Reduction Groups and Darboux Transformations

George Berkeley
University of Leeds
Varna, June 2013

Contents

- Lax Operators
- Reduction Groups
- Darboux Transformations
- Integrable partial difference equations

What is a Lax operator?

- For my purposes I will consider a pair of Lax operators to be differential operators of the form:

$$
\begin{aligned}
& L=\partial_{x}-X(\lambda, x, t) \\
& S=\partial_{t}-T(\lambda, x, t)
\end{aligned}
$$

where X and T are matrix functions of x, t and λ, here λ is called the spectral parameter.

- Lax pairs are important in the study of non-linear pdes.
- Suppose we have a non-zero vector Ψ such that

$$
\begin{aligned}
& L \Psi=\partial_{x} \Psi-X \Psi=0 \\
& S \Psi=\partial_{t} \Psi-T \Psi=0 .
\end{aligned}
$$

- This system is consistent iff $\partial_{x} \partial_{t} \Psi=\partial_{t} \partial_{x} \Psi$ which is iff

$$
X_{t}-T_{X}+[X, T]=0 \text { (Zero Curvature Condition). }
$$

Example

For Lax operators having X, T as

$$
\begin{gathered}
X=\left(\begin{array}{cc}
-i \lambda & u \\
-1 & i \lambda
\end{array}\right) \\
T=\left(\begin{array}{cc}
-4 i \lambda^{3}+2 i u \lambda-u_{x} & 4 u \lambda^{2}+2 i u_{x} \lambda-2 u^{2}-u_{x x} \\
-4 \lambda^{2}+2 u & 4 i \lambda^{3}-2 i u \lambda+u_{x}
\end{array}\right),
\end{gathered}
$$

the Zero Curvature condition becomes:

$$
X_{t}-T_{x}+[X, T]=\left(\begin{array}{cc}
0 & u_{t}+6 u u_{x}+u_{x x x} \\
0 & 0
\end{array}\right)=0
$$

so holds iff u satisfies the $K d V$ equation.

AKNS Scheme

In fact the previous example is a specialisation of the more general Lax pair with:

$$
\begin{aligned}
X & =\left(\begin{array}{cc}
-i \lambda & u \\
v & i \lambda
\end{array}\right) \\
T & =\left(\begin{array}{cc}
A & B \\
C & -A
\end{array}\right) .
\end{aligned}
$$

- Take $A=\sum_{i=0}^{n} a_{i} \lambda^{i}, B=\sum_{i=0}^{n} b_{i} \lambda^{i}, C=\sum_{i=0}^{n} c_{i} \lambda^{i}$.
- Set the coefficients of λ to zero in the Zero Curvature condition
- Solve the resulting system to produce Integrable non-linear pdes for different integers n.
- For $n=2$ we can find the non-linear Schrodinger equation.
- For $n=3$ we may recover the KdV equation.
- For $n=-1$ the Sin-Gordan equation.
- This scheme is named after Ablowitz, Kaup, Newell and Segur.

Reduction Problem

In theory we could consider Lax operators of the form:

$$
\begin{aligned}
& L=\partial_{x}+X_{0}+\sum_{i=1}^{n} \frac{1}{\left(\lambda-\gamma_{i}\right)^{\alpha_{i}}} X_{i} \\
& S=\partial_{t}+T_{0}+\sum_{i=1}^{n} \frac{1}{\left(\lambda-\mu_{i}\right)^{\beta_{i}}} T_{i}
\end{aligned}
$$

where the entries of the X_{i}, T_{i} are functions of x and t.

- Too general to be useful.
- We need a way to reduce the generality of X and T.
- We do this by assuming that X_{i} and T_{i} are invariant with respect to the action of a finite group of transformations, the Reduction Group.

