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Quad graph equations
A quad graph equation can be defined as

Q(un,m, un+1,m, un,m+1, un+1,m+1) = 0. (1)

Q is defined function,
n,m ∈ Z are ”‘independent”’ variables,
u : Z2 → C is ”‘dependent”’ variable or unknown function. Shift
operators

Tng(n,m) = g(n + 1,m), Tmg(n,m) = g(n,m + 1)

Example: Equation

un+1,m+1 − un,m+1 − un+1,m + un,m = 0

has a common solution

un,m = α(n) + β(m),

where α, β : Z→ C are arbitrary functions.



Comparing quad graph equations with hyperbolic one
uxy = f (u, ux , uy ) un+1,m+1 = f (un,m, un+1,m, un,m+1)

Dy = d
dy , Tng(n,m) = g(n + 1,m),

Dx = d
dx Tmg(n,m) = g(n,m + 1)

Darboux integrable equations
uxy = eu un+1,m+1un,m − un+1,mun,m+1 = 1

W1 = uxx − u2
x/2, DyW1 = 0 W1 =

un+1,m+un−1,m

un,m
, (T2 − 1)W1 = 0

W2 = uyy − u2
y/2, DxW2 = 0 W2 =

un,m+1+un,m−1

un,m
, (T1 − 1)W2 = 0

Sin-Gordon type equations un+1,m+1un,m+1 + un+1,mun,m

uxy = sin u +un,mun,m+1 = 0
ut = uxxx + u3

x/2 un,m,t =
un+1,mun,m
un−1,m

uτ = uyyy + u3
y/2 un,m,τ =

un,mun,m−1

un,m+1−un,m−1

Tzitzeica equation (u0,0 + u1,1)u0,1u1,0 + 1 = 0
uxy = eu − e−2u Mikhailov&Xenitidis 13
ut = uxxxxx + . . . ut = Ψ(un−2,m, . . . , un+2,m)
uτ = uyyyyy + . . . uτ = Φ(un,m−2, . . . , un,m+2)



In [Garifullin, Yamilov 12] the equation has been found

un+1,m+1(un,m − un,m+1)− un+1,m(un,m + un,m+1) + 2 = 0. (2)

This equation has one of generalized symmetries of the form:

d

dt2
un,m = (−1)n

un,m+1un,m−1 + u2
n,m

un,m+1 + un,m−1
. (3)

d

dt1
un,m = hn,mhn−1,m(anun+2,m − an−1un−2,m), (4)

hn,m = un+1,mun,m − 1, an+2 = an.

The symmetry depends on an arbitrary two-periodic function an
which can be expressed in the form:

an = ã + â(−1)n. (5)

There are here the autonomous particular case an = 1 and the
non-autonomous one an = (−1)n, and they generate all the other
possible subcases as linear combinations. For instance, we can
obtain

an =
1 + (−1)n

2
=

{
0, n = 2k + 1;
1, n = 2k .

(6)



For constructing L− A for eq. (2) we use the fact that the
symmetry (4) is equivalent to a known system of two equations.
That is eq.(3.13) of [Tsuchida 02] and up to addition of a point
symmetry and up to point transformation

vk → (−1)kvk , wk → (−1)k+1wk ,

it can be written in the form

d

dt1
vk = (αvk+1 − βvk−1)(vkwk − 1)(vkwk+1 − 1)

d

dt1
wk = (βwk+1 − αwk−1)(vkwk − 1)(vk−1wk − 1).

(7)

The system (7) is integrable discretization of one of derivative
nonlinear Schrödinger equations, introduced in [Ablowitz, Ramani,
Segur 80, Gerdjikov and Ivanov 83].
Eq. (4) and the system (7) are related by

vk = u2k,m, wk = u2k−1,m, α = −a2k , β = −a2k−1. (8)

Using transform (8), we are going to obtain L− A pair for (4),
rewriting a known L− A pair for (7) given in [Tsuchida 02].



