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Limitation of local symmetries: A given PDE
as it stands does has no useful local

symmetry or no useful conservation
law (CL)

Aim: To extend existing methods to
systems that are nonlocally related but
equivalent to a given PDE system

How to do this systematically?

Two natural ways:
*use of any CL
*use of any point symmetry



CONSTRUCTION OF NONLOCALLY
RELATED SYSTEMS THROUGH CLs

Given any local CL
D X (x,t,u,0u,...,0"'u)+D,T(x,t,u,du,...,0'u) =0
of

R[u] = R(x,t,u,0u,...,0"u) =0, (1)

one can form equivalent augmented potential system
P

v _ X (x,t,u,0u,...,0"u),

ot

ov r

— =-T(x,t,u,ou,..., 0'u)
X



If (u,v) solves potential system P then u solves
R[u]=0.

Conversely, if u solves R[u]=0, then there exists
solution (u,v) of potential system P due to
integrability condition v, =v, being satisfied from
CL.

But equivalence relationship is nonlocal and non-
invertible since for any u solving R[u]=0, if
(u,v) solves potential system P, then so does
(u,v+C) for any constant C.

Symmetry (CL) of R[u]=0 yields symmetry (CL)
of potential system P.

Conversely, symmetry (CL) of potential system P
yields symmetry (CL) of R[u]=0.



Suppose equivalent potential system P has point
symmetry

X = f(x,t,u,v)% +T(x,t,u,v)%

+ a)(x,t,u,v)aa—u + ¢(x,t,u,v)$

Then X yields nonlocal symmetry of given PDE
(1) iff

(&) +(z,) +(@,)" £0.

Hence through CL of (1), nonlocal symmetry of (1)
can be obtained through point (local) symmetry of
related potential system P. [Converse also true!]



Use of n CLs to obtain up to 2" —1
nonlocally related systems

Now suppose, there are n multipliers
{A;(x,t,U,0U,...,0°U)} yielding n independent
CLs of R[u] =0.

Let v' be potential variable <> multiplier A [U]

Then one obtains n singlet potential systems
P, i=1l..,n

Moreover, one can consider potential systems

in couplets {Pi , P’ }ln =1 With two potential variables

in triplets {P', P/, P* - .+ With three potential
variables
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in an n-plet {Pl,...,P”} with 7 potential variables

Hence from n CLs, one obtains 2" —1 distinct
potential systems!

Starting from any potential system, one can continue
process and if it has N “local” CLs, one can obtain
up to 2" —1 further distinct potential systems. One
can tell in advance whether further potential systems
are obtained.

In particular, one can show that if multipliers
depend only on independent variables (x, ) then
no new potential system is obtained.

Any potential system could yield new nonlocal
symmetries or new nonlocal CLs for any other
potential system or “given” PDE



Nonlocally related subsystems

Suppose one has given PDE system
S{x,t,u',...,u™}=0 withindicated M dependent
variables.

A subsystem excluding dependent variable, say u",
S{x,t,ul,...,uM_l} =0 1is nonlocally related to
given system S{x,t,ul,...,uM }=0 if u™ cannot be
directly expressed from equations of
S{x,t,u',...,u™}=0 interms of x,t, remaining
dependent variables u',....u™™, and their
derivatives.

Subsystems for consideration can arise following
interchange of dependent and independent
variables of given system

S{x,t,u',....u™}=0



Tree of Nonlocally Related Systems

Consequently, for given PDE system one obtains tree
of nonlocally related (but equivalent) systems arising
from CLs and subsystems.

Each system in such an extended tree is equivalent
in sense that solution set for any system in tree can
be found from solution set for any other system in

tree through connection formula



Due to equivalence of solution sets and nonlocal
relationship, it follows that any coordinate-
independent method of analysis (quantitative,
analytical, numerical, perturbation, etc.) when
applied to any system in tree may yield simpler
computations and/or results that cannot be
obtained when method is directly applied to given
system.

Note also that ‘‘given’ system could be any system
in tree!!
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EXAMPLES

1. Nonlinear wave equation

Suppose given PDE is nonlinear wave equation
Ul{x,t,u}=0: u, =(c’(uu,),

Directly, one obtains singlet potential system
(multiplier is 1)

v, —u, =0,
UV{x,t,u,v}=0: 5
v,—c (wu, =0

By invertible point transformation (hodograph)
x=x(u,v),t =t(u,v),
UYV potential system becomes

x,—t, =0,
XT{x,t,u,v}=0: 5
x,—c (u),=0
11



One can show that there are only three more
multipliers of form A(x,t,u) = xt,x,t that yield CLs

for U for an arbitrary wave speed c(u).

