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1. Preface - 1

• For a completely integrable system, the way of finding the first integrals is not formulated
in general.

• Liouville proved that a system withn degrees of freedom is integrable by quadratures
when there existn independent first integrals in involution (cf. [1]).

• In classical mechanics,a completely integrable systemin the sense of Liouville are called
simply an integrable system.
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1. Preface - 2

• Also, integrable systems were characterized by [2], [3], [4] and [5] papers related to the
recursion operator since 1980 have been written ([5]).

• The integrable system is characterized by the recursion operatorT in the Hamiltonian
dynamical system on the cotangent vector bundleT∗M of a manifoldM.
T is a diagonalizable(1, 1)-tensor field which satisfies certain conditions. In particular,
the recursion operator is written in the following form if we choose an action-angle
variables(J k, φ

k):

T =
∑

k

λk(J k)
(
∂

∂J k
⊗ dJk +

∂

∂φk
⊗ dφk

)
,(∗)

whereλk(J k) is doubly degenerate eigenvalues.

• Functionally independent constants of the motion are obtained by taking each trace ofTk:

Tr(Tk), (k = 1, 2, . . . , n).
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1. Preface - 3

• There are some examples about constructing recursion operators from the viewpoint of
physics;1-dimensional harmoic oscilator, Kepler problem, KdV equation, etc.

• Now, we consider abouta recursion operatorfrom the viewpoint ofgeometry, specifically
for the geodesic flow onn-dimensioal sphereSn case.

The purpose of this talk is:

• Introducing the recursion operator for the geodesic flow onSn that we had obtained,

• Giving an application of the recursion operator for the geodesic flow onSn;
we obtain

• a sequence of Abelian symmetries between Hamiltonian vector fields,
• a sequence of involutive Hamiltonian functions,
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2. Definition
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2. Definition - 1

We introduce endomorphismŝT andŤ induced by a(1, 1)-tensorT given in [5]:

.
Definition (Endomorphisms)
..

......

Let T be a(1, 1)-tensor field on a manifoldM and we writeT：(1, 1)-tensors.t.

T =
n∑

i, j=1

T j

i
dxi ⊗ ∂

∂x j
.

Then we define endomorphismsT̂ andŤ by:

T̂ : TpM ∋ X 7→ T̂X ∈ TpM, T̂X =
n∑

i, j=1

T j

i
Xi ∂

∂x j
,

Ť : T∗pM ∋ α 7→ Ťα ∈ T∗pM, Ťα =
n∑

i, j=1

α jT
j

i
dxi ,

where a vector fieldX and a 1-formα s.t.

X =
n∑

k=1

Xk ∂

∂xk
, α =

n∑
k=1

αkdxk.
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We introduce endomorphismŝT andŤ induced by a(1, 1)-tensorT given in [5]:
.
Definition (Endomorphisms)
..

......

Let T be a(1, 1)-tensor field on a manifoldM and we writeT：(1, 1)-tensors.t.

T =
n∑

i, j=1

T j

i
dxi ⊗ ∂

∂x j
.

Then we define endomorphismsT̂ andŤ by:
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2. Definition - 2

And, we introduce a separability of a dynamical vector field ([5]):

.
Definition (Separability)
..

......

A dynamical vector field∆ is said to beseparable on an open subsetO ⊆ M when there
exists a basis{ei} of local vector fields onO s.t.

Lei ⟨∆, ϑ j⟩ , 0⇒ i = j,

where{ϑ j} is the dual basis of{ei}. If O =M, we call∆ is separable.
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3. Introduction of the recursion operator
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3. Introduction of the recursion operator - 1

We describe a new characterization of integrable systems. Specifically, we consider
a diagonalizable tensor.

.
Theorem (DMSV[5])
..

......

Let a vector field∆ is a dynamical vector field on a2n-dimensional manifoldM and suppose
∆ admits a diagonalizable(1, 1)-tensor fieldT s.t.

..1 T is invariant under∆ : L∆T = 0,

..2 T has vanishing Nijenhuis torsion :NT = 0,

..3 T has doubly degenerate eigenvaluesλ j with nowhere vanishing differentials :
degλ j = 2, (dλ j)p , 0, ∀p ∈ M, ( j = 1, . . . , n).

