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CL-BASED METHOD TO OBTAIN 

NONLOCALLY RELATED SYSTEMS 

AND NONLOCAL SYMMETRIES  
 

 

1. Construction of nonlocally related systems 

through conservation laws (CLs)  

--Use of CL to obtain nonlocally related system 

(potential system) 

--Use of n CLs to obtain up to  2
n
 - 1 

nonlocally related systems 

--How to find nonlocally related subsystems 

--Tree of nonlocally related systems 

 

2. Examples 

--Nonlinear wave equations 

--Nonlinear telegraph equations 

--Planar gas dynamics equations 
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Limitation of local symmetries:  A given PDE 

as it stands does has no useful local 

symmetry or no useful conservation 

law (CL) 

 

Aim:  To extend existing methods to 

systems that are nonlocally related but 

equivalent to a given PDE system  
 

How to do this systematically?   
 

Two natural ways:  

*use of any CL 

*use of any point symmetry 
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CONSTRUCTION OF NONLOCALLY 

RELATED SYSTEMS THROUGH CLs 
 

Given any local CL  
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If ),( vu  solves potential system    P    then  u  solves  

0][ =uR .   

 

Conversely, if  u  solves  0][ =uR , then there exists 

solution ),( vu  of potential system P due to 

integrability condition txxt vv =  being satisfied from 

CL. 

 

But equivalence relationship is nonlocal and non-

invertible since for any  u  solving  0][ =uR ,  if   

),( vu  solves potential system P, then so does  

),( Cvu +   for any constant C.   

 

Symmetry (CL) of  0][ =uR   yields symmetry (CL) 

of potential system P. 

 

Conversely, symmetry (CL) of potential system P 

yields symmetry (CL) of  0][ =uR . 
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Suppose equivalent potential system  P  has point 

symmetry 
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Then  X  yields nonlocal symmetry of given PDE 

(1) iff 

 

.0)()()( 222 ≡/++ vvv ωτξ  

 

Hence through CL of (1), nonlocal symmetry of (1) 

can be obtained through point (local) symmetry of  

related potential system P. [Converse also true!] 
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Use of n CLs to obtain up to 12 −n
 

nonlocally related systems 

 
Now suppose, there are n multipliers 

)},,,,,({ UUUtx
q

i ∂∂Λ K  yielding  n independent 

CLs of R[u] = 0.   
 

Let  iv  be potential variable ][  multiplier  UiΛ↔  

 

Then one obtains n  singlet potential systems  

niP
i ,,1, K=  

 

Moreover, one can consider potential systems  
 

in couplets { }n

ji

ji
PP 1,, =  with two potential variables  

 

in triplets { }n

kji

kji
PPP 1,,,, =  with three potential 

variables 
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,…, 

 

in an n-plet { }n
PP ,,1

K  with n potential variables 

 

Hence from n CLs, one obtains   12 −n  distinct 

potential systems! 

 
Starting from any potential system, one can continue  

process and if it has N  “local” CLs, one can obtain 

up to 12 −N  further distinct potential systems.  One 

can tell in advance whether  further potential systems 

are obtained.   

 

In particular, one can show that if multipliers 

depend only on independent variables (x, t) then 

no new potential system is obtained. 

 

Any potential system could yield new nonlocal 

symmetries or new nonlocal CLs for any other 

potential system or “given” PDE 



8

Nonlocally related subsystems 
 

Suppose one has given PDE system   

0},,,,S{ 1 =Muutx K   with indicated  M  dependent 

variables.   

 

A subsystem excluding dependent variable, say ,M
u   

0},,,,{S 11 =−Muutx K   is  nonlocally related  to  

given system  0},,,,S{ 1 =M
uutx K   if   M

u  cannot be 

directly expressed from equations of  

0},,,,S{ 1 =Muutx K   in terms of   ,,tx  remaining 

dependent variables  11 ,, −M
uu K , and their 

derivatives. 

 

Subsystems for consideration can arise following 

interchange of dependent and independent 

variables of given system  

0},,,,S{ 1 =Muutx K  
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Tree of Nonlocally Related Systems 

 

Consequently, for given PDE system one obtains tree 

of nonlocally related (but equivalent) systems arising 

from CLs and subsystems.   