This yields three more singlet potential systems given
by

a, —x{tu, —u]=0,
UAlx.t,u,a}=0: a, —t[xc” (u)u, —Icz(u)du] =0

b, —xu, =0,

X

UB{x,1,u,b}=0: {bt —[xc* (wu, —jcz(u)du] =0

w, —[tu, —u] =0,

UW({x,t,u,w}=0:
tutu,w) {Wt—tjcz(u)du:()
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Nonlocally related subsystems arise from UV
through XT:

T{u,v,t}) =L{u,v,t}=0: ¢, —c >(u)t,, =0
X{u,v,x}=0: x, —(c_z(u)xu)u =0

One can show that symmetry classifications of these

two PDEs are “equivalent”. Hence concentrate on
T.

One can show that any solution of T yields a
multiplier for a CL. These include four multipliers of
form

A(u,v,t)= cz(u), ucz(u), vcz(u), uvcz(u)

that yield CLs for T for arbitrary wave speed c(u).
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Resulting new singlet potential systems include

p, —(ut, —1)=0,
TP{u,v,t, p}=0: 5
p, —uc (u)t, =0

q,—vt, =0,

TQ{u,v,t,q}=0: {

g, +c>W)(t—vt,)=0

r,—v(ut, —t) =0,
TR{u,v,t,r}=0:

v, — ucz(u)[vtv —t]=0

Consequently, one obtains following (far from
exhaustive) tree of nonlocally related systems for
nonlinear wave equation U for arbitrary wave speed

c(u)
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¢ Point symmetry classification of nonlinear wave equation U given in
Ames, Lohner & Adams (1981)

¢ Point symmetry classifications of potential system XT and subsystem
T given in B & Kumei (1987)

e Partial point symmetry classifications of potential systems TP and TQ
can be adapted from results presented in Ma (1990).

e Complete point symmetry classifications of potential systems UA, UB,

UW, TP, TQ given in B & Cheviakov (2007). Many nonlocal
symmetries for nonlinear wave equation are found from each of these
nonlocally related systems in terms of specific forms of nonlinear
wave speed c(u). In particular, following new nonlocal symmetries for
nonlinear wave equation U were found:
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For potential system UB, setting F'(u) = Icz (u)du, one finds that if
F(u) satisfies ODE

F'(u)  4F(u)+2C,
F'w)? (Fu)+C,)*+C,’

with arbitrary constants C,,C,,C,,then potential system UB has point

symmetry
0 (Fu)+C,)’+C, 9
X=(F C)x— b—
(F)+ )x + ot F'(u) du

+(2C,b—(C,” + c3)r)£

that 1s a nonlocal symmetry of nonlinear wave equation U.
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For potential system UW if c(u) satisfies ODE

c’(u) 2u+C,
cw) u+C,’

with arbitrary constants C,,C,, then it has point symmetry

X = waax+(u+C)t2+(u +C)% Cx%

that is a nonlocal symmetry of nonlinear wave equation U.
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For potential system TP, if
c(u)=u"’e"",

it has point symmetries

=(pu-— 2l‘v(u+1))—a —2u”® v—a +(u’ +.92/”)—a +ruet " —,
ot ou ov ap
0 ,d o
- 1)) I
=t(u+1)) t+u » vav

that are both nonlocal symmetries of nonlinear wave equation U

19



For potential system TR, new nonlocal symmetries
are found for U from its point symmetries when

cw)=u"".
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Table 2

Cases in which nonlocal symmetries of the nonlinear wave equation U (1.1) arise

+

A (2cc”=5(c")2)