L− A pairs
This L− A pair is standard and is given by the following:

TkΦk = UkΦk , Dt1Φk = VkΦk , (9)

where Φk is two-component vector function, Uk ,Vk is 2× 2
matrices depending on spectral parameter, Tk : Tkhk = hk+1.
Using (8), we obtain for eq. (4) an L− A pair of a little bit
different structure:

T 2
n Ψn,m = Nn,mΨn,m, Dt1Ψn,m = An,mΨn,m. (10)

Here Tn is the n−shift, and 2× 2 matrices Nn,m,An,m read:

Nn,m =

(
hn,m(1− λ)− 2λ un+1,m(λ− 1)
−2λun,mhn+1,m hn+1,m(λ− 1)

)
(11)

An,m =


hn−1,m

(
an−1un+1,mun−2,m + an

λ−1
λ+1

)
+an−1

2λ
λ−1

−anun−1,m
λ−1
λ+1

−an−1un+1,m

2λhn−1,m

(
un,man
1+λ +

un−2,man−1

λ−1

) hn,m(anun−1,mun+2,m − an−1)

−anun,mun−1,m
2λ
1+λ


(12)



The compatibility condition for eqs. (10) has in this case the form:

Dt1Nn,m = (T 2
n An,m)Nn,m − Nn,mAn,m, (13)

and this relation is equivalent to eq. (4). Passing to 4× 4 matrices
we can rewrite this L− A pair in the standard form.

Tn

(
Ψn,m

Ψn+1,m

)
=

(
0 E

Nn,m 0

)(
Ψn,m

Ψn+1,m

)
,

Dt1

(
Ψn,m

Ψn+1,m

)
=

(
An,m 0

0 An+1,m

)(
Ψn,m

Ψn+1,m

)
.



As for the second symmetry (3), it is equivalent for any fixed
n ∈ Z up to transformation z̃m = imun,m to well-known equation,
see [Y 06]:

dzm
dt2

=
zm+1zm−1 + z2

m

zm+1 − zm−1
. (14)

For such type of equations there exists linear problem :

TmΨn,m = Mn,mΨn,m, Dt2Ψn,m = Bn,mΨn,m, (15)

with 2× 2 matrices Bn,m(un,m−1, un,m, un,m+1),
Mn,m(un,m, un,m+1) and with the compatibility condition

Dt2Mn,m = (TmBn,m)Mn,m −Mn,mBn,m. (16)

Lax pair for eq. (14) and therefore for (3) can be obtained by
direct calculation, using this ansatz.
First equations of (10,15) constitute Lax pair for discrete equation
(2) if vector-functions Ψn,m are the same and matrices Nn,m, Mn,m

are consistent up to a gauge transformation
M̃n,m = Ω−1n,m+1Mn,mΩn,m and change of the spectral parameter.



However, instead of searching for Ωn,m, we use the known matrix
Nn,m and relation

(T 2
n Mn,m)Nn,m = (TmNn,m)Mn,m (17)

in order to find the correct form of 2× 2 matrix Mn,m:

Mn,m =

(
λ 1−λ

un,m+un,m+1

λ(un,m+1 − un,m)
λ(un,m−un,m+1)
un,m+un,m+1

)
. (18)

Now corresponding matrix Bn,m defining Lax pair for eq. (3) is
constructed by relation (16):

Bn,m =
(−1)n

un,m+1 + un,m−1

 (1− λ)(un,m−1 − un,m) 1− λ

λ(u2
n,m − u2

n,m+1)
λ(un,m + un,m+1)
−(un,m + un,m−1)

 .

(19)
The discrete compatibility condition (17) can be rewritten in
standard form:

(TnM̃n,m)Ñn,m = (TmÑn,m)M̃n,m (20)

in terms of 4× 4 matrices M̃n,m, Ñn,m.



Conservation laws

If we transform vector-function Ψn,m by some matrix Ωn,m:

Ψ̃n,m = Ωn,mΨn,m

then matrices defining L− A pairs (13,16,17) are transformed as
follows:

B̃n,m = Ω−1n,mBn,mΩn,m − Ω−1n,m∂t2Ωn,m,

M̃n,m = Ω−1n,m+1Mn,mΩn,m,

Ñn,m = Ω−1n+2,mNn,mΩn,m,

Ãn,m = Ω−1n,mAn,mΩn,m − Ω−1n,m∂t1Ωn,m.

(21)

We want to find matrix Ωn,m which diagonalize the matrix of
differential operator Bn,m or An,m We follow the formal
diagonalization scheme developed in [Drinfel’d and Sokolov 84] for
partial differential equations.



We are going to use the following Lemma taken from [Drinfel’d
and Sokolov 84]:

Lemma
If the matrix

∂Bn,m

∂λ has different eigenvalues, then there exists
formal series

Ωn,m = Ω∗n,m

E +
∞∑
j=1

λ−jΩ
(−j)
n,m

 ,

where E is unit matrix and Ω
(−j)
n,m , j ≥ 1, are anti-diagonal matrices,

such that matrix B̃n,m of the form:

B̃n,m = λB
(1)
n,m +

∞∑
j=0

λ−jB
(−j)
n,m ,

related to Ωn,m by the first of relations (21), has diagonal

coefficients B
(l)
n,m.



