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Nonlocality in multidimensions 

 
In the multidimensional situation ( 3≥n  independent variables), a 

local conservation law for a given PDE system R{x;u} yields 

)1(
2
1 −nn   potential variables.   

 

A local symmetry of the resulting potential system always 

corresponds to a local symmetry of R{x;u}!  [This is not the case 

for n = 2 independent variables.]. 

 

To obtain nonlocal symmetries of  R{x;u} it is necessary to 

augment the potential system by a gauge constraint. 
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Divergence-type CLs and corresponding potential systems 

 

Consider PDE system R{x;u} with  N  PDEs of order  k  with  

3≥n   independent variables ),,( 1 n
xxx K=   and  m  dependent 

variables :))(,),(()( 1
xuxuxu

m
K=  
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Suppose R{x;u} (1) has a divergence-type CL 
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From Poincaré’s lemma, one has )1(
2
1 −nn  potential variables  

)()( xvxv
kjjk −=  ⇒ set of  n  potential equations 
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equivalent to (2). 

 

The corresponding potential system  S{x;u,v} is the union of 

R{x;u} (1) and the set of potential equations (3). 

 

S{x;u,v}  is nonlocally related and equivalent to R{x;u}. 
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Potential system  S{x;u,v}  has gauge freedom 
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where )(xw
ijk   are  )2)(1(

6
1 −− nnn  arbitrary fcns, components of a 

totally antisymmetric tensor, i.e., S{x;u,v}  has an infinite number 

of point symmetries (gauge symmetries)   
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As it stands, potential system S{x;u,v}  is underdetermined due to 

gauge freedom (4).   
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Now assume that the given PDE system R{x;u} is determined in 

the sense that it does not have symmetries that involve arbitrary 

functions of all independent variables ),,( 1 n
xxx K= . 

 

Suppose potential system S{x;u,v}  has the local symmetry 
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Then  S{x;u,v}  has the local symmetries given by the commutator 

 

X],X[ gauge   that projects to the symmetries 
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of R{x;u} (1)  where  =)(x
ijα  )(D xw
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In (7): )(x
ijα  and each of its derivatives are arbitrary functions of 

),,( 1 n
xxx K= .  Since the given PDE system R{x;u} is a 

determined system, it follows that (7) is a symmetry of R{x;u} if 

and only if   .0
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Thus each local symmetry of the underdetermined potential 

system S{x;u,v} (arising from a divergence-type conservation law) 

yields only a local symmetry of the given determined PDE system 

R{x;u}. 

 

Hence if potential system S{x;u,v}, arising from a divergence-type 

conservation law of a given PDE system R{x;u},  is used to obtain 

a potential symmetry of R{x;u},  it is necessary to augment 

S{x;u,v} with auxiliary constraint equations (gauge constraints) to 

obtain a determined potential system. 

 

A gauge constraint has the property that the augmented potential 

system remains equivalent to the given PDE system R{x;u}. 
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Examples of gauges (relating potential variables):  

 

• divergence (Coulomb) gauge  

 

• spatial gauge 

 

• Poincaré gauge 

 

• Lorentz gauge (a form of divergence gauge) 

 

• Cronstrom gauge (a form of Poincaré gauge) 
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Example 

Consider the wave equation R{x;u}: 

 

0=−− yyxxtt uuu             (8) 

 

which is already a divergence-type CL 

 

Correspondingly, we have vector potential ),,( 210
vvvv =  and 

underdetermined potential system S{x;u,v}: 
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Now consider the augmented equivalent constrained system 

obtained by appending the Lorentz gauge 

 

0210 =−− yxt vvv             (10) 

 

to (9) to obtain the determined potential system 
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0210 =−− yxt vvv .            (11) 
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One can show that the determined potential system (11) has six 

point symmetries that yield nonlocal symmetries as well as 

nonlocal CLs of the wave equation (8), eg: 
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One can show that the other listed gauges yield no nonlocal 

symmetries from point symmetries of the corresponding 

determined potential systems. 
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In the multidimensional situation ( 3≥n  independent variables), 

there are three known ways (with known examples) to seek 

nonlocal symmetries of a given PDE system R{x;u} through 

seeking local symmetries of an equivalent nonlocally related PDE 

system: 

 

• Potential systems arising from a divergence-type conservation 

laws (of degree )11: −≤< nrr  augmented with gauge 

constraints to yield a determined potential system   

 

• Determined potential systems arising from curl-type 

conservation laws (of degree 1) 

 

• Determined nonlocally related subsystems 
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In the case of three independent variables (n = 3), two types of CLs 

arise: 

 

• Degree 2 CLs (divergence-type CL) 

 

• Degree 1 CLs (curl-type CL). 

 

Potential systems arising from lower degree CLs )1( −< nr  

essentially correspond to particular gauge constraints for 

underdetermined potential systems arising from divergence-type 

CLs  
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Examples illustrating the three types of nonlocal symmetries that 

can arise as described above appear in the following references: 

 

1. Anco and B, Nonlocal symmetries and nonlocal conservation 

laws of Maxwell’s equations, J. Math. Phys. 38 (1997), 3508-

3532 

2. Anco and The, Symmetries, conservation laws, and 

cohomology of Maxwell’s equations using potentials, Acta 

Appl. Math. 89 (2005), 1-52. 

3. Cheviakov and B, Multidimensional partial differential 

equation systems: Generating new systems via conservation 

laws, potentials, gauges, subsystems, J. Math. Phys. 51 (2010), 

103521. 



 15

4. Cheviakov and B, Multidimensional partial differential 

equation systems: Nonlocal symmetries, nonlocal conservation 

laws, exact solutions, J. Math. Phys. 51 (2010), 103522. 

5. Bogoyavlenskij, Infinite symmetries of the ideal MHD 

equilibrium equations, Phys. Lett. A, 291 (2001), 256-264. 

6. Bogoyavlenskij, Symmetry transforms for ideal 

magnetohydrodynamics equilibria, Phys. Rev. E, 66 (2002), 

056410. 

7. B, Cheviakov and Anco, Applications of Symmetry Methods to 

Partial Differential Equations Springer (2010) [Section 5.3] 
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Some open problems in multidimensions 

 
• Find examples of nonlinear PDE systems for which nonlocal 

symmetries arise as local symmetries of a potential system 

following from divergence-type CLs appended with gauge 

constraints 

 

• Find efficient procedures to obtain “useful” gauge constraints 

(eg, yielding nonlocal symmetries/nonlocal CLs) for potential 

systems arising from divergence-type CLs (as well as for 

underdetermined potential systems arising from lower-degree 

CLs).  Can one rule out specific families of gauges for 

particular classes of potential systems? 
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• Find further examples of lower-degree CLs for PDE systems 

of physical importance. [CLs of degree one (curl-type) are of 

particular interest since corresponding potential systems are 

determined.]  Examples to-date suggest that lower-degree 

CLs are rare and only arise when a given PDE system has a 

special geometrical structure.  Of course, divergence-type 

CLs are common! 

 

• Find useful subsystems and useful means of obtaining 

subsystems (including the two-dimensional case).  Progress 

has been made in this direction. 