o = const

=a

System Nonlocal  |Condition on ¢(u) Symmetries; remarks
variable(s)
UA (2.12) |a No special cases Nonlocal symmetries do not arise.
UB(2.13) |b cluy=u—2/3 Linearizable by a point transformation.
Flw __ __4F@)+C) One nonlocal symmetry.
(F'un? — (Fu)4+Cy)2+Cy
(Fu)= [ c2(u)du, Cy.Cy, C3 = const)
UW (2.14) |w c(u) =u—2 Linearizable by a point transformation.
duwy _ _ 2utC) _ ,
W = Tute, (Cy,Cy =const) One nonlocal symmetry.
XT (2.5) v [c’(u) c(u) £y One or two nonlocal symmetries: adapted
ol e ' 1‘5(11) Ty from [4].
or UV (2.3)
TP (222 —Quc? tul e )" +2ule(c”)? One or two nonlocal symmetries;
(2.22) |v,p YY) ;
¢ (uc'+2c) partially adapted from [6].
+ —(41‘3-1—:42((' )'—SME‘L )c”+6(c—m ! l‘
"(u( '4+2¢ }—
A = const
c(u) =u—2 Infinite number of nonlocal symmetries:
there exists a point mapping into a
system with constant coefficients.
TQ (2.23) |v.gq cu) =u—2/3; clu)= w2 Two nonlocal symmetries; partially
adapted from [6].
"+ (oo :
TR (2.24) |v.r % =92 =const Two nonlocal symmetries.
uc &C )=
L (2.15) v @ + Ha)' = o2ac®(u), o = const One or two nonlocal symmetries;
adapted from [4].
(H =c'(u)/e(u), at=(H*-2H")Y
cluy=u"2 Infinite number of nonlocal symmetries:
there exists an invertible mapping into a
system with constant coefficients [9].
X (2.16) v (=2cc"+5(c) )2 43¢0 u”’ 1602 (") One or two nonlocal symmetries;
’ 3 2ee”=5(c)2)2 partially adapted from [6].
—24c2 (I(.’.’(Iﬂ_'_l‘,( ((rlrr)_ lO(L")4("’




2. Nonlinear Telegraph Equation

Suppose given PDE is nonlinear telegraph (NLT)
equation

Uix,t,u}=0: u, —(Fuwu,), —(Gu)), =0

Case (a) For arbitrary F(u),G(u), one obtains two
singlet potential systems

v, —u, =0,

v, —(Fuu,+Gu))=0

vy, —(tu, —u) =0,

Vy, —HF(uu, +G(u))=0
Case (b) For arbitrary G(u), F(u) = G’(«), one obtains
two more singlet potential systems

UV, {x,t,u,v;}=0: {

UV, {x,t,u,v,}=0: {

by, —e'u, =0,

by, —e' F(u)u, =0
b, —e" (tu, —u) =0,
b, —te"F(u)u, =0

UB,{x,t,u,b;}=0: {

UB,{x,t,u,b,} =0: {
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Case (¢) F(u) arbitrary, G(u) =u: In addition to first two singlet
potential systems, there are two more:

3 —(x=1t%)u, +1u) =0,

UC {x,t,u,c:}=0:
et {% — (=LY (F@u, +u)+ [ Fu)du =0

Cyqp + (%t3 —txX)u, + (x—%tz)u =0,

UC,{x,t,u,c,}=0: ;
Cyp + (58 =) (F (wu, +10) +t [ F(w)du =0

23



UV, V,{x, t, u, v, v,}=0

UV, {x t, u v,}=0

UV, {x 1, u, v,}=0

U {x, t, u}=0

Tree of nonlocally related systems for NLT eqn for arbitrary F(u), G(u)
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UV, V,B.B, {x, t, u, v, v, by, b,}=0

UV,V,B,{..} =0

UV,V,B,{..} =0

UV,B,B,{..} =0

UV,B,B,{..} =0

UV,V,{..} =0

UVB,{..} =0

UVB,{..} =0

UV,B,{..} =0

UV,B,{..}=0| |UB,B,{..

UV, {x t, u, v }=0

UV, {x, 1, u, v,}=0

UB, {x, 1, u, b,}=0

UB, {x, 1, u, b,}=0

U{x, t, u}=0

25
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TABLE IV. Symmetries of the potential NLT systems for case for case (b): F(u)=(a+1)u®, G(u)=u*(a#=0,-1).

System F(u) Glu) Symmetries
R V4 d d d 2 d 2 d d

lI\I\EB3B4, (a+l)u" u‘”' Yl=—§t;+u;+l)2£+%U|E+%b3m+b4m,
R T -2 . i3 A -5 4 A

UV, V;B;, Vo= tbag +bagy,, Ya=g+bag +vi5-, Ya=51,
T  § _L _L _i

UV, V,B,, YS_&vg" YG_&b;’ Y= b

UV,B;B,.