As the matrix
∂Bn,m

∂λ has different eigenvalues, it can be
transformed into the Jordan normal form which will be diagonal.
That can be done by matrix Ω∗n,m of the form

Ω∗n,m =

(
1 1

un,m − un,m−1 un,m + un,m−1

)
. (22)

We obtain the matrix B
(1)
n,m:

B
(1)
n,m =

∂B̃n,m

∂λ
=

(
0 0
0 (−1)n+1

)
. (23)

For calculating matrices Ω
(l)
n,m, B

(l)
n,m we rewrite the first of eqs.

(21) in the form

Ωn,mB̃n,m = Bn,mΩn,m − ∂t2Ωn,m

and collect coefficients at the same powers of λ. A relation at λ1 is
satisfied identically due to the choice of Ω∗n,m. At the other powers
of λ, we obtain some recurrence formulae for the other coefficients
of B̃n,m and Ωn,m, from which those coefficients are found
explicitly.



Using eq. (16) and the formula (23) for
∂B̃n,m

∂λ , we can prove by

induction that matrix M̃n,m is diagonal. From (21) we can find:

M̃n,m = −λun,m+1 + un,m−1
un,m + un,m+1

(
1 0
0 0

)
−(

(un,m+2+un,m+1)un,m−1−un,m(un,m+1+un,m+2)
(un,m+2+un,m)(un,m+un,m+1

0

0
un,m+1−un,m
un,m+un,m+2

)
+ . . . .

Using eq. (17) and the coefficient of M̃n,m at λ, we can prove by

induction that matrix Ñn,m is diagonal. From (21) we can find:

Ñn,m = −λ
(

1 + un+1,mun,m−1 0
0 1− un+1,mun,m+1

)
−

un,m+1 − un,m−1
un,m+1 + un,m−1

(
1 + un+1,mun,m−1 0

0 −1 + un+1,mun,m+1

)
+ . . .

Matrixes M̃n,m, Ñn,m are diagonal and their coefficients are formal
series in powers of λ−1.



Eq. (17) for these matrixes can be rewritten as:

(T 2
n − 1) log M̃n,m = (Tm − 1) log Ñn,m. (24)

Here we suppose that

log

(
α 0
0 β

)
=

(
logα 0

0 log β

)
.

The folowing diagonal elements can be represented as:

(log M̃n,m)1,1 = log λ+
∞∑
j=0

λ−jp
(j)
n,m, (log Ñn,m)1,1 = log λ+

∞∑
j=0

λ−jq
(j)
n,m,

and we obtain an infinite hierarchy of conservation laws:

(T 2
n − 1)p

(j)
n,m = (Tm − 1)q

(j)
n,m, j ≥ 0. (25)

These conservation laws can be expressed in the standard form:

(Tn − 1)pn,m = (Tm − 1)qn,m (26)

as T 2
n − 1 = (Tn − 1)(Tn + 1).



First two conservation laws are given by:

p
(0)
n,m = log

un,m+1 + un,m−1
un,m + un,m+1

,

q
(0)
n,m = log(1 + un+1,mun,m+1);

p
(1)
n,m =

(un,m+1 + un,m+2)(un,m − un,m−1)

(un,m+2 + un,m)(un,m+1 + un,m−1)
,

q
(1)
n,m =

un,m+1 − un,m−1
un,m+1 + un,m−1

.

From second diagonal element we obtain the same in a sense (see
explanation below) conservation laws except for the first step,
where we get:

p̂
(0)
n,m = log

un,m − un,m+1

un,m + un,m+2
,

q̂
(0)
n,m = log(1− un+1,mun,m+1).

All conserved densities p
(j)
n,m of this hierarchy of conservation laws

(25) depend on a finite number of functions:

un,m+k , k ∈ Z. (27)



The matrix An,m (12) has poles at the points λ = ±1, and we can
carry out the formal diagonalization in terms of the formal series in
powers of λ+ 1 or λ− 1. The results will be the same and we
restrict ourselves by the case λ = −1. In this case

Ωn,m =

(
un−1,m 1
−hn−1,m un,m

)(
1 λ+1

2
1−hn,mhn+1,m

un+1,m
+ . . .