 

 

Each system in such an extended tree is equivalent 

in sense that solution set for any system in tree can 

be found from solution set for any other system in 

tree through connection formula 
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Due to equivalence of solution sets and nonlocal 

relationship, it follows that any coordinate-

independent method of analysis (quantitative, 

analytical, numerical, perturbation, etc.) when 

applied to any system in tree may yield simpler 

computations and/or results that cannot be 

obtained when method is directly applied to given 

system.   

 

Note also that “given” system could be any system 

in tree!! 
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EXAMPLES 
 

1. Nonlinear wave equation 

 

Suppose given PDE is nonlinear wave equation 
 

xxtt uucuutx ))((:0},,{ 2==U  
 

Directly, one obtains singlet potential system 

(multiplier is 1) 
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By invertible point transformation (hodograph) 
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One can show that there are only three more 

multipliers of form txxtutx ,,),,( =Λ  that yield CLs 

for U for an arbitrary wave speed )(uc . 

 

This yields three more singlet potential systems given 

by 
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Nonlocally related subsystems arise from UV 
through XT: 
 

0)(:0},,{},,{
2 =−=≡ −

uuvv tucttvutvu LT  
 

0))((:0},,{ 2 =−= −
uuvv xucxxvuX  

 

One can show that  symmetry classifications of these 

two PDEs are “equivalent”.  Hence concentrate on 

T. 
 
One can show that any solution of  T  yields a 

multiplier for a CL.  These include four multipliers of 

form 
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that yield CLs for T for arbitrary wave speed )(uc .  
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Resulting new singlet potential systems include 
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Consequently, one obtains following (far from 

exhaustive) tree of nonlocally related systems for 

nonlinear wave equation U for arbitrary wave speed 
)(uc  
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H2V

U T ≡≡≡≡ LX

TQTPUWUBUA

UAB UAW UAV UBW UBV UVW

UABV UABW UBVWUAVW

TR

XTP XTQ XTR TPQ TPR TQR

XTPR XTPQ TPQRXTQR

UV              ↔↔↔↔ XT

UABVW XTPQR
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• Point symmetry classification of nonlinear wave equation U given in 

Ames, Lohner & Adams (1981) 

 

•  Point symmetry classifications of potential system XT and subsystem 

T given in B & Kumei (1987) 

  

• Partial point symmetry classifications of potential systems TP and TQ 

can be adapted from results presented in Ma (1990).  

 

• Complete point symmetry classifications of potential systems UA, UB, 

UW, TP, TQ given in B & Cheviakov (2007).  Many nonlocal 

symmetries for nonlinear wave equation are found from each of these 

nonlocally related systems in terms of specific forms of nonlinear 

wave speed c(u). In particular, following new nonlocal symmetries for 

nonlinear wave equation U were found: 
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For potential system UB, setting ,)()(
2

∫= duucuF  one finds that if 

)(uF  satisfies ODE 
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that is a nonlocal symmetry of nonlinear wave equation U. 
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For potential system UW if )(uc  satisfies ODE  
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with arbitrary constants ,, 21 CC  then it has point symmetry 
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that is a nonlocal symmetry of nonlinear wave equation U. 
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For potential system TP, if 
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that are both nonlocal symmetries of nonlinear wave equation U 
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For potential system TR, new nonlocal symmetries 

are found for U from its point symmetries when  

 

.)( 3/4−= uuc  
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2.  Nonlinear Telegraph Equation 

 

Suppose given PDE is nonlinear telegraph (NLT) 

equation 
 

0))(())((:0},,{ =−−= xxxtt uGuuFuutxU  
 

Case (a) For arbitrary ),(),( uGuF  one obtains two 

singlet potential systems 
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Case (c)  )(uF  arbitrary, uuG =)( :  In addition to first two singlet 
potential systems, there are two more: 
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UV1V2 {x, t, u, v1, v2}=0