UV,B,B,, —3u u-3 Ys=r25+tug —Vyz-—bazg:

UV, V,, UV B;,

UV,B4,UV;B;,

UV;B,,UB;B,,

UV,,UV,,

UB;.UB,,

U

uv,v, 3u? w Yg=301%+(rv,—vg+3u)§—uv|%—vf&%l—v,val

“avy
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TABLE VL.

Nonlocal conservation laws of (4.1).

Case System  Subcase Multipliers Fluxes
e e
™ —— T a2 5 a2 oY
(a) UVi B=-1 A =t 245 Ap=wv, X:—{;+E+gl+x}uj,
(it +5+)
2
Flu)=u~ A =v A = Wt vl
(} 1=V Xz_:r+2 EE
T=uv—1t.
Glu)=uP a=-1 vl vt 2 u
A =5+2x+uv, +r, X=—7—(x+u)vi—1v,— 5 —2xu,
q e
= — ! =7 2 Ul
B=-1 Ay=(vi+u+2xu. T:{u+?}uul+2xrm]+r(u—2x}.
A — 4 2 2, W o et (epradleg
A =et/ 2+ (ut+xvi+v o+ o+ T X=—g T Qutx)xr 1,
ve 2 p a4 2wt
;13:{?’+r+uvl+2xvl}u. T=—5+{§+0]+ 205+ + (xv +1)uv  +57u.
] el
uv, =—1 A, =-2 A% __ v o wea
- B : 2T X= 242 n'+E’T_ t
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(b) l.l\'l a+F-—1 Alzexuﬂ‘-ﬁl’Az:eivl’ X=—€'u"""vl,
F(u)=(a+1)u” -2 r=el3 +%).
G(u)=u™"! UV,  a=-4 A;=—e5 Ay=e'n, X=e2, T=e5 -0)).
UB3 ax-—1 Al ——Ma“'l _.A2 =e xb3 X:—u‘“lb} . Tze.t:a:: +e—.\'?
- ot i thy 1 2 [
UB, a=-4 A=—3.,A=e"b, X=—"3 ,T=3ebi~e" 5.
r 2 ) |
(c) uv, a=1 A1=]%—x12+!v|—'?+\“ X=(L~T'—th+'36“‘"")u2
F(u)=u" —(wl+%—xr3+r°)v,,
G(u)=u A, =-_§+ Hu+2x)-v, =—%+(r—2+.\'2—xt2+wl)u
+(2xt—§—§)v,.
g 2 £ v
Al =E—xt+vl X=(?—§—.r)uz+(2.rr—_7—7')vl.
A, =—§+u+x T=($—2xt)u +(u+2x-13)p,.
IV — _e vy-x® 3 2. p?  (Ax(Pex))es
l‘ 2 «@ 1 Al_4 X+ 1’2 . X=HT+J212“2 2_2"" '2 s
A =t— utlx _wn (A 4x(Pe)u (22—,
* =T T 4 -
UuC, a=1 Hoie Aodx | et | Ao+Si (P-20)(nP+2c3)  u43ecs)  Alru—10c3)+200%cs  dP+5c3)cs
i 17780 T ao(A20 T 100A-20 il 64 Y= 160P—29 T 300720

A 35200y H2x+a)
27 402202 4(P-2x)"

T (#—4‘2)11 MJ—3I4M—6M'3 z(r5+10c3)u (rs+5('3)€3
=Tm T ® BNP—20) | 4NA2P




Consider now classification problem for nonlinear telegraph
(NLT) equation

u, —(Fu,), —(Gw), =0. (1)
For any (F(u),G(u)) pair, one naturally has potential systems

Rlu,vl=v,—Fuu,—G(u)=0, 2)

R[u,v]l=v_—u, =0;
H [u,v,w]=R,[u,v]=0,
H,[u,v,w]=w, —v=0, (3)

H;lu,v,wl=w, —u=0.

