Integrable Discretisations for a Class of NLS Equations on Grassmann Algebras

Georgi Grahovski

Department of Applied Mathematics, University of Leeds, UK and
Institute for Nuclear Research and Nuclear Energy, BAS, Sofia, Bulgaria

E-mail: G.Grahovski@leeds.ac.uk grah@inrne.bas.bg
7 June 2013
"Geometry, Integrability and Quantisation - XV", Varna (Bulgaria)

Based on a joint work with Alexander V. Mikhailov (Univ. of Leeds):

- GGG, A. V. Mikhailov - E-print: arXiv:1303. 1853
(1) Introduction
(2) Preliminaries: Grassmann algebras and Lax representation
(3) Darboux transformations for the Lax operator

4) Darboux transforms and discretisation
(5) Conclusions

Motivation

- Noncommutative extensions of integrable equations: KdV, NLS, sin-Gordon, the KP equation, the Hirota-Miwa equation, two-dimensional Toda lattice equation and AKNS hierarchy.
B B. A. Kupershmidt, KP or mKP: Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems, Math. Surv. and Monogr. 78, AMS Providence, RI (2000).
- Supersymmetric systems - particular examples of noncommutative integrable systems.
- Perhaps the best known example of such equation is the Manin-Radul super-KdV equation.
Yu. I. Manin and A. O. Radul, Commun. Math. Phys. 98 (1985), 65-77.
- Soliton solutions for the Manin-Radul super-KdV equation \rightarrow Darboux transformations.
- The theory of Darboux transformations was boosted by the dressing method.

Darboux Transformations and Dscretisations

- Darboux transformations also play a role in constructing integrable discretizations of integrable equations.
- The Bianchi commutativity for Bäcklund-Darboux transformations is also known as a principle for nonlinear superposition.
\square D. Levi, J. Phys. A 14 (1981) 1083-1098.
- The classifications of elementary Darboux transforms can be used as a tool to classify discrete systems related to a given Lax operator. These discrete systems will have Lax pairs provided by the set of two consistent Darboux transformations.
- The corresponding Bäcklund transformations will represent symmetries of the discrete (difference systems).

Noncommutative NLS equations

- osp(1|2)-invariant SUSY NLS models:

$$
\begin{aligned}
\mathrm{i} u_{t}+u_{x x}-2 u^{\dagger} u u-\Psi^{\dagger} \Psi u+\mathrm{i} \Psi \Psi_{x} & =0 \\
\mathrm{i} \Psi_{t}+\Psi_{x x}-u^{\dagger} u \Psi+\mathrm{i}\left(2 u \Psi_{x}^{\dagger}+\Psi^{\dagger} u_{x}\right) & =0
\end{aligned}
$$

國 Kulish P. P., Quantum osp(1|2)-invariant nonlinear Schrödinger equation, ICTP Preprint IC/85/39, Trieste (1985).

- u, Ψ - smooth functions taking values in an infinite-dimensional Grassmann algebra

$$
\mathcal{G}=\mathcal{G}_{0} \oplus \mathcal{G}_{1} .
$$

- The variables u are called commuting (Bosonic) variables: $u_{1} u_{2}=u_{2} u_{1}, u_{1}, u_{2} \in \mathcal{G}_{0}$
- the variables Ψ are called anti-commuting (Fermionic) ones: $\Psi_{1} \Psi_{2}=-\Psi_{2} \Psi_{1}, \Psi_{1}, \Psi_{2} \in \mathcal{G}_{1}$.

Grassmann Algebras

- Let \mathcal{G} be a \mathbb{Z}_{2}-graded algebra over a field K of characteristics zero.
- \mathcal{G} as a linear space is a direct sum $\mathcal{G}=\mathcal{G}_{0} \oplus \mathcal{G}_{1}$, such that