Automorphic Lie Algebras

- $X, T \in \mathfrak{U}_{\lambda}(\Gamma)=R_{\lambda}(\Gamma) \otimes_{\mathbb{C}} \mathfrak{U}$ where $R_{\lambda}(\Gamma)$ is the ring of rational functions in λ with poles in Γ, \mathfrak{U} is a finite dimensional semi simple Lie Algebra.
- $\Gamma=\{\infty\}$ gives that $R_{\lambda}(\Gamma)=\mathbb{C}[\lambda]$
- $\Gamma=\{0, \infty\}$ gives that $R_{\lambda}(\Gamma)=\mathbb{C}\left[\lambda, \lambda^{-1}\right]$
- Letting $G \subset \operatorname{Aut}\left(\mathfrak{U}_{\lambda}(\Gamma)\right)$ consider the set of elements $\mathfrak{U}_{\lambda}^{G}=\left\{U \in \mathfrak{U}_{\lambda}(\Gamma): g(U)=U, \forall g \in G\right\}$.
- We call this subalgebra the Automorphic Lie algebra corresponding to the group G and the set $\Gamma . G$ is called the reduction group.
- This terminology was introduced by S. Lombardo and A.V. Mikhailov in "Reduction Groups and Automorphic Lie Algebras" Commun. Math. Phys. 258, 179-202 (2005).
- We consider simultaneous automorphisms of $R_{\lambda}(\Gamma)$ and \mathfrak{U}.
- Automorphisms of $R_{\lambda}(\Gamma)$ are fractional linear transformations. Finite subgroups of the group of fractional linear transformations have been classified by Felix Klein. The complete list is given by:
- \mathbb{Z}_{N} Cyclic groups
- \mathbb{D}_{N} Dihedral groups
- \mathbb{T} Tetrahedral group
- © Octahedral group
- II Icosahedral group.
- For $\mathfrak{U}=s l(N, \mathbb{C})$ automorphisms consist of:
- Inner automorphisms $a \mapsto Q a Q^{-1}$ for $N=2$
- Inner and outer automorphisms $a \mapsto-a^{\text {tr }}$ for $N \geq 3$.
- We find irreducible projective representations. These consist of 2×2 representations for all reduction groups, 3×3 representations for \mathbb{T}, \mathbb{O} and $\mathbb{I}, 4 \times 4$ representations for \mathbb{O} and $\mathbb{I}, 5 \times 5$ and 6×6 for \mathbb{I}.
- We will consider $\Gamma=G(\gamma)$, so a single orbit. This means we have two situations, Γ is either a generic orbit or a degenerated orbit.
- Automorphic Lie algebras are constructed by taking the group averages $<\frac{\mathbf{e}_{i}}{(\lambda-\gamma)^{k_{i}}}>{ }_{G}=\frac{1}{|G|} \sum_{g \in G} g\left(\frac{\mathbf{e}_{i}}{(\lambda-\gamma)^{k_{i}}}\right)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}$ are a basis of $\mathfrak{U}, \gamma \in \Gamma$ and k_{i} is chosen such that the sum is non-zero.
- When considering $s l(N, \mathbb{C})$ with finite reduction group and inner automorphisms the automorphic Lie algebra has a Quasi Graded structure, ie we have that $\mathfrak{U}_{\lambda}^{G}(\Gamma)=\bigoplus_{k=0}^{\infty} A^{k}$ where $A^{k}=\left\{J^{k} a_{1}, J^{k} a_{2}, \ldots, J^{k} a_{m}\right\}$ and $\left[A^{p}, A^{q}\right] \subset A^{p+q} \bigoplus A^{p+q+1}$. J is a primitive automorphic function of λ.

Example

The \mathbb{D}_{2} reduction group can be defined by the generators:

$$
\begin{aligned}
& g_{s}: \mathbf{a}(\lambda) \rightarrow \mathbf{Q}_{s} \mathbf{a}\left(\sigma_{s}^{-1}(\lambda)\right) \mathbf{Q}_{s}^{-1} \\
& g_{r}: \mathbf{a}(\lambda) \rightarrow \mathbf{Q}_{r} \mathbf{a}\left(\sigma_{r}^{-1}(\lambda)\right) \mathbf{Q}_{r}^{-1}
\end{aligned}
$$

where

$$
\begin{gathered}
\sigma_{s}(\lambda)=-\lambda, \sigma_{r}(\lambda)=1 / \lambda \\
\mathbf{Q}_{s}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \mathbf{Q}_{r}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
\end{gathered}
$$

In this case the group average is given by

$$
\begin{aligned}
<\mathbf{a}(\lambda)>_{\mathbb{D}_{2}} & =\frac{1}{4}\left(\mathbf{a}(\lambda)+\mathbf{Q}_{s} \mathbf{a}(-\lambda) \mathbf{Q}_{s}^{-1}+\right. \\
& \left.\mathbf{Q}_{r} \mathbf{a}\left(-\lambda^{-1}\right) \mathbf{Q}_{r}^{-1}+\mathbf{Q}_{r} \mathbf{Q}_{s} \mathbf{a}\left(-\lambda^{-1}\right) \mathbf{Q}_{s}^{-1} \mathbf{Q}_{r}^{-1}\right)
\end{aligned}
$$

Example continued...