For specific (F(u),G(u)) pairs, CL classification problem for (2),
etc. can yield additional CLs and hence further potential systems
for consideration [B & Temuerchaolu, J. Math. Anal. Appl. 310,
459 (2005)]



NONLOCAL SYMMETRIES
Potential system (2) has point symmetry

X = cf(x,t,U,V)i+T(x,t,U,V)i+77(x,t,U,V)i+¢(x,t,U,V)
ox ot oU

if and only if

Sy — Ty =0,

Ny — oy +é:x_7’-t =0,

GWUO)In, +7.1+n,—9¢. =0,

& —FWU)t, =0,

¢y —GWU)ty, —FU)n, =0,

GU)sy +¢, —F(U)r, =0,

FO)lg, —7,+&. -1y —2G(U)TV]—F'(U)77=O,
GWU)lg, —, —G(U)TV]—F(U)UX—G'(U)77+¢t =0,

holds for arbitrary values of x,1,U,V

9
1%
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Theorem 1 [B, Temuerchaolu & Sahadevan, JMP 46, 023505
(2005)] Potential system (2) yields nonlocal symmetry of NLT eqn
(1) if and only 1f

(csu+c,)F'(u)—2(c,—c, —Gw))F(u) =0,

(csu+c,)G () +G*(u)— (¢, —2c, +¢;)G(u) —cs =0.

In linearizable case: ¢, =0, ¢5 =c,(c; —¢,).

For any such pair (F(u),G(u)), (u,v) potential system has point
symmetry

5 9 9
X = Ay S
£ o T o %
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with

E=cx +JF(u)du,

T=c,t+v,
n=cu+c,,
@=ci+(c,—c,+cy)v
Modulo translations and scalings in # and G and scalings in F

(involving 5/7 parameters), one obtains six distinct classes of ODEs
for (F(u),G(u)) where scalar (1) eqn (1) has potential symmetry.
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Classification Table for Potential Symmetries

relationship Gu) Fu)
B 2a 2a+5-1
u , u -1 4u
Fu)=—=G =
(u) a (u) uza +1 (u2a +1)2
u2a +1 ~ 4u2a+ﬁ—l
u20(_1 (u2a_1)2

B
Fu)="G'(w) tan(alnu) u’"'sec’(arlnu)
a

Fu)=u’G'(u)  (Inu)” —u”(Inu)™
Fu)= €2'BL‘G,(M) tanu P sec’u
tanh u e*? sech’u

Fu)=e*G (u
() w0 cothu —e* csch’u

F(u)=e"G'(u) u” —ue



Modulo scalings and translations, two distinct
linearization cases occur:
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Case 1.

admits

with

v, —F(uwu, =0,

v. —u, =0
0 0
X=A —+B —
(u,V)ax+ (u,V)at

A -Fu)B, =0,
A—B =0 (hodograph transf)
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Case 2.

admits
X = A 2+ B@awn 2+ Aaw) 2
ox ot ou
iU=x+logu,
with
A +B, =0,

A +B —A=0.
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Point Symmetry Classification of (z) Scalar NLT

Scalar NLT eqn
I/tﬂ = [F(u)ux]x +[G(u)]x
has point symmetry
x*=x+&E(x,t,u)+0(£%),
t*=t+er(x,t,u)+ 0(82),
ur*r=u-+ g?](x,t,u) + 0(82)9
iff

X®(u, —(Fuu,),—G(u),)=0

for any soln of scalar eqn where X * is second
extension of

5 9 9
x=¢(24+:%4p2
et
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This leads to determining equations

fu :Tx :Tu :nuu zft :O’
2F ()7, +&.1- F () =0,

1, — F(u)ﬂxx —G’(l/t)ﬂx — O,
277tu Ty = 0,
F[2n., —E N+& +2F (). -G )€, — 27,1+ G () =0,

which must hold for arbitrary values of x, ¢, and u.

For arbitrary (F(u#),G(u)), scalar NLT eqgn 1s invariant under translations
in x and .
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Classes of (F(u),G(u)) yielding point symmetries of scalar NLT eqn

Gu) F(u) Infinitesimals
et e (&) =Qaxa-1]12)
u Pty (E,r,m) = QB [a+ 281t —2u)

u’ u  above+(&,7,n)=(e",0,~ue")
Inu u” (&, 7,n)=Qla+1]x,[a+2]t,2u)

U e™ &, 7,n)=QRaox,an,2)

T u™  above+(&,7,n)=(0,t",tu)
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Theorem 2 Each point symmetry of (u#,v) NLT potential system that
is a nonlocal symmetry of NLT scalar (u) eqn yields a contact
symmetry of NLT (w) potential eqn given by

w,=F(w)w_+Gw,)