$$
\mathcal{G}_{i} \mathcal{G}_{j} \subseteq \mathcal{G}_{i+j} \quad(\bmod 2)
$$

- Those elements of \mathcal{G} that belong either to \mathcal{G}_{0} or to \mathcal{G}_{1} are called homogeneous, \mathcal{G}_{0} - even, \mathcal{G}_{1} - odd.
- The parity $|a|$ of an even homogeneous element a is 0 and it is 1 for odd homogeneous elements: $|a b|=|a|+|b|$.
- Grassmann commutativity means that $b a=(-1)^{|a||b|} a b$ for any homogenous elements a and b. In particular, $a_{1}^{2}=0$, for all $a_{1} \in \mathcal{G}_{1}$.
F. A. Berezin, Introduction to superanalysis, D. Reidel Publishing, Dordrecht/Boston/Lancaster/Tokyo (1987).
D. A. Leites (ed), Seminar on Supersymmetry, Independent University Press, Moscow (2011) [in Russian].

Grassmann NLS equation: Lax pair

- Consider a Lax operator of the form

$$
L=\partial_{x}+U-\lambda h,
$$

- the matrix U has entries in a Grassmann algebra:

$$
U=\left(\begin{array}{ccc}
0 & \psi & 2 q \\
-\varkappa & 0 & \zeta \\
2 p & \phi & 0
\end{array}\right), \quad h=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

- p and q are even elements of \mathcal{G},
ζ, \varkappa, ϕ and ψ-odd homogeneous elements; $\lambda \in \mathbb{C}$ - spectral parameter (even variable).
- We will be using the natural grading $U_{i j} \in \mathcal{G}_{i+j}(\bmod 2)$.

Grassmann NLS equation: Zero Curvature Representation

- The zero curvature condition $[L, A]=0$ gives:

$$
\begin{aligned}
q_{t} & =-q_{x x}+\psi_{x} \zeta-\psi \zeta_{x}-2 q(\psi \varkappa-\phi \zeta)+8 q^{2} p \\
p_{t} & =p_{x x}+\phi_{x} \varkappa-\phi \varkappa_{x}+2 p(\psi \varkappa-\phi \zeta)-8 p^{2} q \\
\psi_{t} & =\psi_{x x}-q_{x} \phi-2 q \phi_{x}+2 p q \psi+\psi \phi \zeta \\
\zeta_{t} & =\zeta_{x x}-q_{x} \varkappa-2 q \varkappa_{x}+2 p q \zeta-\psi \varkappa \zeta \\
\varkappa_{t} & =-\varkappa_{x x}+p_{x} \zeta+2 p \zeta_{x}+2 p q \varkappa-\phi \varkappa \zeta \\
\phi_{t} & =-\phi_{x x}+p_{x} \psi+2 p \psi_{x}+2 p q \phi+\psi \phi \varkappa
\end{aligned}
$$

- The second Lax operator A is of the form:

$$
V_{0}=\operatorname{ad}_{h}^{-1} U_{x}+\left(\begin{array}{ccc}
4 p q-2 \psi \varkappa & 0 & 0 \\
0 & -4 p q-2 \phi \zeta & 0 \\
0 & 0 & 2(\phi \zeta \text { UNiUERSITY OF LEEDS }
\end{array}\right) .
$$

Grassmann NLS equation: reductions and integrals of motion

- The reduction $\psi=\zeta=\phi^{\dagger}=\varkappa^{\dagger}$ and $p=q^{\dagger}$ leads to a system which after a re-scaling and a point transformation $t \rightarrow \mathrm{i} t, x \rightarrow \mathrm{i} x$ leads to the Kulish model.
- It can be shown that our Grassmann NLS model is a completely integrable Hamiltonian system.
- The first three constants of motion are of the form:

$$
\begin{aligned}
& \mathcal{N}=\int_{-\infty}^{\infty} \mathrm{d} x\{4 p q+\phi \psi+\varkappa \zeta\} ; \\
& \mathcal{P}=\int_{-\infty}^{\infty} \mathrm{d} x\left\{-2 p q-\phi \psi_{x}-\varkappa \zeta_{x}-\phi_{x} \psi-\varkappa_{x} \zeta\right\} ; \\
& \mathcal{H}=\int_{-\infty}^{\infty} \mathrm{d} x\left\{2 p_{x} q_{x}+\phi_{x} \psi_{x}+\varkappa_{x} \zeta_{x}+2 p^{2} q^{2}+p q(\phi \psi+\varkappa \zeta)\right. \\
& \left.-q\left(\phi \phi_{x}+\varkappa \varkappa_{x}\right)-p\left(\psi \psi_{x}+\zeta \zeta_{x}\right)\right\} .
\end{aligned}
$$

- \mathcal{N} - "total number of particles"; \mathcal{P} - "total momentum"; \mathcal{H} - the Hamiltonian of the system.