Taking the standard basis for $s l(2, \mathbb{C})$

$$
\mathbf{e}_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \mathbf{e}_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \mathbf{e}_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

we obtain the following:

$$
\begin{gathered}
\hat{\mathbf{a}}_{1}=<\frac{\mathbf{e}_{1}}{\lambda-\gamma}>_{\mathbb{D}_{2}}=\left(\begin{array}{cc}
0 & \frac{\lambda}{2\left(\lambda^{2}-\gamma^{2}\right)} \\
\frac{\lambda}{2\left(1-\lambda^{2} \gamma^{2}\right)} & 0
\end{array}\right) \\
\hat{\mathbf{a}}_{2}=<\frac{\mathbf{e}_{2}}{\lambda-\gamma}>_{\mathbb{D}_{2}}=\left(\begin{array}{cc}
0 & \frac{\lambda}{2\left(1-\lambda^{2} \gamma^{2}\right)} \\
\frac{\lambda}{2\left(\lambda^{2}-\gamma^{2}\right)} & 0
\end{array}\right) \\
\hat{\mathbf{a}}_{3}=<\frac{\mathbf{e}_{3}}{\lambda-\gamma}>_{\mathbb{D}_{2}}=\frac{\gamma\left(1-\lambda^{4}\right)}{2\left(\lambda^{2}-\gamma^{2}\right)\left(1-\lambda^{2} \gamma^{2}\right)}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{gathered}
$$

Example continued...

Setting

$$
\begin{aligned}
& \mathbf{a}_{1}^{n}=4 \hat{\mathbf{a}}_{1} J^{n} \\
& \mathbf{a}_{2}^{n}=4 \hat{\mathbf{a}}_{2} J^{n} \\
& \mathbf{a}_{3}^{n}=4 \hat{\mathbf{a}}_{3} J^{n}
\end{aligned}
$$

with

$$
J=\frac{\left(\lambda^{2}-\mu^{2}\right)\left(1-\mu^{2} \lambda^{2}\right)}{\left(\lambda^{2}-\gamma^{2}\right)\left(1-\gamma^{2} \lambda^{2}\right)}, \mu \neq\left\{ \pm \gamma, \pm \gamma^{-1}\right\}
$$

it can be shown that $\mathfrak{U}_{\lambda}^{\mathbb{D}_{2}}=\bigoplus_{k}\left\{\mathbf{a}_{1}^{k}, \mathbf{a}_{2}^{k}, \mathbf{a}_{3}^{k}\right\}$. Moreover

$$
\begin{gathered}
{\left[\mathbf{a}_{1}^{n}, \mathbf{a}_{2}^{m}\right]=\mathbf{a}_{3}^{n+m+1}+a(\gamma, \mu) \mathbf{a}_{3}^{n+m}} \\
{\left[\mathbf{a}_{3}^{n}, \mathbf{a}_{1}^{m}\right]=2 \mathbf{a}_{1}^{n+m+1}+b(\gamma, \mu) \mathbf{a}_{1}^{n+m}-c(\gamma, \mu) \mathbf{a}_{2}^{n+m}} \\
{\left[\mathbf{a}_{3}^{n}, \mathbf{a}_{2}^{m}\right]=-2 \mathbf{a}_{2}^{n+m+1}-b(\gamma, \mu) \mathbf{a}_{2}^{n+m}+c(\gamma, \mu) \mathbf{a}_{1}^{n+m} .}
\end{gathered}
$$

giving that $\left[A^{n}, A^{m}\right] \subset A^{n+m} \bigoplus A^{n+m+1}$

$\mathfrak{U}=s /(2, \mathbb{C})$

- Automorphic Lie algebras corresponding to \mathbb{Z}_{N} where Γ is a degenerated orbit are grading isomorphic for all N. For each algebra generators $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ and automorphic function J can be chosen such that the commutation relations take the form:

$$
\left[\mathbf{a}_{1}, \mathbf{a}_{2}\right]=J \mathbf{a}_{3},\left[\mathbf{a}_{1}, \mathbf{a}_{3}\right]=-2 \mathbf{a}_{1},\left[\mathbf{a}_{2}, \mathbf{a}_{3}\right]=2 \mathbf{a}_{2}
$$