Then, the vector field∆ is separable, completely integrable and Hamiltonian with respect to a
certain symplectic structure.

ThisT is called a recursion operator of the vector field∆.
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3. Introduction of the recursion operator - 2

The properties of Recursion operatorT：

When(1, 1)-tensorT is a recursion operator in finite dimensional case, we get:
• There existn vector fields∆k s.t.

∆k+1 = T̂∆k, (k ≥ 1).

• There existn differential 1-forms.t.(
dα = 0, dŤα = 0, LT = 0

)
⇒ d

(
Ťnα

)
= 0, (k ≥ 1).

• Under the flow generated by a vector field∆, the invaliance ofT implies the invaliance of
T̂∆n, Ťnα and its eigenvaluesλ.

• About the HamiltonianH and the symplectic structureω for the system, the all of∆k is
Hamiltonian vector field when

i∆ω = −dH.

• Trace ofTk is the constants of motion of the system:

Tr
(
Tk

)
, (k ≥ 1).
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Ťnα

)
= 0, (k ≥ 1).

• Under the flow generated by a vector field∆, the invaliance ofT implies the invaliance of
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Ťnα

)
= 0, (k ≥ 1).

• Under the flow generated by a vector field∆, the invaliance ofT implies the invaliance of
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4. Construction of a recursion operator for the
geodesic flow onn-dimensional sphere
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4. Construction of a recursion op. for the geodesic flow onSn - 1

We had obtained a recursion operator ofn-dimensional sphereSn on our last
research paper.

The process is:

..1 Considering the canonical Riemaniann metric onSn.

..2 Calculating the HamiltonianH from the metric.

..3 Discribing the Hamiltonian system(H, ∆, ω) by the action-angle variables(J k, φ
k).

then we get a recursion operatorT.

And, the constants of motion is written by the trace ofTk:

{Tr(T), Tr(T2), . . . , Tr(Tn)}.

Kiyonori HOSOKAWA (Ph.D. student, the Prof. Yoshioka Laboratory, Department of Mathematics, Graduate School of Science, Tokyo University of Science)A Recursion Operator for the Geodesic Flow onn-dimensional SphereVarna, Bulgaria, June 7th - 12th, 2013 14/ 31



4. Construction of a recursion op. for the geodesic flow onSn - 1

We had obtained a recursion operator ofn-dimensional sphereSn on our last
research paper.

The process is:

..1 Considering the canonical Riemaniann metric onSn.

..2 Calculating the HamiltonianH from the metric.

..3 Discribing the Hamiltonian system(H, ∆, ω) by the action-angle variables(J k, φ
k).

then we get a recursion operatorT.

And, the constants of motion is written by the trace ofTk:

{Tr(T), Tr(T2), . . . , Tr(Tn)}.

Kiyonori HOSOKAWA (Ph.D. student, the Prof. Yoshioka Laboratory, Department of Mathematics, Graduate School of Science, Tokyo University of Science)A Recursion Operator for the Geodesic Flow onn-dimensional SphereVarna, Bulgaria, June 7th - 12th, 2013 14/ 31



4. Construction of a recursion op. for the geodesic flow onSn - 1

We had obtained a recursion operator ofn-dimensional sphereSn on our last
research paper.

The process is:

..1 Considering the canonical Riemaniann metric onSn.

..2 Calculating the HamiltonianH from the metric.

..3 Discribing the Hamiltonian system(H, ∆, ω) by the action-angle variables(J k, φ
k).

then we get a recursion operatorT.

And, the constants of motion is written by the trace ofTk:

{Tr(T), Tr(T2), . . . , Tr(Tn)}.

Kiyonori HOSOKAWA (Ph.D. student, the Prof. Yoshioka Laboratory, Department of Mathematics, Graduate School of Science, Tokyo University of Science)A Recursion Operator for the Geodesic Flow onn-dimensional SphereVarna, Bulgaria, June 7th - 12th, 2013 14/ 31



4. Construction of a recursion op. for the geodesic flow onSn - 1

We had obtained a recursion operator ofn-dimensional sphereSn on our last
research paper.

The process is:

..1 Considering the canonical Riemaniann metric onSn.