Darboux transformations

- By a Darboux transformation we understand a map

$$
L \rightarrow L_{1}=M L M^{-1}
$$

where the Lax operator L_{1} has an updated potential U_{1} :

$$
L_{1}=\partial_{x}+U_{1}-\lambda h, \quad U_{1}=\left(\begin{array}{ccc}
0 & \psi_{1} & 2 q_{1} \\
-\varkappa_{1} & 0 & \zeta_{1} \\
2 p_{1} & \phi_{1} & 0
\end{array}\right)
$$

- Here M and $M_{i j} \in \mathcal{G}_{i+j}(\bmod 2)$ are rational functions of λ and differentiable functions of x.
- Dressing equation: $M_{x}+U_{1} M-M U=0$.
- A composition of Darboux transformations is again a Darboux transformation with more complicated rational dependence in UNIVERITY $_{\lambda}$ Of IEEDS

Elementary Darboux transformations

- We are interested in elementary Darboux transformations which cannot be decomposed further. Thus, we restrict ourselves by linear in λ Darboux matrices:

$$
M=M_{0}+\lambda M_{1} .
$$

- The substitution of M in Dressing equation results in:

$$
\begin{aligned}
{\left[h, M_{1}\right] } & =0 \\
M_{1, x}+U_{1} M_{1}-M_{1} U+\left[h, M_{0}\right] & =0 \\
M_{0, x}+U_{1} M_{0}-M_{0} U & =0
\end{aligned}
$$

- Let us consider the simplest case of λ - independent Darboux transformations ($M_{1}=0$).
From the second eqn. above, it follows that M_{0} is a diagonal matrix. The third eqn, implies that M_{0} is a constant diagonal matrix, and that $U_{1} M_{0}=M_{0} U$. The later is nothing but a Lie point symmetry transformation, which does not lead to non-trivial resulds.

Elementary Darboux transformations ... (cont'd)

- If $M_{1} \neq 0$, then it follows that M_{1} is a diagonal matrix: $M_{1}=\operatorname{diag}(\alpha, \beta, \gamma)$.
- Furthermore, the second equation implies that α, β and γ are constants.
- We will describe the elementary Darboux transformations for the special case when the matrix M_{1} has rank one and $\alpha=1, \beta=0$, $\gamma=0$. In this case it followsthat $M_{0,22}$ and $M_{0,33}$ are constants.
- Further analysis shows that there are two essentially different cases:
(1) $M_{0,22}=0$ and $M_{0,33}=1$; (2) $M_{0,22}=M_{0,33}=1$.

For a sake of convenience, from now on, we will denote the matrix element M_{11} by F.

Case 1: $M_{22}=1$ and $M_{33}=0$

- The λ-term of the compatibility condition gives:

$$
M_{12}=\psi, \quad M_{21}=-\varkappa_{1}, \quad M_{13}=p, \quad M_{31}=p_{1}, \quad M_{23}=M_{32}=0 .
$$

- Therefore, the Darboux matrix M takes the form

$$
M=\left(\begin{array}{ccc}
F+\lambda & \psi & q \\
-\varkappa_{1} & 1 & 0 \\
p_{1} & 0 & 0
\end{array}\right) .
$$

- The λ-independent term leads to the set of algebraic constrains:

$$
\phi_{1}=-p_{1} \psi, \quad \zeta=-q \varkappa_{1}, \quad p_{1} q=1 .
$$

Case 1: $M_{22}=1$ and $M_{33}=0 \ldots\left(\right.$ cont'd $\left.^{\prime}\right)$