- Autmorphic Lie algebras corresponding to \mathbb{Z}_{N} where $\Gamma=\mathbb{Z}_{N}(\gamma)$ is a generic orbit are grading isomorphic for all N and γ. In this case the commutation relations take the form:

$$
\left[\mathbf{a}_{1}, \mathbf{a}_{2}\right]=J^{2} \mathbf{a}_{3}-J \mathbf{a}_{3},\left[\mathbf{a}_{1}, \mathbf{a}_{3}\right]=-2 \mathbf{a}_{1},\left[\mathbf{a}_{2}, \mathbf{a}_{3}\right]=2 \mathbf{a}_{2}
$$

- The automorphic Lie algebras corresponding to $\mathbb{D}_{N}, \mathbb{T}, \mathbb{O}, \mathbb{I}$ where Γ is a degenerated orbit of either group are all grading isomorphic to \mathbb{D}_{2} with orbit $\Gamma=\{\infty, 0\}$. In this case there exist generators such that

$$
\left[\mathbf{a}_{1}, \mathbf{a}_{2}\right]=\mathbf{a}_{3},\left[\mathbf{a}_{1}, \mathbf{a}_{3}\right]=4 \mathbf{a}_{2}-2 J \mathbf{a}_{1},\left[\mathbf{a}_{2}, \mathbf{a}_{3}\right]=-4 \mathbf{a}_{1}+2 \mathbf{a}_{2}
$$

$s l(N, \mathbb{C}), N \geq 3$

For the degenerated orbit $G(\infty)$ the system arising from the automorphic Lie algebra corresponding to \mathbb{T}, \mathbb{O} and \mathbb{I} with 3×3 representation are point equivalent to the following system:

$$
\begin{gathered}
k_{1, t}=k_{1, x x}+k_{2, x}^{2}+k_{2, x}\left(e^{-k_{1}-k_{2}}+e^{-\omega k_{1}-\omega^{2} k_{2}}+e^{-\omega^{2} k_{1}-\omega k_{2}}\right) \\
k_{2, t}=-k_{2, x x}-k_{1, x}^{2}+k_{1, x}\left(e^{-k_{1}-k_{2}}+\omega e^{-\omega k_{1}-\omega^{2} k_{2}}+\omega^{2} e^{-\omega^{2} k_{1}-\omega k_{2}}\right) .
\end{gathered}
$$

Darboux Transformations

- A Darboux transformation for a Lax operator L is a Matrix M such that $M L M^{-1}=\tilde{L}$.
- M maps solutions of $L \Psi=0$ to solutions $\tilde{\Psi}$ of \tilde{L}. In fact we can see that $\tilde{L} \tilde{\Psi}=M L M^{-1}(M \Psi)=M L \Psi=0$.
- Given $L=\partial_{x}+X$ we wish to find M such that $M L=\tilde{L} M$ so essentially we must solve the system:

$$
M_{x}+\tilde{X} M-M X=0
$$

- When solving this system for Lax operators that have a particular symmetry we assume M has the same symmetry.
- This mapping is compatible with the system $L \Psi=0$ in the sense that $\widetilde{\left(\Psi_{x}\right)}=\tilde{\Psi}_{x}$, for

$$
\begin{gathered}
\widetilde{\left(\Psi_{x}\right)}=-\widetilde{X \Psi}=-\tilde{X} \tilde{\Psi}=-\tilde{X} M \Psi \\
\tilde{\Psi}_{x}=(M \Psi)_{x}=M_{x} \Psi+M \Psi_{x}=M_{x} \Psi-M U \Psi .
\end{gathered}
$$

Darboux Transformations s/(2, C

\mathbb{Z}_{2} reduction group

$$
g_{s}: L(\lambda) \rightarrow \mathbf{Q}_{s} L(-\lambda) \mathbf{Q}_{s}^{-1}
$$

- Degenerated orbit:

$$
\begin{aligned}
L & =\partial_{x}+\lambda^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+\lambda\left(\begin{array}{cc}
0 & 2 p \\
2 q & 0
\end{array}\right) \\
M & =\lambda^{2}\left(\begin{array}{ll}
f & 0 \\
0 & 0
\end{array}\right)+\lambda\left(\begin{array}{cc}
0 & f p \\
f \tilde{q} & 0
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

- Generic orbit:

$$
\begin{gathered}
L=D_{x}+\frac{1}{\lambda-1} S(p, q)-\frac{1}{\lambda+1} \mathbf{Q}_{s} S(p, q) \mathbf{Q}_{s}, \\
S(p, q):=\frac{1}{p-q}\left(\begin{array}{cc}
p+q & -2 p q \\
2 & -p-q
\end{array}\right) .
\end{gathered}
$$