UV1 {x, t, u, v1}=0

U {x, t, u}=0

UV2 {x, t, u, v2}=0

Tree of nonlocally related systems for NLT eqn for arbitrary F(u), G(u)



25

UV1V2 {...} = 0

UV
1 
{x, t, u, v

1
}=0

U {x, t, u}=0

UV
2 
{x, t, u, v

2
}=0

UV1V2B3B4 {x, t, u, v1, v2, b3, b4}=0

UB
3 
{x, t, u, b

3
}=0 UB

4 
{x, t, u, b

4
}=0

UV1B3 {...} = 0 UV1B4 {...} = 0 UV2B3 {...} = 0 UV2B4{...} = 0 UB3B4 {...} =

UV1V2B3 {...} = 0 UV1V2B3 {...} = 0 UV1B3B4 {...} = 0 UV2B3B4 {...} = 0

Tree of nonlocally related systems for NLT eqn for arbitrary G(u), F = G’  
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Consider now classification problem for nonlinear telegraph 

(NLT) equation 

.0))(())(( =−− xxxtt uGuuFu        (1) 

For any ))(),(( uGuF  pair, one naturally has potential systems 
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For specific ))(),(( uGuF  pairs, CL classification problem for (2), 

etc. can yield additional CLs and hence further potential systems 

for consideration [B & Temuerchaolu, J. Math. Anal. Appl. 310, 

459 (2005)] 
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NONLOCAL SYMMETRIES 

Potential system (2) has point symmetry  

.if and only if 
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holds for arbitrary values of  x,t,U,V 
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Theorem 1 [B, Temuerchaolu & Sahadevan, JMP 46, 023505 

(2005)] Potential system (2) yields nonlocal symmetry of NLT eqn 

(1) if and only if 
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In linearizable case: ).(,0 23251 ccccc −==  

 

For any such pair ))(),(( uGuF , (u,v) potential system has point 
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with 
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Modulo translations and scalings in u and G and scalings in F 

(involving 5/7 parameters), one obtains six distinct classes of ODEs 

for  ))(),(( uGuF  where scalar (u) eqn (1) has potential symmetry. 
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Classification Table for Potential Symmetries
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Modulo scalings and translations, two distinct

linearization cases occur:
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Case 1.

0

,0)(
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Case 2.

0,012 =−=−− −−
txxt uvuuuv

admits

u
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x
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Point Symmetry Classification of (u) Scalar NLT 

 

Scalar NLT eqn 

xxxtt uGuuFu )]([])([ +=  

has point symmetry 
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This leads to determining equations 
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which must hold for arbitrary values of  x, t, and u. 

 

For arbitrary ))(),(( uGuF , scalar NLT eqn is invariant under translations 

in  x  and  t. 
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Classes of ))(),(( uGuF  yielding point symmetries of scalar NLT eqn 
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Theorem 2  Each point symmetry of (u,v) NLT potential system that 

is a nonlocal symmetry of NLT scalar  (u) eqn yields a contact 

symmetry of NLT (w) potential eqn given by 

 

)()( xxxxtt wGwwFw +=  

 

Theorem 3  A point symmetry of NLT scalar (u) eqn yields a point 

symmetry of (u,v) NLT potential system for all cases except when 

).,())(),(( 34 −−= uuuGuF  
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CONSERVATION LAWS 

 

)),,,(),,,,(( VUtxVUtx φξ  are multipliers for CL of 

NLT potential system iff 
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for arbitrary diff. functions )),((),,(( txVtxU .  This 

yields determining eqns: 
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Then for any solution of (4), conserved densities are 

∫ ∫
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Classification results for CLs 

 

Solution of determining system reduces to study of system of two 

functions 
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Case I: F(u) is arbitrary

F(u) G(u) Multipliers

arb u ( )2
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Case II: 0)(,0)( ≠≠ uduh
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Case III: 0)(,0)( == uhud  

 

Using symmetry analysis (substitution + invariance under solvable three-

parameter group), ODE 0)( =uh  

can be solved in terms of elementary functions (for G(u)).   

 

Then note that F(u) = G(u) + const is a particular soln of resulting linear 

ODE d(u) = 0 ⇒ general soln.  