..2 Calculating the HamiltonianH from the metric.

..3 Discribing the Hamiltonian system(H, ∆, ω) by the action-angle variables(J k, φ
k).

then we get a recursion operatorT.

And, the constants of motion is written by the trace ofTk:

{Tr(T), Tr(T2), . . . , Tr(Tn)}.

Kiyonori HOSOKAWA (Ph.D. student, the Prof. Yoshioka Laboratory, Department of Mathematics, Graduate School of Science, Tokyo University of Science)A Recursion Operator for the Geodesic Flow onn-dimensional SphereVarna, Bulgaria, June 7th - 12th, 2013 14/ 31



4. Construction of a recursion op. for the geodesic flow onSn - 1

We had obtained a recursion operator ofn-dimensional sphereSn on our last
research paper.

The process is:

..1 Considering the canonical Riemaniann metric onSn.

..2 Calculating the HamiltonianH from the metric.

..3 Discribing the Hamiltonian system(H, ∆, ω) by the action-angle variables(J k, φ
k).

then we get a recursion operatorT.

And, the constants of motion is written by the trace ofTk:

{Tr(T), Tr(T2), . . . , Tr(Tn)}.

Kiyonori HOSOKAWA (Ph.D. student, the Prof. Yoshioka Laboratory, Department of Mathematics, Graduate School of Science, Tokyo University of Science)A Recursion Operator for the Geodesic Flow onn-dimensional SphereVarna, Bulgaria, June 7th - 12th, 2013 14/ 31



4. Construction of a recursion op. for the geodesic flow onSn - 1

We had obtained a recursion operator ofn-dimensional sphereSn on our last
research paper.

The process is:

..1 Considering the canonical Riemaniann metric onSn.

..2 Calculating the HamiltonianH from the metric.

..3 Discribing the Hamiltonian system(H, ∆, ω) by the action-angle variables(J k, φ
k).

then we get a recursion operatorT.

And, the constants of motion is written by the trace ofTk:

{Tr(T), Tr(T2), . . . , Tr(Tn)}.

Kiyonori HOSOKAWA (Ph.D. student, the Prof. Yoshioka Laboratory, Department of Mathematics, Graduate School of Science, Tokyo University of Science)A Recursion Operator for the Geodesic Flow onn-dimensional SphereVarna, Bulgaria, June 7th - 12th, 2013 14/ 31



4. Construction of a recursion op. for the geodesic flow onSn - 1

We had obtained a recursion operator ofn-dimensional sphereSn on our last
research paper.

The process is:

..1 Considering the canonical Riemaniann metric onSn.

..2 Calculating the HamiltonianH from the metric.

..3 Discribing the Hamiltonian system(H, ∆, ω) by the action-angle variables(J k, φ
k).

then we get a recursion operatorT.

And, the constants of motion is written by the trace ofTk:

{Tr(T), Tr(T2), . . . , Tr(Tn)}.

Kiyonori HOSOKAWA (Ph.D. student, the Prof. Yoshioka Laboratory, Department of Mathematics, Graduate School of Science, Tokyo University of Science)A Recursion Operator for the Geodesic Flow onn-dimensional SphereVarna, Bulgaria, June 7th - 12th, 2013 14/ 31



4. Construction of a recursion op. for the geodesic flow onSn - 2

..1 Considering the canonical Riemaniann metric onSn

Using the spherical polar coordinate for ann-dimensional sphere of radiusa, we
consider an embeddingϕ to the sphere:

ϕ(q1, . . . , qn) =


acosq1

asin q1 cosq2

· · · · · ·
asin q1 · · · sin qn−2 cosqn−1

asin q1 · · · sin qn−2 sin qn−1

 .
We see that

gi j = ρ
2
i
δi j ,

i, j = 1, . . . , n, ρ1 = a, ρℓ = a
ℓ−1∏
k=1

sin qk, (ℓ = 2, . . . , n)

 .
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4. Construction of a recursion op. for the geodesic flow onSn - 3

..2 Calculating the Hamiltonian H from the metric

The corresponding Hamiltonian functionH is

H(q, p) =
1

2a2

n∑
k=1

Pk · p2
k
, Pk =


1, (k = 1),
k−1∏
i=1

1

sin2 qi

, (otherwise).
(1)
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4. Construction of a recursion op. for the geodesic flow onSn - 4