Theorem 3 A point symmetry of NLT scalar (1) eqn yields a point
symmetry of (u,v) NLT potential system for all cases except when

(F(u),G(u))=w"*,u>).
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CONSERVATION LAWS

(&E(x,t,U,V),0(x,t,U,V)) are multipliers for CL of
NLT potential system iff

0,

0,

E,(ER[U,VI+4R,[U,V])
E,(ER[U,VI+¢R,U,V])

for arbitrary diff. functions (U (x,?),(V(x,t)). This

yields determining eqns:

?y _fU =0,
g _F(U)é:v =0,

4
¢x_§t_G(U)§V:O’ )
FU)s, -4, -[GU)g], =0.
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Then for any solution of (4), conserved densities are

X ==[&(xt,5,b)ds — [ §(x,1,U, 5)ds - G(a)jé(s,z,a,b)ds,
a b
T = [(x,t,5,b)ds+ [ &(x,t,U ,5)ds.
a b

Classification results for CLs

Solution of determining system reduces to study of system of two
functions

d(U)=G”F”-3G'G’F"+[3G”* -G'G"F’,

hU)=G"*G"” -4G'G"G” +3G™
Three cases arise:

dlU)=hU)=0,
dlU)#0,hU)=0,

dU)£0,h(U) £0.
42



Case I: F(u) 1s arbitrary

F(u) | G(u) Multipliers
arb u (§,¢):(t,x—%t2)
(C.,»:’ ¢) — (la_t)
arb 1/u &,0)=(U,V)

(&.0)=UV,LV? +x+jsF(s)ds

43



Case II: h(u) #0,d(u) #0

G (G 0) = Ae "1, (G + B)
= %(G+ﬁ)2 (é:z’¢2) = (51 ,—¢1)(x,—t,U,—V)

[A=exp(x+ [ (G(s)+ f)ds]

%
|

Q
Il

<R

(&.0) =" (1,29)
(£,.0,) = (&, (x,~1),~¢ (x,-1))

w =G &.9)=e"(t,})
&.9)=e"(V,LGU))
(.9)=e"(1,0)




Case III: d(u)=0,h(u)=0
Using symmetry analysis (substitution + invariance under solvable three-

parameter group), ODE h(u) =0
can be solved in terms of elementary functions (for G(u)).

Then note that F(u) = G(u) + const is a particular soln of resulting linear
ODE d(u) = 0 = general soln.

Consequently, for F(u) = B.G*(u)+ B,G(u)+ B,, B,” 4 B,
there are four highly nontrivial CLs when

Gu)=u, 1/u, e€", tanhu, tanu.

[In case of "perfect square" B," =4 /3, 3,, there are two CLs.]
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3. Planar Gas Dynamics (PGD) Equations

Suppose given PDE system is the planar gas
dynamics (PGD) equations. In Eulerian description,
one has Euler system

P, +(pv), =0,
E{x,t,v,p,p}=0: <pv,+vw, )+ p, =0,

o(p, +vp,)+B(p,p~ v, =0;

in terms of entropy density S(p, p), constitutive
function B(p,p™") is given by

B(p.p)==p°S,!S,
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In Lagrangian description, in terms of Lagrange
mass coordinates s =t¢, y = '[: p(&)dE, one has
Lagrange system 0

g, —v, =0,
L{iy,s,v,p,q}=0: <v, +p, =0,

\ps+B(p,q)v, =0

We now show that potential system framework
yields a direct connection between Euler and
Lagrange systems. As well, we derive other
equivalent descriptions!

Use Euler system as given system. First equation is a
CL and through it, introduce potential 7 and obtain

potential system
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(r.—p=0,

r+pv=0,

pv, +vw )+ p, =0,
p(p,+vp)+B(p,p " v, =0

G{x,t,v,p,p,r}=0: <

In order to obtain nonlocally-related subsystem, first consider
interchange of dependent and independent variables in G with
r=7y and ¢ = s as independent variables; x, v, p, p as dependent
variables and let g = 1/ p to obtain 1:1 equivalent system

(xy —g=0,

x,—v=0,

G {v,s,x,v,p,p}=0: <
oly p.p} v+ p, =0,

p,+B(p,q)v, =0

Nonlocally related subsystem of Gy is obtained by excluding x
through
Xys = Xy to Obtain Lagrange system L{y, s, v, p,q} =0
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Second conservation law of Euler system obtained
with multipliers