 

Consequently, for  32

2

1 )()()( βββ ++= uGuGuF , 31

2

2 4 βββ ≠  

 

there are four highly nontrivial CLs when 

 

.tan,tanh,,/1,)( uueuuuG
u=  

 

[In case of "perfect square" 31

2

2 4 βββ = , there are two CLs.] 
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3.  Planar Gas Dynamics (PGD) Equations 

 

 

Suppose given PDE system is the planar gas 

dynamics (PGD) equations. In Eulerian description, 

one has Euler system 

 









=++

=++

=+

=

− ;0),()(

,0)(

,0)(

:0},,,,{

1
xxt

xxt

xt

vpBvpp

pvvv

v

pvtx

ρρ

ρ

ρρ

ρE  

 

in terms of entropy density ),,( ρpS  constitutive 

function ),( 1−ρpB  is given by 

 

pSSpB /),( 21
ρρρ −=−
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In Lagrangian description, in terms of Lagrange 

mass coordinates ,ts =  ,)(
0
∫=

x

x
dy ξξρ one has 

Lagrange system 









=+

=+

=−

=

0),(

,0

,0

:0},,,,{

ys

ys

ys

vqpBp

pv

vq

qpvsyL  

 

We now show that potential system framework 

yields a direct connection between Euler and 

Lagrange systems.  As well, we derive other 

equivalent descriptions! 

 
Use Euler system as given system.  First equation is a 

CL and through it, introduce potential r and obtain 

potential system 
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











=++

=++

=+

=−

=

− 0),()(

,0)(

,0

,0

:0},,,,,{

1
xxt

xxt

t

x

vpBvpp

pvvv

vr

r

rpvtx

ρρ

ρ

ρ

ρ

ρG  

 
In order to obtain nonlocally-related subsystem, first consider 

interchange of dependent and independent variables in  G with       

r = y and t = s as independent variables; x, v, p, ρ as dependent 

variables and let q = 1/ ρ to obtain 1:1 equivalent system 













=+

=+

=−

=−

=

0),(

,0

,0

,0

:0},,,,,{0

ys

ys

s

y

vqpBp

pv

vx

qx

pvxsy ρG  

 

Nonlocally related subsystem of  G0  is obtained by excluding  x  

through    

xys = xsy to obtain Lagrange system  L{y, s, v, p, q} = 0 
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Second conservation law of Euler system obtained 

with multipliers 

 

)0,1,(),,( 321 v=ΛΛΛ  
 

yields second potential variable w.  Couplet potential 

system containing both variables r and w is given by 

 















=++

=++

=+

=+

=−

=
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,0

,0

:0},,,,,,{

1
xxt

xt

tx

t

x

vpBvpp

vwpw

rw
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r

wrpvtx

ρρ

ρ

ρ

ρW  
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From third equation of W, introduce third potential 

variable z to obtain potential system 
















=++

=++

=+

=−
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=
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,0
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1
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xt

x

t

t

x
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r
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ρρ

ρ

ρ

ρZ  

 

Lagrangian system L, has nonlocally related 

subsystem 

 





=+

=+
=

0),(

,0
:0},,,{

ss

yyss

qqpBp

pq
qpsyL  



51

W{ x, t, v, p, ρ, r, w}=0

G{x, t, v, p, ρ, r}=0 ⇔ G0 { y, s, x, v, p, q}=0 W{ x, t, v, p, ρ, w}=0

L{ y, s, p, q}=0

E{x, t, v, p, ρ}=0

Z{ x, t, v, p, ρ, r, w, z}=0

Z{ x, t, v, p, ρ, w, z}=0

L{ y, s, v, p, q}=0

Tree of nonlocally related systems for PGD equations
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Starting from Lagrange system L , one can obtain 

three singlet potential systems from three sets of 

multipliers 
)0,,(),0,1,0(),0,0,1()),(),,(),,(( 321 sysysysy =µµµ  













=+

=+

=−

=−

==⇔=

0),(
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1

110
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y
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pv
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



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





=+

=+

=−

=−

=

0),(
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:0},,,,,{
2

2

22

ys

s

y
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vq
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