λ+1
2 un−3,mhn−1,mhn−2,m + . . . 1

)
,

Ñn,m =

(
2 + (λ+ 1)(hn,mun−1,mun+2,m − hn−1,m − 2) 0
0 − (λ+ 1)hn,mhn+1,m

)
+. . . ,

M̃n,m =

 1− (λ+ 1)
un,m(1+un,m+1un−1,m)

un,m+un,m+1
0

0
un,m+1−un,m
un,m+1+un,m

(
1 + (λ+ 1)

hn−1,mun,m+1

un,m+1+un,m

) +. . . .



At the order (λ+ 1)0 we obtain the conservation law from previous
series and at the orders (λ+ 1)1, (λ+ 1)2 the following
conservation laws:

p̌
(1)
n,m =

2hn−1,mun,m+1

un,m+1 + un,m
,

q̌
(1)
n,m =un−1,m(un+2,mhn,m − un,m).

p̌
(2)
n,m =4hn−1,m

(
hn−1,m(un+2,mhn,m + un,m)

un,m + un,m+1
−

u2
n,mhn−1,m

(un,m + un,m+1)2

)
+4hn−1,m − 4un−1,mun+2,mhn−1,mhn,m,

q̌
(2)
n,m =2un−1,mun+4,mhn,mhn+1,mhn+2,m + (hn−1,mhn+1,m − un−1,mun+2,m − 1)2

−2hn−1,mhn+1,m − (hn+1,m + 2)2.

In this way, we can construct a hierarchy of conservation laws of

the form (25), where the functions q
(j)
n,m depend on a finite number

of functions
un+k,m, k ∈ Z. (28)



Master symmetry and recursion operator

In this section we discuss the problem of construction of
generalized symmetries for the discrete equation (2). There are
two hierarchies of symmetries in n− and m−directions.
For m−direction case we construct master symmetry. It generate
the hierarchy of generalized symmetries in this direction.
For n−direction case we construct recursion operator.



As it has been said above, the symmetry (3) is equivalent to the
known equation (14) of the Volterra type. Equations similar to
(14) have master symmetries which generate for them generalized
symmetries and conservation laws [Adler Shabat Yamilov 2000].
For such type of master symmetry, we first need to introduce a
generalization of (3) depending on a parameter τ which will be the
time of the master symmetry:

d

dt
(1)
2

un,m =
(−1)n

cosh τ

u2
n,m + un,m−1un,m+1

un,m−1 + un,m+1
+ tanh τ

un,m(un,m+1 − un,m−1)

un,m−1 + un,m+1
= Ψ

(1)
n,m(τ).

(29)

Eq. (29) at τ = 0 is coincides with eq. (3). Corresponding master
symmetry reads:

d

dτ
un,m = mΨ

(1)
n,m(τ) = Ψ∗n,m. (30)



It generates the hierarchy of symmetries

d

dt
(j)
2

un,m = Ψ
(j)
n,m(τ) (31)

by the rule:

Ψ
(j+1)
n,m (τ) =[Ψ∗n,m,Ψ

(j)
n,m] = DτΨ

(j)
n,m(τ)− D

t
(j)
2

Ψ∗n,m

=
∂Ψ

(j)
n,m

∂τ
+
∑
k∈Z

(
Ψ∗n,m+k

∂Ψ
(j)
n,m(τ)

∂un,m+k
−Ψ

(j)
n,m+k

∂Ψ∗n,m
∂un,m+k

)
.

We can put τ = 0 in eqs. (31) and obtain an hierarchy of
generalized symmetries for eq. (3). These equations are
generalized symmetries of discrete equation (2) too.
For example, for j = 2, τ = 0:

d

dt
(2)
2

un,m =
(un,m+2 − un,m−2)(u2

n,m+1 − u2
n,m)(u2

n,m − u2
n,m−1)

(un,m + un,m−2)(un,m+1 + un,m−1)2(un,m+2 + un,m).

It can be checked by direct calculation that this equation is
compatible not only with (3) but also with discrete equation (2).