- Dressing chain of equations:

$$
\begin{aligned}
& q_{x}=-\left(\psi \varkappa_{1}+2 F\right) q, \quad F_{x}=2\left(\frac{q_{1}}{q}-\frac{q}{q_{-1}}\right)+\psi \varkappa-\psi_{1} \varkappa_{1}, \\
& \psi_{x}=\psi_{1}-\psi F+\frac{q}{q_{-1}} \psi_{-1}, \quad \varkappa_{1, x}=-\varkappa+\varkappa_{1} F+\frac{q_{1}}{q} \varkappa_{2} .
\end{aligned}
$$

- Introduce new variables v, ϕ and ψ (forward v_{1} and backward v_{-1} shifts) $q=\mathrm{e}^{v}, p=\mathrm{e}^{v_{-1}}, \psi=\eta \mathrm{e}^{v / 2}, \varkappa_{1}=\varphi \mathrm{e}^{-v / 2}$, one can eliminate the function F and cast the dressing chain into:

$$
\begin{aligned}
v_{x x} & =4\left(\mathrm{e}^{v_{1}-v}-\mathrm{e}^{v-v_{-1}}\right)+\left(\varphi \eta_{-1}+\varphi_{-1} \eta\right) \mathrm{e}^{\left(v-v_{-1}\right) / 2} \\
& -\left(\varphi \eta_{1}+\varphi_{1} \eta\right) \mathrm{e}^{\left(v_{1}-v\right) / 2}, \\
\varphi_{x} & =\varphi_{1} \mathrm{e}^{\left(v_{1}-v\right) / 2}+\varphi_{-1} \mathrm{e}^{\left(v-v_{-1}\right) / 2}, \\
\eta_{x} & =-\eta_{1} \mathrm{e}^{\left(v_{1}-v\right) / 2}-\eta_{-1} \mathrm{e}^{\left(v-v_{-1}\right) / 2} .
\end{aligned}
$$

Case 1: $M_{22}=1$ and $M_{33}=0 \ldots($ cont'd $)$

- The above system is an integrable noncommutative extension of the Toda chain: the reduction $\xi=\eta=0$ leads to the standard Toda chain:

$$
v_{x x}=4 \mathrm{e}^{v_{1}-v}-4 \mathrm{e}^{v-v_{-1}}
$$

- The system also has a Lagrangian formulation with a Lagrangian:

$$
\begin{aligned}
& \mathcal{L}(v, \xi, \eta)=\int \mathrm{d} x \\
& \times\left(\frac{v_{x}^{2}}{2}-4 \mathrm{e}^{v-v_{-1}}+2\left(\varphi \eta_{-1}+\varphi_{-1} \eta\right) \mathrm{e}^{\left(v-v_{-1}\right) / 2}+\varphi \eta_{x}-\varphi_{x} \eta\right) .
\end{aligned}
$$

Case 2: $M_{22}=1, M_{33}=1$

- Here we have $M_{12}=\psi, M_{21}=-\varkappa_{1}, M_{13}=q, M_{31}=p_{1}$ and $M_{23}=M_{32}=0$.
- Due to Abel's theorem, the Wronskian does not depend on x (since the potential U is a traceless matrix) and thus

$$
\left(F-p_{1} q+\psi \varkappa_{1}\right)_{x}=0 \quad \rightarrow \quad F=p_{1} q-\psi \varkappa_{1}+\mu .
$$

- As a result, the Darboux matrix M takes the form

$$
M=\left(\begin{array}{ccc}
\mu+p_{1} q-\psi \varkappa_{1}+\lambda & \psi & q \\
-\varkappa_{1} & 1 & 0 \\
p_{1} & 0 & 1
\end{array}\right) .
$$

- Algebraic constraints:

$$
(1-T) \zeta=\left(q \varkappa_{1}\right), \quad(1-T) \phi=\left(p_{1} \psi\right)_{\text {UNIVERSITY OF LEEDS }}
$$