=+

=+

=−+

=−−

=

0),(

,0

,0

,0

:0},,,,,{
3

3

33
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s

y

vqpBp

pv
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wqpvsyLW  
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LW1W2{ y, s, v, p, q,w1,w2}=0

LW1{ y, s, v, p, q,w1}=0

L{ y, s, p, q}=0

L{ y, s, v, p, q}=0

LW2{ y, s, v, p, q,w2}=0 LW3{ y, s, v, p, q,w3}=0

LW1W3{ y, s, v, p, q, w1,w3}=0 LW2W3{ y, s, v, p, q, w2,w3}=0

LW1W2W3{ y, s, v, p, q, w1,w2,w3}=0

Extension of tree of nonlocally related systems for Lagrange system for PGD eqns
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Two more CLs arise for Lagrange system L, when 

one considers multipliers of form 

 
.3,2,1),,,,,( =iQPVsyiµ  

 

In general, one can show that 

 

),,,(

,

,),(

33

2

31

QPy

Vs

QPBPy

µµ

νβαµ

δµβαµ

=

++=

++−=

 

 

where  α, β,ν,δ  are abitrary constants and  µ3(y,P,Q) 
is any solution of PDE 

 

0)),(( 3
3 =+

∂

∂
−

∂

∂
βµ

µ
QPB

PQ  

 

The two extra CLs arise (for arbitrary constitutive 

function B(p,q)) 
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(1) from conservation of energy

0)()),(( 2

2
1 =

∂

∂
++

∂

∂
pv

y
qpKv

s

where K(p,q) is a solution of eqn

0),( =+− pKqpBK pq

(2) from conservation of entropy

0),( =
∂

∂
qpS

s

where S(p,q) is a solution of eqn

0),( =− pq SqpBS
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For multipliers restricted to dependence on   

independent variables (y,s), no further potential 

systems (just the first three) arise in case of  

Lagrange PGD system L  with generalized polytropic 

equation of state 

 

0)(,
)(

),( ≠′′= pM
q

pM
qpB  



57



58



59

Remarks 

 

• Extended trees hold for arbitrary constitutive function 

 

• Either Euler system or Lagrange system can be given system—

tree will not change 

 

• In Akhatov, Gazizov & Ibragimov (1991) a complete group 

classification with respect to constitutive function was given 

separately for Euler and Lagrange systems but connections 

between systems were heuristic 

 

• To systematically construct nonlocal symmetries of Euler and 

Lagrange systems one needs to do group classification problem 

for all systems in extended tree with respect to constitutive 

function (as well as consider other possible extended trees for 

specific constitutive functions followed by point symmetry 

analysis) 
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• E.g., for Chaplygin gas ]/],([ qpqpB −= ,  subsystem 

 

0},,,{ =qpsyL  

 

has point symmetry (not in AGI)  

 

,3X
2

q
yq

p
py

y
y

∂

∂
+

∂

∂
−

∂

∂
−=  

 

which yields nonlocal symmetry for E and L. 



61

Further extended trees for PGD eqns for specific constitutive functions 

 

Example A:  For ),1()/1,( p
epB += ρρ  system 0},,,,,{ =rpvtx ρG  has  

family of CLs: 
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for arbitrary f(r).  Such a CL can be used to replace 4th eqn of  

0},,,,,{ =rpvtx ρG   to introduce potential  c  and potential system 
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Example B:  For Chaplygin gas, ,)/1,( ρρ ppB −=  system 

0},,,,,{ =rpvtx ρG   has family of CLs: 
 

0
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






+



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
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p
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D xt  

 

for arbitrary f(r) to yield family of potential systems 
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One can show that new nonlocal symmetries arise for Chaplygin gas 

Euler system only when const.)(,)( == rfrrf   

For ,)( rrf =  this Chaplygin gas system has symmetries  
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• Symmetry 
1

XD  is nonlocal for both Euler and Lagrange systems  

 

• Symmetry 
2

XD  is nonlocal for Euler system but local for 

Lagrange system 

 

• Hence in AGI, symmetry 
1

XD  was not obtained 
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