Nonlocality in multidimensions

In the multidimensional situation ($n \ge 3$ independent variables), a local conservation law for a given PDE system $\mathbf{R}\{x;u\}$ yields $\frac{1}{2}n(n-1)$ potential variables.

A local symmetry of the resulting potential system *always* corresponds to a local symmetry of $\mathbf{R}\{x;u\}$! [This is not the case for n = 2 independent variables.].

To obtain nonlocal symmetries of $\mathbf{R}{x;u}$ it is necessary to augment the potential system by a *gauge constraint*.

Divergence-type CLs and corresponding potential systems

Consider PDE system $\mathbf{R}\{x;u\}$ with *N* PDEs of order *k* with $n \ge 3$ independent variables $x = (x^1, ..., x^n)$ and *m* dependent variables $u(x) = (u^1(x), ..., u^m(x))$:

$$R^{\sigma}[u] = R^{\sigma}(x, u, \partial u, \dots, \partial^{k}u) = 0, \quad \sigma = 1, \dots, N.$$
(1)

Suppose $\mathbf{R}{x;u}$ (1) has a divergence-type CL

$$div\Phi[u] = D_i \Phi^i[u] \equiv D_i \Phi^i(x, u, \partial u, \dots, \partial^r u) = 0.$$
⁽²⁾

From Poincaré's lemma, one has $\frac{1}{2}n(n-1)$ potential variables $v^{jk}(x) = -v^{kj}(x) \Rightarrow$ set of *n* potential equations

$$\Phi^{i}[u] \equiv D_{i}v^{ij}, \quad i = 1, \dots, n$$
(3)

equivalent to (2).

The corresponding *potential system* $S{x;u,v}$ is the union of $R{x;u}$ (1) and the set of potential equations (3).

 $S{x;u,v}$ is nonlocally related and equivalent to $R{x;u}$.

Potential system $S{x;u,v}$ has *gauge freedom*

$$v^{ij} \to \mathbf{D}_k w^{ijk} \tag{4}$$

where $w^{ijk}(x)$ are $\frac{1}{6}n(n-1)(n-2)$ arbitrary fcns, components of a totally antisymmetric tensor, i.e., $S\{x;u,v\}$ has an infinite number of point symmetries (*gauge symmetries*)

$$X_{gauge} = D_k w^{ijk}(x) \frac{\partial}{\partial v^{ij}}.$$
(5)

As it stands, potential system $S{x;u,v}$ is *underdetermined* due to gauge freedom (4).

Now assume that the given PDE system $\mathbf{R}\{x;u\}$ is *determined* in the sense that it does not have symmetries that involve *arbitrary functions* of *all* independent variables $x = (x^1, ..., x^n)$.

Suppose potential system $S\{x;u,v\}$ has the local symmetry $X = \eta^{\mu}(x,u,\partial u,...,\partial^{P}u,v,\partial v,...\partial^{Q}v)\frac{\partial}{\partial u^{\mu}} + \zeta^{\alpha\beta}[u,v]\frac{\partial}{\partial v^{\alpha\beta}}$ (6)

Then $S{x;u,v}$ has the local symmetries given by the commutator

 $[X_{gauge}, X]$ that projects to the symmetries

$$\left(\alpha^{ij}\frac{\partial\eta^{\mu}}{\partial\nu^{ij}} + (\mathbf{D}_{i_{1}}\alpha^{ij})\frac{\partial\eta^{\mu}}{\partial\nu^{ij}_{i_{1}}} + \dots + (\mathbf{D}_{i_{1}}\cdots\mathbf{D}_{i_{Q}}\alpha^{ij})\frac{\partial\eta^{\mu}}{\partial\nu^{ij}_{i_{1}\cdots i_{Q}}}\right)\frac{\partial}{\partial u^{\mu}}$$
(7)

of $\mathbf{R}{x;u}$ (1) where $\alpha^{ij}(x) = D_k w^{ijk}(x)$,

and $v_{i_1 \cdots i_R}^{ij} = \mathbf{D}_{i_1} \cdots \mathbf{D}_{i_R} v^{ij}$ denotes derivatives of v^{ij} .

In (7): $\alpha^{ij}(x)$ and each of its derivatives are arbitrary functions of $x = (x^1, ..., x^n)$. Since the given PDE system $\mathbf{R}\{x; u\}$ is a *determined* system, it follows that (7) is a symmetry of $\mathbf{R}\{x; u\}$ if and only if $\frac{\partial \eta^{\mu}}{\partial v^{ij}} = \frac{\partial \eta^{\mu}}{\partial v^{ij}_{i_1}} = \cdots = \frac{\partial \eta^{\mu}}{\partial v^{ij}_{i_1 \cdots i_Q}} \equiv 0.$

Thus each local symmetry of the *underdetermined* potential system $S{x;u,v}$ (arising from a divergence-type conservation law) yields only a local symmetry of the given *determined* PDE system $R{x;u}$.

Hence if potential system $S\{x;u,v\}$, arising from a divergence-type conservation law of a given PDE system $R\{x;u\}$, is used to obtain a potential symmetry of $R\{x;u\}$, *it is necessary to augment* $S\{x;u,v\}$ with auxiliary constraint equations (*gauge constraints*) to obtain a *determined potential system*.