In case of n-direction we provide the construction of generalized
symmetries by using a recursion operator. Eq. (4) is related to the
system (7), for which a recursion operator has been constructed by
Mikhailov and his PhD student. Using the relation (8), we just
rewrite that operator in the scalar form suitable for eq. (4).
It is convenient in this case to construct the recursion operator R
in the form

R = H ◦ S , (32)

where H is a Hamiltonian operator and S is a symplectic one.
These operators read:

S = (−1)n
(

1

hn,m
Tn +

1

hn−1,m
T−1n

)
, (33)

H =hn,mhn−1,m(cnun+2,m − cn−1un−2,m)(Tn − 1)−1(−1)nun,m

+ (−1)nun,mTn(Tn − 1)−1hn,mhn−1,m(cnun+2,m − cn−1un−2,m)

− (−1)nhn−1,mhn,m(cnhn+1,mTn + cn−1hn−2,mT−1n ),

(34)

where cn is arbitrary two-periodic n-dependent function.



These operators satisfy the following equations

dS

dt1
+ S ◦ f ∗n,m + f ∗⊥n,m ◦ S = 0,

dH

dt1
= f ∗n,m ◦ H + H ◦ f ∗⊥n,m.

(35)

Here operators f ∗n,m, f ∗⊥n,m are expressed in terms of the right hand
side fn,m of eq. (4):

d

dt1
un,m = fn,m. (36)

The discrete Frechet derivative f ∗n,m of fn,m is given by

f ∗n,m =
2∑

k=−2

∂fn,m
∂un+k,m

T k
n ,

coressponding to f ∗n,m adjoint operator f ∗⊥n,m is defined by

f ∗⊥n,m =
2∑

k=−2

∂fn+k,m

∂un,m
T k
n .



From (35) it follows that R = H ◦ S satisfies the following Lax
equation

dR

dt1
= [f ∗n,m,R], (37)

where [A,B] = A ◦ B − B ◦ A. All these formulae are standard and
can be found e.g. in [Y 06].
The operator R satisfying (37) allows one to construct
conservation laws and generalized symmetries for eq. (4). In
particular, eq. (37) implies that equations

∂

∂t
(k)
1

un,m = Rk−1(fn,m) = f
(k)
n,m, k ≥ 2, (38)

are generalized symmetries of (4,36). The case k = 1 corresponds
to eq. (36) itself. For example

f
(2)
n,m =f̂

(2)
n,m − (cn + cn−1)fn,m + (cnan−1 − cn−1an)(−1)nun,m,

f̂
(2)
n,m =hn,mhn−1,m(bnhn+1,mhn+2,mun+4,m − bn−1hn−2,mhn−3,mun−4,m

+ un,m(bnun+2,mhn−2,mun−3,m − bn−1un−2,mhn+1,mun+3,m)

+ (un−1,mhn,m − un+1,m)(bnu2
n+2,m − bn−1u2

n−2,m)

− un,m(bnun−1,mun+2,m − bn−1un+1,mun−2,m)),

(39)

where bn = ancn. It can be checked that the symmetry given by
eq. (39) is a generalized symmetry of the discrete equation (2) too.



The formula (38) allows one to construct symmetries of the form:

∂

∂t
(k)
1

un,m = f
(k)
n,m(un+2k,m, un+2k−1,m, . . . , un−2k+1,m, un−2k,m),

which have even orders 2k . In [GY 12] it has been shown that the
symmetry of the first order does not exist. Probably there are no
generalized symmetries of odd orders in this case.
We can see that generalized symmetries constructed for eqs. (4)
and (2) depend on arbitrary two-periodic n-dependent functions.
The same is true the Hamiltonian and recursion operators. Such
picture is unusual for scalar differential-difference equations like (4)
and probably appears for the first time. From the viewpoint of
systems similar to the Tsuchida system (7), this is the case of
relativistic Toda type equations, where symmetries and operators
depend on two parameters. Such properties of symmetries are
discussed in [Adler Shabat Yamilov 2000] and the case of operators
is discussed in [Yamilov 2007].



Hyperbolic systems

Here we derive some hyperbolic systems of equations together with
their L− A pairs from symmetries of the discrete equation (2).
At first we consider two compatible symmetries of the form (4)
with an = χn and an = χn−1, where χn = (1 + (−1)n)/2 :

∂xun,m = hn,mhn−1,m(χnun+2,m − χn−1un−2,m),

∂yun,m = hn,mhn−1,m(χn−1un+2,m − χnun−2,m).
(40)

We can obtain from (10,12) the following system of linear
equations

DxΨn,m = A
(1)
n,mΨn,m, DyΨn,m = A

(2)
n,mΨn,m,

where A
(1)
n,m is An,m with an = χn and A

(2)
n,m is An,m with

an = χn−1, which is compatible in virtue of the system (40).