Continued..

$$
\begin{gathered}
M=\frac{1}{\lambda-1} f\left(\begin{array}{cc}
\tilde{q} & -p \tilde{q} \\
1 & -p
\end{array}\right)-\frac{1}{\lambda+1} \mathbf{Q}_{s} f\left(\begin{array}{cc}
\tilde{q} & -p \tilde{q} \\
1 & -p
\end{array}\right) \mathbf{Q}_{s}^{-1} \\
+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
\end{gathered}
$$

- Dihedral group \mathbb{D}_{2} Lax operator corresponding to the degenerated orbit can be written as

$$
\begin{gathered}
L=D_{x}+\lambda^{2} \mathbf{Q}_{s}+\lambda\left(\begin{array}{cc}
0 & 2 p \\
2 q & 0
\end{array}\right)+\frac{1}{\lambda}\left(\begin{array}{cc}
0 & 2 q \\
2 p & 0
\end{array}\right)-\frac{1}{\lambda^{2}} \mathbf{Q}_{s} \\
M=f\left(\lambda^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right. \\
+\lambda\left(\begin{array}{cc}
0 & p \\
\tilde{q} & 0
\end{array}\right)+u\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+\frac{1}{\lambda}\left(\begin{array}{cc}
0 & \tilde{q} \\
p & 0
\end{array}\right) \\
\left.+\frac{1}{\lambda^{2}}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right)
\end{gathered}
$$

Discrete Systems from Darboux Transformations

- Suppose we have Darboux transformations M and N such that $M L M^{-1}=\tilde{L}$ and $N L N^{-1}=\hat{L}$.
- M maps a fundamental solution Ψ to a solution $\tilde{\Psi}$.
- N maps a fundamental solution Ψ to a solution $\hat{\psi}$.
- Imposing that $\tilde{\tilde{\Psi}}=\hat{\tilde{\Psi}}$ and interpreting ${ }^{\sim}$ and ${ }^{\wedge}$ as directions on a Lattice we obtain a difference system between the entries of our Darboux matrices.
- $\tilde{\hat{\Psi}}=\hat{\tilde{\Psi}}$ is equivalent to the condition that $\hat{M} N=\tilde{N} M$.
- The differential difference equations obtained when deriving the Darboux transformations act as symmetries of our discrete system:

$$
\begin{aligned}
\frac{d}{d x}(\hat{M} N-\tilde{N} M) & =\hat{M}_{x} N+\hat{M} N_{x}-\tilde{N}_{x} M-\tilde{N} M_{x} \\
& =-\tilde{\hat{U}}(\hat{M} N-\tilde{N} M)+(\hat{M} N-\tilde{N} M) U \\
& =0
\end{aligned}
$$

For $L=\partial_{x}+X$ and $S=\partial_{t}+T$ we assume L and S are invariant with respect to the following group of transformations:

$$
\begin{aligned}
& g_{s}: \mathbf{a}(\lambda) \rightarrow \mathbf{Q}_{s} \mathbf{a}\left(\sigma_{s}^{-1}(\lambda)\right) \mathbf{Q}_{s}^{-1} \\
& g_{r}: \mathbf{a}(\lambda) \rightarrow \mathbf{Q}_{r} \mathbf{a}\left(\sigma_{r}^{-1}(\lambda)\right) \mathbf{Q}_{r}^{-1} \\
& \sigma_{s}(\lambda)=\omega \lambda, \sigma_{r}(\lambda)=\frac{\lambda+2}{\lambda-1} .
\end{aligned}
$$

Where $\omega=e^{\frac{2 \pi i}{3}}$

$$
\mathbf{Q}_{s}=\left(\begin{array}{ccc}
\omega & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & 1
\end{array}\right), \mathbf{Q}_{r}=\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right)
$$

This group is Isomorphic to the tetrahedral group. It can be readily verified that $g_{s}^{3}=g_{r}^{2}=\left(g_{r} g_{s}\right)^{3}=i d$.

