M, { , }), and we put
A~(M) = C∞(M)[[~]] .

Definition

An associative product ∗ on A~(M) is called a deformation
quantization on (M, { , }) when it has an expansion

f ∗ g = f g+ i~
2 C1( f , g) + · · · + ( i~

2 )nCn( f , g) + · · · (6)

for any f , g ∈ A~(M), where Cn is a bidifferential operator on M and

1
2 (C1( f ,g) −C1(g, f )) = { f , g} . (7)
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2. Formal extension
2.2. Localization and Darboux chart

Remark that ∗ is localized to an arbtrary domain U ⊂ M, that is, we
have a star product f ∗ g for any f ,g ∈ A~(U).

When (M, { , }) is symplectic, the deformation quantization ∗ has a
nice property.

On a Darboux chart (U, (u1, · · · , un, v1, · · · , vn)), the Poisson
bracket is expressed in the form

{ f ,g} =
∑

i

∂ f
∂ui

∂g
∂vi

− ∂ f
∂vi

∂g
∂ui

= f
←−
∂Λ
−→
∂g, (8)

where Λ =

(
0 −1n

1n 0

)
= J0.
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2. Formal extension
2.3. Localization and quantized Darboux theorem

On this U, we have the Moyal star product ∗J0 on
A~(U) = C∞(U)[[~]] .

Further, we have

Proposition (Quantized Darboux theorem)

For any deformation quantization ∗ on a symplectic manifold
(M, { , }), locally the product ∗ is isomorphic to the Moyal product
∗J0 on C∞(U)[[~]] .

We call the local Moyal procut algebra (C∞(U)[[~]] , ∗J0) a
quantized Darboux chart.
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2. Formal extension
2.4. Deformation quantization theorem

On the other hand, by gluing local Moyal algebras we obtain a
deformation quantizaion on (M, { , }).

Theorem (DeWilde-Lecomte, Fedosov, OMY)

For any symplectic manifold (M, { , }), there exists a deformation
quantization which has quantized Darboux charts.

Further, we have an existence of a deformation quantization on an
arbitrary Poisson manifolds.

Theorem (Kontsevich)

For a Poisson manifold, there exists a deformation quantization.
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3. Nonformal extension

Now we consider nonformal extension of star product.

The situation is quite different from formal extension. For instance,

The expansion

f ∗Λ g = f exp
(

i~
2

←−
∂Λ
−→
∂
)
g

= f g+ i~
2 f

(←−
∂Λ
−→
∂
)
g+ · · · + 1

n!

(
i~
2

)n
f
(←−
∂Λ
−→
∂
)n

g+ · · ·

is not convergent for functions f , g in general.

Gluing of local star product algebra is not convergent in
general. So, we cannot consider a nonformal star product on
a general Poisson manifold.
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3. Nonformal extension
3.1. Certain holomorphic function space

Instead of considering on a manifold, we consider star products on
holomorphic functions on C2. For every positive number p we put

Definition

Ep = { f ∈ Hol(C2) | | f |p,s < ∞, ∀s> 0 }

where | f |p,s is a semi-norm give by

| f |p,s = sup
z∈C2
| f (z)|exp

(−s|z|p) (9)

The space Ep is a commuative Frechét algebra under usual
multiplication of functions, with Ep ⊂ Ep′ , for p < p′.
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3. Nonformal extension
3.2. Star product on the space

The star product and the intertwiner are convergent for certain p.
Namely, we have

Theorem

1 For 0 < p ≤ 2, (Ep, ∗Λ) is a Frechét algebra. Moreover, for any
Λ′ having the same skew symmetric part as Λ,
IΛ
′
Λ
= exp(i~4 ∂K∂) with K = Λ′ − Λ is well-defined intertwiner

from (Ep, ∗Λ) to (Ep, ∗Λ′).
2 For p > 2, the multiplication ∗Λ : Ep × Ep′ → Ep is well-defined

for p′ such that 1
p +

1
p′ = 1, and (Ep, ∗Λ) is a Ep′-bimodule.
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3. Nonformal extension
3.2. Star exponentials

Since we have a complete topogical algebra, we can consider
exponential element in the star product algebra (Ep, ∗Λ).
For a polynomial H∗ in Ep, we want to define a star exponential

e
t
H∗
i~
∗ . However, except special cases, the expansion

∑
n

tn

n!

(
H∗
i~

)n
is

not convergent, so we define a star exponential by means of the
differential equation.

Definition

The star exponential e
t
H∗
i~
∗ is given as a solution of the following

differential equation

d
dtFt =

H∗
i~ ∗Λ Ft, F0 = 1. (10)
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3. Nonformal extension
3.3. Examples

We are interested in the star exponentials of linear, and quadratic
polynomials. For these, we can solve the differential equation and
obtain explicit form.