A *gauge constraint* has the property that the augmented potential system remains equivalent to the given PDE system $\mathbf{R}\{x;u\}$.

Examples of gauges (relating potential variables):

- divergence (Coulomb) gauge
- spatial gauge
- Poincaré gauge
- Lorentz gauge (a form of divergence gauge)
- Cronstrom gauge (a form of Poincaré gauge)

Example

Consider the wave equation $\mathbf{R}{x;u}$:

$$u_{tt} - u_{xx} - u_{yy} = 0 ag{8}$$

which is already a divergence-type CL

Correspondingly, we have vector potential $v = (v^0, v^1, v^2)$ and underdetermined potential system $S{x;u,v}$:

$$u_{t} = v_{x}^{2} - v_{y}^{1},$$

$$-u_{x} = v_{y}^{0} - v_{t}^{2},$$

$$-u_{y} = v_{t}^{1} - v_{x}^{0}$$
(9)

Now consider the augmented equivalent constrained system obtained by appending the Lorentz gauge

$$v_t^0 - v_x^1 - v_y^2 = 0 (10)$$

to (9) to obtain the determined potential system

$$u_{t} = v_{x}^{2} - v_{y}^{1},$$

$$-u_{x} = v_{y}^{0} - v_{t}^{2},$$

$$-u_{y} = v_{t}^{1} - v_{x}^{0},$$

$$v_{t}^{0} - v_{x}^{1} - v_{y}^{2} = 0.$$

(11)

One can show that the determined potential system (11) has six point symmetries that yield nonlocal symmetries as well as nonlocal CLs of the wave equation (8), eg:

$$X = (yv^{1} - xv^{2} - tu)\frac{\partial}{\partial u} - (2tv^{0} + xv^{1} + yv^{2})\frac{\partial}{\partial v^{0}}$$
$$-(xv^{0} + 2tv^{1} - yu)\frac{\partial}{\partial v^{1}} - (yv^{0} + 2tv^{2} + xu)\frac{\partial}{\partial v^{2}}$$

One can show that the other listed gauges yield no nonlocal symmetries from point symmetries of the corresponding determined potential systems. In the multidimensional situation ($n \ge 3$ independent variables), there are three known ways (with known examples) to seek nonlocal symmetries of a given PDE system $\mathbf{R}\{x;u\}$ through seeking local symmetries of an equivalent nonlocally related PDE system:

- Potential systems arising from a divergence-type conservation laws (of degree $r: 1 < r \le n-1$) augmented with gauge constraints to yield a determined potential system
- Determined potential systems arising from curl-type conservation laws (of degree 1)
- Determined nonlocally related subsystems

In the case of three independent variables (n = 3), two types of CLs arise:

- Degree 2 CLs (divergence-type CL)
- Degree 1 CLs (curl-type CL).

Potential systems arising from lower degree CLs (r < n-1) essentially correspond to particular gauge constraints for underdetermined potential systems arising from divergence-type CLs Examples illustrating the three types of nonlocal symmetries that can arise as described above appear in the following references:

- 1. Anco and B, Nonlocal symmetries and nonlocal conservation laws of Maxwell's equations, *J. Math. Phys.* **38** (1997), 3508-3532
- 2. Anco and The, Symmetries, conservation laws, and cohomology of Maxwell's equations using potentials, *Acta Appl. Math.* **89** (2005), 1-52.
- 3. Cheviakov and B, Multidimensional partial differential equation systems: Generating new systems via conservation laws, potentials, gauges, subsystems, *J. Math. Phys.* **51** (2010), 103521.

- 4. Cheviakov and B, Multidimensional partial differential equation systems: Nonlocal symmetries, nonlocal conservation laws, exact solutions, *J. Math. Phys.* **51** (2010), 103522.
- 5. Bogoyavlenskij, Infinite symmetries of the ideal MHD equilibrium equations, *Phys. Lett. A*, **291** (2001), 256-264.
- 6. Bogoyavlenskij, Symmetry transforms for ideal magnetohydrodynamics equilibria, *Phys. Rev. E*, **66** (2002), 056410.
- 7. B, Cheviakov and Anco, *Applications of Symmetry Methods to Partial Differential Equations* Springer (2010) [Section 5.3]

Some open problems in multidimensions

- Find examples of *nonlinear* PDE systems for which nonlocal symmetries arise as local symmetries of a potential system following from divergence-type CLs appended with gauge constraints
- Find efficient procedures to obtain "useful" gauge constraints (eg, yielding nonlocal symmetries/nonlocal CLs) for potential systems arising from divergence-type CLs (as well as for underdetermined potential systems arising from lower-degree CLs). Can one rule out specific families of gauges for particular classes of potential systems?

- Find further examples of lower-degree CLs for PDE systems of physical importance. [CLs of degree one (curl-type) are of particular interest since corresponding potential systems are determined.] Examples to-date suggest that lower-degree CLs are rare and only arise when a given PDE system has a special geometrical structure. Of course, divergence-type CLs are common!
- Find useful subsystems and useful means of obtaining subsystems (including the two-dimensional case). Progress has been made in this direction.