Generators of Tetrahedral automorphic Lie Algebra

$$
\begin{aligned}
& \mathbf{a}_{1}=\left(\begin{array}{ccc}
-\frac{1}{6} \frac{\lambda^{3}+2}{\lambda^{3}-1} & -\frac{1}{2} \frac{\lambda^{2}}{\lambda^{3}-1} & \frac{1}{4} \frac{\lambda^{4}}{\lambda^{3}-1} \\
\frac{\lambda}{\lambda^{3}-1} & \frac{1}{3} \frac{\lambda^{3}+2}{\lambda^{3}-1} & -\frac{1}{2} \frac{\lambda^{2}}{\lambda^{3}-1} \\
\frac{\lambda^{3}+2}{\lambda^{3}-1} & \frac{\lambda}{\lambda^{3}-1} & -\frac{1}{6} \frac{\lambda^{3}+2}{\lambda^{3}-1}
\end{array}\right) \\
& \mathbf{a}_{2}=\left(\begin{array}{ccc}
-\frac{1}{6} \frac{\lambda^{3}+2}{\lambda^{3}-1} & \frac{\lambda^{2}}{\lambda^{3}-1} & \frac{\lambda}{\lambda^{3}-1} \\
\frac{1}{4} \frac{\lambda^{4}}{\lambda^{3}-1} & -\frac{1}{6} \frac{\lambda^{3}+2}{\lambda^{3}-1} & -\frac{1}{2} \frac{\lambda^{2}}{\lambda^{3}-1} \\
-\frac{1}{2} \frac{\lambda^{2}}{\lambda^{3}-1} & \frac{\lambda}{\lambda^{3}-1} & \frac{1}{3} \frac{\lambda^{3}+2}{\lambda^{3}-1}
\end{array}\right) \\
& \mathbf{a}_{3}=\left(\begin{array}{ccc}
\frac{1}{3} \frac{\lambda^{3}+2}{\lambda^{3}-1} & -\frac{1}{2} \frac{\lambda^{2}}{\lambda^{3}-1} & \frac{\lambda}{\lambda^{3}-1} \\
\frac{\lambda}{\lambda^{3}-1} & -\frac{1}{6} \frac{\lambda^{3}+2}{\lambda^{3}-1} & \frac{\lambda^{2}}{\lambda^{3}-1} \\
-\frac{1}{2} \frac{\lambda^{2}}{\lambda^{3}-1} & \frac{1}{4} \frac{\lambda^{4}}{\lambda^{3}-1} & -\frac{1}{6} \frac{\lambda^{3}+2}{\lambda^{3}-1}
\end{array}\right) .
\end{aligned}
$$

Tetrahedral group example

Let $L=\partial_{x}+u_{1} \mathbf{a}_{1}+u_{2} \mathbf{a}_{2}+u_{3} \mathbf{a}_{3}$ with $u_{1} u_{2} u_{3}=1$. In this case we may find Darboux transformations of the form

$$
M=f \mathbf{I}+\alpha\left(u_{1} u_{2} \tilde{u}_{1} \mathbf{a}_{1}+u_{2} \tilde{u}_{1} \tilde{u}_{2} \mathbf{a}_{2}+\mathbf{a}_{3}\right)
$$

where \tilde{u}_{i}, f and α satisfy particular differential relations, ie

$$
\begin{aligned}
\alpha^{\prime} & =A\left(u_{i}, \tilde{u}_{i}, f\right) \\
f^{\prime} & =B\left(u_{i}, \tilde{u}_{i}, f\right) \\
\tilde{u}_{1}^{\prime} & =C\left(u_{i}, \tilde{u}_{i}, f\right) \\
\tilde{u}_{2}^{\prime} & =D\left(u_{i}, \tilde{u}_{i}, f\right) .
\end{aligned}
$$

From direct computation we obtain that

$$
\operatorname{det}[M]=E J_{1}+F_{1}=E J_{2}+F_{2}
$$

$$
\begin{aligned}
& \text { where } \\
& \qquad \begin{array}{c}
J_{1}=\frac{\lambda^{3}\left(\lambda^{3}+8\right)^{3}}{4\left(\lambda^{3}-1\right)^{3}} \\
J_{2}=\frac{\left(-8-20 \lambda^{3}+\lambda^{6}\right)^{2}}{4\left(\lambda^{3}-1\right)^{3}} \\
E=\frac{1}{16} \sigma^{3} u_{1} u_{2}^{2} \tilde{u}_{1}^{2} \tilde{u}_{2}
\end{array} \\
& F_{1}=\frac{1}{27}\left(3 f+\alpha\left(1+u_{1} u_{2} \tilde{u}_{1}-2 u_{2} \tilde{u}_{1} \tilde{u}_{2}\right)\right)\left(3 f+\alpha\left(1-2 u_{1} u_{2} \tilde{u}_{1}+u_{2} \tilde{u}_{1} \tilde{u}_{2}\right)\right) \\
& \left(3 f+\alpha\left(-2+u_{1} u_{2} \tilde{u}_{1}+u_{2} \tilde{u}_{1} \tilde{u}_{2}\right)\right) \\
& F_{2}=\frac{1}{27}\left(3 f+\alpha\left(1+u_{1} u_{2} \tilde{u}_{1}+u_{2} \tilde{u}_{1} \tilde{u}_{2}\right)\right) q\left(f, u_{1}, u_{2}, \tilde{u}_{1}, \tilde{u}_{2}\right),
\end{aligned}
$$