Case 2: $M_{22}=1, M_{33}=1 \ldots\left(\right.$ cont'd $\left.^{\prime}\right)$

- Dressing chain equations:

$$
\begin{aligned}
& q_{x}=2 q\left(\psi_{\varkappa}-p_{1} q-\mu\right)+2 q_{1}-(1-T)^{-1}\left(q \varkappa_{1}\right) \psi \\
& p_{x}=-2 p\left(\psi_{-1} \varkappa-p q_{-1}-\mu\right)-2 p_{-1}-(1-T)^{-1}\left(p_{1} \psi\right) \varkappa \\
& \psi_{x}=\psi_{1}-q(1-T)^{-1}\left(p_{1} \psi\right)-\left(\mu+p_{1} q\right) \psi \\
& \varkappa_{x}=-\varkappa_{-1}-p(1-T)^{-1}\left(q \varkappa_{1}\right)+\left(\mu+p q_{-1}\right) \varkappa
\end{aligned}
$$

- Here T is the shift operator: $U_{1}=T U=\operatorname{Ad}_{M_{1}} U$.
- The presence of the operator $(1-T)^{-1}$ in the dressing chain leads to a non-local dressing chain.
- It can be rewritten into a local form but will lead to non-evolutionary dressing chain equations for the odd variables.
- In the Bosonic limit, it reduces to the standard NLS dressing chain:

$$
q_{x}=-2 q\left(p_{1} q+\mu\right)+2 q_{1}, \quad p_{1, x}=2 p_{1}\left(p_{1} q+\mu\right) \overline{U_{N I V}} 2 \text { 2RSITY OF LEDS }^{\text {fin }}
$$

Bianchi Commutativity

- Discrete systems appear as consistency conditions of two Darboux matrices M and N around a square (the Bianchi commutativity).
- Introduce lattice variables $(k, m)(k, m \in \mathbb{Z})$: generic even $v_{k, m}$ and odd variables $\tau_{k, m}$ are defined on an integer lattice $\mathbb{Z} \times \mathbb{Z}$.
- Introduce the shift operators S and T. For example

$$
S q_{k, m}=q_{k+1, m}, \quad T \zeta_{k, m}=\tau_{k, m+1}, \quad T S=S T
$$

- Consider two Darboux transformations $M(\lambda)$ and $N(\lambda)$. On the space of fundamental solutions $\{\Psi\}$ of $L(\lambda)$ they act as follows:

$$
S[\Psi(\lambda)]=M(\lambda) \Psi(\lambda), \quad T[\Psi(\lambda)]=N(\lambda) \Psi(\lambda) .
$$

Bianchi Commutativity ... (cont'd)

- The compatibility of the
 transformations
$[S, T]=0$ implies $S[N(\lambda)] M(\lambda)=T[M(\lambda)] N(\lambda)$,
and leads to a set of algebraic relations between $U, S[U], T[U]$ and $T S[U]$.
- In this setting, Darboux transformations can be considered as a discrete Lax pair associated with $L(\lambda)$.
- The system (coming from Bianchi commutativity) is an integrable discretisation of the hierarchy of $L(\lambda)$.

Bianchi Commutativity ... (cont'd)

- The differential equations for the Bäcklund transformation, coming from the derivation of the Darboux matrices can be considered as symmetries of the difference system.
- We will describe the set of integrable discretisations obtained from imposing a consistency of two elementary Darboux transformations.

Case A

- Consider two Darboux matrices of the type described in case 2:

$$
\begin{aligned}
& M=\left(\begin{array}{ccc}
\mu+p_{10} q-\psi \varkappa_{10}+\lambda & \psi & q \\
-\varkappa_{10} & 1 & 0 \\
p_{10} & 0 & 1
\end{array}\right) ; \\
& N=\left(\begin{array}{ccc}
\nu+p_{01} q-\psi \varkappa_{01}+\lambda & \psi & q \\
-\varkappa_{01} & 1 & 0 \\
p_{01} & 0 & 1
\end{array}\right),
\end{aligned}
$$

The consistency condition leads to:

$$
\begin{aligned}
p_{01}-p_{10} & =\frac{\mu-\nu}{\left(1+p_{11} q\right)^{2}}\left(1+p_{11} q+\psi \varkappa_{11}\right) p_{11} \\
q_{01}-q_{10} & =-\frac{\mu-\nu}{\left(1+p_{11} q\right)^{2}}\left(1+p_{11} q+\psi \varkappa_{11}\right) q \\
\varkappa_{01}-\varkappa_{10} & =\frac{\mu-\nu}{1+p_{11} q} \varkappa_{11}, \quad \psi_{01}-\psi_{10}=-\frac{\mu-\nu}{1 \text { UUNMEQSITY OF LEEDS }} \psi
\end{aligned}
$$