For simplicity, we consider matrices Λ having the skew

symmetric part J0 =

(
0 −1
1 0

)
. We write Λ = K + J0 where K is

a complex symmetric matrix.
First we remark the following. For a linear polynomial
l =

∑
j a ju j , we see directly

el < E1, ∈ E1+ϵ , ∀ϵ > 0. (11)

Then put the space
Ep+ = ∩q>pEq (12)
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3. Nonformal extension
3.4. Lienar case

Proposition

For a linear function l =
∑

j a ju j = ⟨a, u⟩, the star exponential is
expressed as

et(l/i~)
∗ = et2aKa/4i~et(l/i~) ∈ E1+
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3. Nonformal extension
3.5. Quadratic case

Proposition

For Q∗ = ⟨uA,u⟩∗ where A is a 2× 2 complex symmetric matrix, the
star exponential is expressed as

et(Q∗/i~)
∗ =

2m√
det(I − κ + e−2tα(I + κ))

e
1
i~ ⟨u

1
I−κ+e−2tα(I+κ) (I−e−2tα)J,u⟩

where κ = KJ0 and α = AJ0.
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4. Applications of star exponentials
4.1. Linear case : Theta function

In what follows, we consider the star product for the simple case
where

Λ =

(
ρ 0
0 0

)
Then we see easily that the star product is commutative and

explicitly given by p1 ∗Λ p2 = p1 exp
(

i~ρ
2

←−−
∂u1

−−→
∂u1

)
p2. This means that

the algebra is essentially reduced to space of functions of one
varible u1. Thus, we consider functions f (w), g(w) of one variable
w ∈ C and we consider a commutative star product ∗τ with complex
parameter τ such that

f (w) ∗τ g(w) = f (w)e
τ
2
←−
∂w
−→
∂wg(w)
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4. Applications of star exponentials
4.2. Star theta functions

A direct calculation gives

exp∗τ itw = exp(itw− (τ/4)t2)

Hence forℜτ > 0, the star exponential
exp∗τ niw = exp(niw− (τ/4)n2) is rapidly decreasing with respect to
integer n and then we can consider summations for τ satisfying
ℜτ > 0

∞∑
n=−∞

exp∗τ 2niw =
∞∑

n=−∞
exp

(
2niw− τn2

)
=

∞∑
n=−∞

qn2
e2niw, (q = e−τ)

This is Jacobi’s theta function θ3(w, τ)
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4. Applications of star exponentials
4.3. Star theta functions

Then we have expression of theta functions as

θ1∗τ (w) = 1
i

∞∑
n=−∞

(−1)n exp∗τ (2n+1)iw, θ2∗τ (w) =
∞∑

n=−∞
exp∗τ (2n+1)iw

θ3∗τ (w) =
∞∑

n=−∞
exp∗τ 2niw, θ4∗τ (w) =

∞∑
n=−∞

(−1)n exp∗τ 2niw

Remark that θk∗τ (w) is the Jacobi’s theta function θk(w, τ),
k = 1,2,3,4 respectively.
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4. Applications of star exponentials
4.3. quasi-periodicity

It is obvious by the exponential law

exp∗τ 2iw ∗τ θk∗τ (w) = θk∗τ (w) (k = 2, 3)

exp∗τ 2iw ∗τ θk∗τ (w) = −θk∗τ (w) (k = 1,4)

Then using exp∗τ 2iw = e−τe2iw and the product formula directly we
have

e2iw−τθk∗τ (w+ iτ) = θk∗τ (w) (k = 2,3)

e2iw−τθk∗τ (w+ iτ) = −θk∗τ (w) (k = 1, 4)
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4. Applications of star exponentials
4.4. Quadratic case: Eigenvalue problem

As a simple example, we consider a Harmonic oscillator

H = 1
2 (p2 + q2) (13)

We can obtain eigenvalues of the Schrödinger operator Ĥ by
means of star product.

We consider the Moyal product. The star exponential is

et(H/i~)
∗ = (cos(t/2))−1 e

(
(tan(t/2))2H

i~

)
(14)
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4. Applications of star exponentials
4.5. Vacuume and eigenvalues

We have a limit

lim
t→−i∞

eit/2et(H/i~)
∗ = f0 = 2e−H/~ (15)

Then by direct calculation we have

H ∗ f0 = h
2 f0. (16)

Further, by using f0 we can construct functions fn such that

H ∗ fn =
(
n+ 1

2

)
~ fn, n = 0, 1, 2, . . . . (17)

In this way, we can calculate eigenvalues of the Schrödinger
operator. Kanazawa will give a talk here related star products and
eigenvalue problems of MIC-Kepler problem.
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