(ALA,,A) =(,1,0)

yields second potential variable w. Couplet potential
system containing both variables r and w 1s given by

r,—p=0,
r,+pv =0,
Wix,t,v,p,p,r,w}=0: Jw, +r, =0,
w, + p+vw, =0,

P(p, +vp)+B(p,p v, =0
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From third equation of W, introduce third potential
variable Z to obtain potential system

(r.—p=0,
r,+pv=0,
z,—w=0,

Z{x,t,v,p,p,r,w,z}=0: 5
{x,t,v, p,p,r,w,z} 2 +r=0,

w, + p+vw, =0,

o(p, +vp )+ B(p,p v, =0

Lagrangian system L, has nonlocally related
subsystem

qss + Py =0,

L{y,s,p,q}=0: {
p,+B(p,q)q,=0



Z{x tv,p pr,wz}=0

Wi{x tv,p pr,w}=0

Z{ X, t) v, p; ,0, w, Z}:()

G{x,t,v,p pr}=0=G,{y s x v,p q}=0

E{ X, t) v, p; p, W}=O

E{x, t, v, p, p}=0

L{y s v,p q}=0

L{y s p ¢q}=0

Tree of nonlocally related systems for PGD equations
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Starting from Lagrange system L , one can obtain
three singlet potential systems from three sets of
multipliers

(4 (3,8), 1y (y,8), 15 (y, 8)) = (1,0,0),(0,1,0), (i, 5,0)
(W ,—q9=0,

wy, —v =0,

G=0G,=LW{y,s,v, p,q,w;}=0:+
v,+p, =0,

\p;+B(p,q)v, =0

qu _vy :O,

wzy—vz(),
LW,{y,s,v, p,q,w,} =0:5

w, +p=0,
ps+B(p,q)v, =0

(w3y —sv—yq =0,

w3s+sp—yv=(),

LW.{v.s,v,p,g,w:} =0:%
(Y P-q,Ws} v+ p, =0,

\py+B(p,q)v, =




LW W,W.{y, s v,p, q w,w,w;}=0

LW W, {y s v, p, gw,w,}=0 LW W, {y, s v,p, q w,wy}=0| |LW,Wi{y, s v, p, g w,w;}=0

LW, {y s, v, p, gw,}=0 LW,{y, s v, p, qw,}=0 LW, { y, s, v, p, gw;}=0

L{y s v,p q}=0

L{y s p q}=0

Extension of tree of nonlocally related systems for Lagrange system for PGD eqns
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Two more CLs arise for Lagrange system L, when
one considers multipliers of form

w(y,s,V,P,Q),i=123.
In general, one can show that

M, =ay—pP+B(P,Q)u; +0,
U, =as+ pV+v,
/1'13 :ﬂ3(y,P,Q),

where a, f§,v,0 are abitrary constants and u3(y,P,Q)
1s any solution of PDE

oy _ d _
0 ap BPQu)+f=0

The two extra CLs arise (for arbitrary constitutive
function B(p,q))
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(1) from conservation of energy
d d
5, GV K(p.an+3 (=0

where K(p,q) 1s a solution of eqn

K,-B(p,¢)K,+p=0

(2) from conservation of entropy

0
—S(p.g)=0
o (p.q)

where S(p,qg) 1s a solution of eqn

S,—B(p,¢)S,=0
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For multipliers restricted to dependence on
independent variables (y,s), no further potential
systems (just the first three) arise in case of
Lagrange PGD system L. with generalized polytropic
equation of state

B(p.q) =M%”), M”(p) %0
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TABLE VIL Symmetries of the generalized polytropic PGD system (2.10), (5.1).