Case A ... (cont'd)

- If all odd variables vanish, this system of difference equations reduced to a familiar two-component system:

$$
p_{01}-p_{10}=\frac{(\mu-\nu) p_{11}}{1+p_{11} q}, \quad q_{01}-q_{10}=-\frac{(\mu-\nu) q}{1+p_{11} q}
$$

圊 V. E. Adler, Physica D 73 (1994) 335-351.
围 V. E. Adler. Phys. Lett. A 190 (1994) 53-58.

- One can pose an initial value problem with initial conditions on a staircase. For a given set of initial data on the staircase, a solution of the difference system can be found recursively.

Case A ... (cont'd)

- One can define the Elimination map and express any variable on the lattice in terms of a finite subset of the initial set of variables on the staircase.
(A. V. Mikhailov, J. P. Wang and P. Xenitidis, Nonlinearity 24 (2011) 2079-2097.
- It is clear, that these expressions are rational functions of the even initial variables and multi-linear function of the odd ones.

Case B

- Combine two Darboux transformations of types 1 and 2:

$$
M=\left(\begin{array}{ccc}
\mu+p_{10} q-\psi \varkappa_{10}+\lambda & \psi & q \\
-\varkappa_{10} & 1 & 0 \\
p_{10} & 0 & 1
\end{array}\right), \quad N=\left(\begin{array}{ccc}
F+\lambda & \psi & q \\
-\varkappa_{01} & 1 & 0 \\
p_{01} & 0 & 0
\end{array}\right) ;
$$

- The Bianchi commutativity gives the quadrilateral system:

$$
\begin{aligned}
p_{01} & =\left(\mu-F+p_{10} q-\psi \varkappa_{10}\right) p_{11} \\
q_{10} & =\left(\mu-F_{10}+p_{11} q_{01}-\psi_{01} \varkappa_{11}\right) q \\
\psi_{01}-\psi_{10} & =-\left(\mu-F_{10}+p_{11} q_{01}-\psi_{01} \varkappa_{11}\right) \psi \\
\varkappa_{01}-\varkappa_{10} & =\left(\mu-F+p_{10} q-\psi \varkappa_{10}\right) \varkappa_{11} \\
F\left(\mu+p_{11} q_{01}-\psi_{01} \varkappa_{11}\right) & =F_{10}\left(\mu+p_{10} q-\psi \varkappa_{10}\right) \\
& +p_{10} q_{10}-p_{01} q_{01}-\psi_{10} \varkappa_{10}+\psi_{01} \varkappa_{01},
\end{aligned}
$$

and the condition: $p_{01} q=1$ which enables us to eliminaidyprsity of Leeds

Case B ... (cont'd)

- One can solve the last system with respect to F and its shift F_{10} :

$$
F=\mu-\frac{q_{10}}{q}+\frac{q}{q_{1,-1}}-\psi \varkappa_{10}, \quad F_{10}=\mu-\frac{q_{01}}{q}+\frac{q_{01}}{q_{10}}-\psi_{01} \varkappa_{11} .
$$

- Then, one can eliminate F. The compatibility condition $S(F)=F_{10}$ read:

$$
\begin{array}{r}
\frac{q}{q_{-1,0}}+\frac{q}{q_{1,-1}}-\frac{q_{-1,1}}{q}-\frac{q_{1,0}}{q}+\psi_{-1,1} \xi-\psi \xi_{1,-1}+\mu-\mu_{1}=0 \\
\psi_{1,0}-\psi_{01}=\frac{q_{10}}{q} \psi \\
\xi-\xi_{1,-1}=\frac{q_{10}}{q} \xi_{10}
\end{array}
$$

Here $\xi=\varkappa_{0,1}$.