Continued..

Setting $u_{1}=u$ and $u_{2}=v$ we obtain the Darboux transformations:

$$
M_{i}\left(u, v, u_{i}, v_{i}\right)=\beta_{i}\left(g_{i} \mathbf{I}+u v u_{i} \mathbf{a}_{1}+v u_{i} v_{i} \mathbf{a}_{2}+\mathbf{a}_{3}\right)
$$

for $i=1, \ldots, 4$ where u_{i}, v_{i} are \tilde{u} and \tilde{v} associated to $M_{i} \alpha^{i} g_{i}=f_{i}$ are the roots of F_{1} or F_{2} :

$$
\begin{aligned}
g_{1} & =-\frac{1}{3}\left(-2+u v u_{1}+v u_{1} v_{1}\right) \\
g_{2} & =-\frac{1}{3}\left(1+u v u_{2}-2 v u_{2} v_{2}\right) \\
g_{3} & =\frac{1}{3}\left(-1+2 u v u_{3}-v u_{3} v_{3}\right) \\
g_{4} & =-\frac{1}{3}\left(1+u v u_{4}+v u_{4} v_{4}\right)
\end{aligned}
$$

Continued...

Imposing the compatibility equations,
$M_{i}\left(u_{j}, v_{j}, u_{i j}, v_{i j}\right) M_{j}\left(u, v, u_{j}, v_{j}\right)-M_{j}\left(u_{i}, v_{i}, u_{i j}, v_{i j}\right) M_{i}\left(u, v, u_{i}, v_{i}\right)=0$,
we obtain the systems:

- For $\mathrm{i}=1, \mathrm{j}=4$

$$
\begin{align*}
& u_{4} v_{4} \alpha_{4}^{1} \alpha^{4}-u_{1} v_{1} \alpha^{1} \alpha_{1}^{4}=0 \\
& u_{14} v_{4}+u v\left(-1+u_{4} u_{14} v_{4}-u_{1} u_{14} v_{4}\right)=0 \\
& u u_{1}^{2} v v_{4}+u v_{14}-u_{1}\left(v_{4}\left(1+u v\left(u_{4}-v_{14}\right)\right)+u v v_{1} v_{14}\right)=0 . \tag{1}
\end{align*}
$$

- For $\mathrm{i}=2, \mathrm{j}=4$

$$
\begin{align*}
& \left(-1+u_{24} v_{4} v_{24}\right) \alpha_{4}^{2} \alpha^{4}+\left(1-u_{2} v v_{2}\right) \alpha^{2} \alpha_{2}^{4}=0 \\
& u_{4} v_{4}\left(1-u_{2} v v_{2}\right)+u_{2} v_{2}\left(-1+u_{24} v_{4} v_{24}\right)=0 \tag{2}\\
& -u_{2} v_{2}+u\left(-u_{4}+u_{2}+v_{24}\right)=0
\end{align*}
$$

Continued...

- For $\mathrm{i}=3, \mathrm{j}=4$

$$
\begin{align*}
& \left(-1+u_{4} u_{34} v_{4}\right) \alpha_{4}^{3} \alpha^{4}+\left(1-u u_{3} v\right) \alpha^{3} \alpha_{3}^{4}=0 \\
& -u_{3} v_{3}+u_{4} v_{4}\left(1-u u_{3} v+u_{3} u_{34} v_{3}\right)=0 \tag{3}\\
& -u_{4} v_{4}+\left(u+v_{4}-v_{3}\right) v_{34}=0
\end{align*}
$$

- For $\mathrm{i}=1, \mathrm{j}=2$

$$
\begin{align*}
& u_{1} v_{1} \alpha^{1} \alpha_{1}^{2}-u_{2} v_{2} \alpha_{2}^{1} \alpha^{2}=0 \\
& -u_{1} v+u_{12} v_{12}=0 \\
& -u u_{1}^{2} v v_{2}-u v_{12}+u_{1} v_{2}\left(1-u_{2} v v_{2}+u v\left(u_{2}+v_{12}\right)\right)=0 \tag{4}
\end{align*}
$$