Then we modify the matrices A
(1)
n,m and A

(2)
n,m, expressing the

functions un±2,m via un,m, un±1,m and ∂xun,m or ∂yun,m. We can
do that by using the following consequences of (40):

χnun+2,m =
χn∂xun,m

hn,mhn−1,m
, χn−1un−2,m = −χn−1∂xun,m

hn,mhn−1,m
,

χn−1un+2,m =
χn−1∂yun,m

hn,mhn−1,m
, χnun−2,m = − χn∂yun,m

hn,mhn−1,m
.

(41)

To avoid an explicit dependence on n, we pass to odd or even
values of n. Let n = 2k − 1, and let us introduce the notations:

p = u2k−1,m, q = u2k,m, r = u2k−2,m. (42)

Then the matrices take the form:

A(1) =

(
qpx
1−pq + 2λ

λ−1 −q
2λpx

(λ−1)(1−pq) 1− pq

)
, (43)

A(2) =

(
(λ−1)(pr−1)

1+λ
(1−λ)r
1+λ

2λp(pr−1)
1+λ

rpy
pr−1 −

2λpr
1+λ

)
.



Corresponding linear equations can be rewritten in the form

DxΨ = A(1)Ψ, DyΨ = A(2)Ψ,

and their compatibility condition reads:

DxA(2) − DyA(1) = [A(1),A(2)].

This matrix equation is equivalent to the following hyperbolic
system:

∂2 log p

∂x∂y
+

pxpy

p2(pq − 1)(pr − 1)
+ (pq − 1)(pr − 1) = 0,

(pr − 1)qy + qrpy − r(pq − 1)(pr − 1) = 0,

(pq − 1)rx + qrpx + q(pq − 1)(pr − 1) = 0.

(44)

So we have derived an integrable system of three hyperbolic
equations together with its L− A pair. If un,m(x , y) is a common
solution of eqs. (40), then (42) is a solution of this system for any
k ,m. The system (44) can be derived directly from eqs. (40)
without using their L− A pairs.
In the case n = 2k we obtain the same hyperbolic system up to the
transformation x ↔ y .



In both case the first equation of (44) can be written in the form:

∂2 log un,m

∂x∂y
+

∂xun,m∂yun,m

u2
n,m(un,mun−1,m − 1)(un,mun+1,m − 1)

+(un,mun−1,m − 1)(un,mun+1,m − 1) = 0,

(45)

and this is a 2 + 1-dimensional lattice equation similar to
two-dimensional Toda lattice. Any common solution un,m(x , y) of
eqs. (40) provide a particular solution of the lattice (45). The
problem whether this lattice equation (45) is integrable remains
open.



Let us now consider the following two symmetries:

∂xun,m = hn,mhn−1,m(χnun+2,m − χn−1un−2,m),

∂zun,m = (−1)n
u2
n,m + un,m+1un,m−1

un,m+1 + un,m−1
,

(46)

which are compatible on solutions of the discrete eq. (2).
Corresponding auxiliary linear problem reads:

DxΨn,m = A
(1)
n,mΨn,m, DzΨn,m = Bn,mΨn,m,

where A
(1)
n,m is defined above, while Bn,m is given by (19).

The matrix A
(1)
n,m is modified by using the same formulae (41), and

in the matrix Bn,m we exclude un,m−1 by using the second of eqs.
(46). To avoid an explicit dependence on n, we pass to n = 2k − 1
and introduce the notations:

p = u2k−1,m, q = u2k,m, r = u2k−1,m+1. (47)



As a result we obtain the matrix A(1) given by (43) and the
following matrix B :

B =
1

p − r

(
(λ− 1)(pz + p) (1−λ)(pz+r)

p+r

λ(p + r)(pz + p) (p−r)(pz−p)
p+r − λ(pz + r)

)
.

In this case we have the matrix relation

DxB − DzA(1) = [A(1),B]. (48)

It can be checked that (48) is equivalent to the following
hyperbolic system:

∂2 log p

∂x∂z
+

(pz − p)(p − r)px

p2(p + r)(pq − 1)
+

(pz + p)(p + r)(pq − 1)

(p − r)p
= 0,

(p2 − r2)qz − 2(qr − 1)pz − q(p2 + r2) + 2r = 0,

(pq − 1)rx − (qr − 1)px − (p + r)(pq − 1)(qr − 1) = 0.

(49)

As we can choose the odd or even n and as we can exclude un,m+1

instead of un,m−1 in Bn,m, we are led here to four different
hyperbolic systems. However, all these systems are equivalent up
to some simple point transformations.



Thank You for Attention
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