System Mip) Symmetries
, 3 3 f) 2
L, (i) Arbitrary Z\=z+wagg L=+ wings
LW, LW, LW, Zy= 5+ Y+ 0
- - 2 3
LW, W, LW, W,;, Z‘_—y;+2q3+v;+n|“ !
LW, W, Zszsi""a,"’“la. +u-. +2wyo-
v was a
LW, W,W, Zﬁ‘aul 27__ ZF,,T.}-
L.LW, (ii) —=pIn p zg_\—hpap +;§5+v—+‘.m "
i) vo +ap! VY iy, o g 2 ey, 5
y#0,-1
v P _3 a3 3
2‘_'):::“ : ATErh gl il
E o 3 2 3
Z|3=_,v;+ l‘:mﬂ_\'q;—.«‘?b =5 our’
. F]
LW, (ii) =pInp Ziz=y" ;-l-\p* =3 —)\q“—(_\t —ha)*l-i-\uz.,w

(iii) yp +8p "IV
y#0.-1

Zu-\ _‘“Pap ( )vq——(vu u») +w2~‘

,-J}’r




TABLE VIII. Point symmetries of the subsystem L (2.19) of the generalized polytropic PGD system (2.10), (5.1).

M(p) Symmetries
(i) Arbitrary Z=2, Z,=2
‘ 1T a0 2% oy
J d d J
Zy==y3+2q5,, Ls=55+Y5,-
.e d d 2g 2
- -y a2 =9
(ii)) =pInp Zg_‘&_\':"pap:lnp&; 1 )
4
Z|3=v‘;+vp$—(3 m))q;.
(y+1)y
(iii) yp+ Sp' ey - 7. 3 2
o Zu="2 »tPa Ty’
Zy=y L eypi (3227 )yg L
_ oy TP\ ¥ &V rey L
- oy B L e | . ]
y=3 2i5=35 5 Pyt 5 P
iv) 1 +ae? _2 a3
(iv) Zy=% 1+¢5‘75q-‘
d d
ﬁ_) a0t Teaer?93g"
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Remarks
e Extended trees hold for arbitrary constitutive function

e Either Euler system or Lagrange system can be given system—
tree will not change

¢ In Akhatov, Gazizov & Ibragimov (1991) a complete group
classification with respect to constitutive function was given
separately for Euler and Lagrange systems but connections
between systems were heuristic

e To systematically construct nonlocal symmetries of Euler and
Lagrange systems one needs to do group classification problem
for all systems in extended tree with respect to constitutive
function (as well as consider other possible extended trees for
specific constitutive functions followed by point symmetry
analysis)
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e E.g., for Chaplygin gas [B(p,ql=—p/q], subsystem

Liy,s.p.q}=0
has point symmetry (not in AGI)

d o 0
X=—y> = py—+3yg—,
TP, TG,

which yields nonlocal symmetry for E and L.
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Further extended trees for PGD eqns for specific constitutive functions

Example A: For B(p,1/ p)=p(+e”), system G{x,t,v, p, o,r} =0 has
family of CLs:

D{M}D{ﬂmeﬁj:o’

1+e? 1+e?

for arbitrary f(r). Such a CL can be used to replace 4™ eqn of
G{x,t,v, p, p,r} =0 to introduce potential ¢ and potential system

(rx - p =0,

r.+pv=0,

C A{x.t,v,p,p,r,c}=0:9r.(v,+w, )+ p, =0,

c.+e’ f(r)/(1+e”)=0,
c, —ve’ f(r)/(1+e”)=0.
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Example B: For Chaplygin gas, B(p,l1/ p) =—pp, system
G{x,t,v, p, p,r} =0 has family of CLs:

|

f(r))+ Dx(f(r)v]zo
p p

for arbitrary f(r) to yield family of potential systems

Df{x,t,v,p,p,r,d}:O:<

r.—p=0,
r.+ pv =0,
r.(v,+w)+p, =0,
d.+f(r)/p=0,

d,—vf(r)/ p=0.
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Ceix t,v,p pr c;y=0

N

(a) Gix, tv,p p r}=0

Deix v, p prdi=0

/

Gi{x, tv,p, p r}=0 (b)

Level 5

Level 4
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One can show that new nonlocal symmetries arise for Chaplygin gas
Euler system only when f(r) =r, f(r) = const.

For f(r)=r, this Chaplygin gas system has symmetries

t° J t*) 0 d rtp o
X, =|-Cwar | C4la-L |2 - ,
b ( 6+ tjax—i_( 2)8\)—'_”8]9 p op

2
Xp = —t—+d i+—ti+ra _1P 8.
’ 2 ox ov dp pop

e Symmetry X, 18 nonlocal for both Euler and Lagrange systems

e Symmetry X, is nonlocal for Euler system but local for
Lagrange system

e Hence in AGI, symmetry X,, was not obtained
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