- For $\mathrm{i}=2, \mathrm{j}=3$

$$
\begin{align*}
& -u_{3} v_{3} \alpha_{3}^{2} \alpha^{3}+u_{2} v_{2} \alpha^{2} \alpha_{2}^{3}=0 \\
& -u_{2} v_{2}+u v_{23}=0 \\
& -u^{2} u_{3} u_{2} v v_{2}-u_{2}^{2} u_{23} v_{3} v_{2}^{2}+ \tag{5}\\
& u\left(u_{2} v_{2}+u_{3} v_{3}\left(-1+u_{2}\left(u_{23}+v\right) v_{2}\right)\right)=0 .
\end{align*}
$$

- For $\mathrm{i}=1, \mathrm{j}=3$

$$
\begin{align*}
& -u v_{1} v_{1} \alpha^{1} \alpha_{1}^{3}+u_{3} v_{3} \alpha_{3}^{1} \alpha^{3}=0 \\
& -u v+u_{13} v_{3}=0 \\
& -u u_{1}^{2} v v_{1}-u v_{13}+u_{1}\left(u v\left(u+v_{1}\right) v_{13}+v_{3}\left(1-u v v_{13}\right)\right)=0 . \tag{6}
\end{align*}
$$

Corresponding differential difference relations

- For $\mathrm{i}=1$

$$
\begin{aligned}
& -u+u_{1}+u^{2} u_{1} v-u u_{1}^{2} v+u_{1} v u^{\prime}+u v u_{1}^{\prime}+u u_{1} v^{\prime}=0 \\
& -u v+2 u v_{1}-u_{1} v_{1}-u^{2} u_{1} v v_{1}+u u_{1}^{2} v v_{1}+ \\
& u u_{1} v^{2} v_{1}-u u_{1} v v_{1}^{2}-u_{1} v v_{1} u^{\prime}+u u_{1} v v_{1}^{\prime}=0
\end{aligned}
$$

- For $\mathrm{i}=2$

$$
\begin{aligned}
& u v-u_{2} v_{2}+u^{2} u_{2} v v_{2}-u u_{2}^{2} v v_{2}-u u_{2} v^{2} v_{2}-u u_{2} v v_{2}^{2}+ \\
& 2 u_{2}^{2} v v_{2}^{2}+u_{2} v v_{2} u^{\prime}+u v v_{2} u_{2}^{\prime}+u u_{2} v_{2} v^{\prime}=0 \\
& -u^{2} v_{2}+u u_{2} v_{2}+u v_{2}^{2}-u_{2} v_{2}^{2}-v_{2} u^{\prime}+u v_{2}^{\prime}=0
\end{aligned}
$$

Continued...

- For $\mathrm{i}=3$

$$
\begin{aligned}
& u v-u^{2} u_{3} v^{2}-u_{3} v_{3}+u u_{3}^{2} v v_{3}+u_{3} v v_{3} u^{\prime}+u v v_{3} u_{3}^{\prime}+u u_{3} v_{3} v^{\prime}=0 \\
& -u^{2} v+u^{2} v_{3}+u v v_{3}-u v_{3}^{2}-v_{3} u^{\prime}+u v_{3}^{\prime}=0
\end{aligned}
$$

- For $\mathrm{i}=4$

$$
\begin{aligned}
& u v-u_{4} v_{4}+u^{2} u_{4} v v_{4}-u u_{4}^{2} v v_{4}+u_{4} v v_{4} u^{\prime}+u v v_{4} u_{4}^{\prime}+u u_{4} v_{4} v^{\prime}=0 \\
& -u^{2} v_{4}+u u_{4} v_{4}+u v v_{4}-u v_{4}^{2}-v_{4} u^{\prime}+u v_{4}^{\prime}=0
\end{aligned}
$$

What have we seen?

- We can find Integrable pdes by considering reductions of general Lax pairs.
- We can impose a symmetry upon our Lax pairs to achieve this aim.
- Lax Pairs posessing such symmetries form a Lie algebra.
- For certain spectral dependence and reductions these Lie algebras are grading Isomorphic.
- Darboux transformations can be used to construct discrete systems.
- These discrete systems automatically possess a symmetry.