Case B ... (cont'd)

- After setting $q=e^{v}$, where v is an even variable, one can easily recognize a non-commutative extension of the fully discrete Toda chain:

$$
\begin{array}{r}
\mathrm{e}^{v_{1,-1}-v}+\mathrm{e}^{v_{-1,0}-v}-\mathrm{e}^{v-v_{1,0}}-\mathrm{e}^{v-v_{-1,1}} \\
+\psi \psi_{-1,1} \xi-\psi \xi_{1,-1}+\mu_{1}-\mu=0 \\
\psi_{1,0}-\psi_{01}=\mathrm{e}^{v_{1,0}-v} \psi \\
\xi-\xi_{1,-1}=\mathrm{e}^{v_{1,0}-v} \xi_{10} .
\end{array}
$$

- In the special case when all anti-commuting variables vanish, it reduces to the discrete Toda lattice:

$$
\mathrm{e}^{v_{1,-1}-v}+\mathrm{e}^{v_{-1,0}-v}-\mathrm{e}^{v-v_{1,0}}-\mathrm{e}^{v-v_{-1,1}}+\mu_{1}-\mu=0
$$

Case B ... (cont'd)

- On the lattice each equation can be represented by a graph:

For the commutative Toda lattice one can solve an initial value problem with initial data given on the staircase W_{0} :

$$
\begin{array}{r}
W_{0}=\{(k+n, m-n), \\
(k+n, m-n-1): \\
n \in\{0, \ldots, 2 p\}\} .
\end{array}
$$

Case B ... (cont'd)

- In the case of noncommutative equations one also needs to define boundary odd variables. Taking some $p \in \mathbb{N}$ we define a parallelogram W with boundaries

$$
\begin{aligned}
& W_{1}=\{(k+2 n, m-n),(k+2 n, m-n-p-1) \mid n \in\{0, \ldots, p\}\} \\
& W_{2}=\{(k, m-n) \mid n \in\{0, \ldots, p+1\}\}, \\
& W_{3}=\{(k+2 p, m-n-p) \mid n \in\{0, \ldots, p+1\}\} .
\end{aligned}
$$

- The set of boundary variables $\psi_{k m}^{(0)}$ are defined on $W_{1} \cup W_{2}$ and the boundary variables $\xi_{k m}^{(0)}$ are defined on $W_{1} \cup W_{3}$.
- The variables on the boundary $W_{1} \cup W_{2} \cup W_{3}$ and inside W can be expressed as rational functions of the even variables given on the staircase W_{0} inscribed into the parallelogram W and multi-linear functions of the odd boundary variables.

Case B ... (cont'd)

- Indeed, the system with such initial boundary conditions can be solved by a finite sequence of iterations.
- For the first iteration we set all odd variables inside the parallelogram to zero and find the first approximation of even variables for all points of W.
- Then, using the boundary conditions for odd variables, one can solve the full system to update the values of odd variables inside W.
- Starting from these data, we repeat the sequence of iterations. This sequence will stabilise after a finite number of steps since the solution $\left(q_{k_{1}, m_{1}}, \psi_{k_{1}, m_{1}}, \xi_{k_{1}, m_{1}}\right),\left(k_{1}, m_{1}\right) \in W$ is a multi-linear function of the odd boundary data.

Summary

- We studied integrable difference equations associated with Grassmann extensions of the nonlinear Schrödinger equation.
- We constructed two elementary Darboux transformations. As a result, new Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained.
- We obtained difference integrable systems as a compatibility (Bianchi commutativity) of these Darboux transformations. Such systems can be viewed as Grassmamm generalisations of the difference Toda and NLS equations.
- The osp(1|2)-invariant supersymmetric NLS model of Kulish can be obtained by imposing the reduction $p=q^{\dagger}$ and $\psi=\zeta=\phi^{\dagger}=\varkappa^{\dagger}$.
- Our Darboux transformations is not applicable to the Kulish system, because they do not respect the reduction to $\operatorname{osp}(1 \mid 2)$ superalgebra.

Open problems

The results obtained here can be developed in several directions:

- to study the corresponding Yang-Baxter maps;
- To derive the recursion operators and study the associates multi-Hamiltonian structures;
- This can be generalised to other integrable hierarchies.

Thank you!

G.Grahovski@leeds.ac.uk
grah@inrne.bas.bg