..3 Discribing the Hamiltonian system (H, ∆, ω) - 1

The Hamilton-Jacobi equation for (1) is

E =
1

2a2

n∑
k=1

Pk

(
dSk

dqk

)2

, S =
n∑

i=1

Si(qi),

whereS is generating function.
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4. Construction of a recursion op. for the geodesic flow onSn - 5

..3 Discribing the Hamiltonian system (H, ∆, ω) - 2

By the variable transformation, we assume the following:

Qℓ :=

Rℓ −
(

dSℓ
dqℓ

)2 sin2 qℓ =
n−ℓ∑
k=1

Pk

(
dSℓ+k

dqℓ+k

)2

,

where

Rℓ =
{

2a2E, (ℓ = 1),
Qℓ−1, (otherwise),

Pk =


1, (k = 1),
ℓ+k−2∏

i=ℓ

1

sin2 qi

, (otherwise).

Qℓ ,E anda are constants, so we can setα1 :=
√

2a2E andαℓ :=
√

Qℓ−1, therefore,

pℓ =
dSℓ
dqℓ
=


√√√
α2
ℓ
−
α2
ℓ+1

sin2 qℓ
, (ℓ = 1, . . . , n − 1) ,

αℓ, (ℓ = n) .

(2)
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4. Construction of a recursion op. for the geodesic flow onSn - 6

..3 Discribing the Hamiltonian system (H, ∆, ω) - 3

Then, letJℓ :=
1

2π

∮
pℓdqℓ, we obtain the action variablesJℓ(q, p):

Jℓ =
{
αℓ − αℓ+1, (ℓ = 1, . . . , n − 1),
αn, (ℓ = n),

hence

αℓ =
n∑

k=ℓ

Jk. (3)
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4. Construction of a recursion op. for the geodesic flow onSn - 8

From the above,

the tensor fieldT defined by

T =
1

2

∑
i,ℓ

{(
tS

)ℓ
i

∂

∂J i
⊗ dJℓ + Si

ℓ

∂

∂φi
⊗ dφℓ

}
(5)

where 

S1
1
= J1,

Si
1
= −

∑
k

Jk + J1 + 2J i , (i > 2),

Sℓ
ℓ
=

∑
k

Jk − Jℓ, (ℓ > 2),

Si
ℓ
= Jℓ (otherwise)

(6)

fullfills the conditions for the recursion operator.
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4. Construction of a recursion op. for the geodesic flow onSn - 10

Thus, we obtained the following proposition from the above:

.
Proposition (HT)
..

......

When we introduced a canonical Riemannian metricg onSn, the geodesic flow ofT∗Sn has a
recursion operatorT. T is written by means of action-angle variables(J(q, p), φ(q, p)):

T =
1

2

∑
i,ℓ

{(
tS
)ℓ

i

∂

∂J i
⊗ dJℓ + Si

ℓ

∂

∂φi
⊗ dφℓ

}
where(q, p) is a local coordinate system onT∗Sn.

.
Example (3-dimensional case)
..

......

T =
1

2



J1 J2 − J3 J3 − J2 OJ2 J1 + J3 J2

J3 J3 J1 + J2

J1 J2 J3

J2 − J3 J1 + J3 J3

O J3 − J2 J2 J1 + J2


.
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5. Application of the recursion operator for the
geodesic flow onn-dimensional sphere

Kiyonori HOSOKAWA (Ph.D. student, the Prof. Yoshioka Laboratory, Department of Mathematics, Graduate School of Science, Tokyo University of Science)A Recursion Operator for the Geodesic Flow onn-dimensional SphereVarna, Bulgaria, June 7th - 12th, 2013 23/ 31



5. Application of a recursion operator for the geodesic flow onSn - 1

Constants of the motion

The constants of motionF k of the geodesic flow is:

F k = Tr(Tk) = 2
n∑

i=1

λk
i
, (k = 1, . . . , n),

whereλi are the eigenvalues ofT.
.
Example (3-dimensional case)
..

......


F1 = 3J1 + J2 + J3 = λ1 + λ2 + λ3,

F2 = 3(J2
1
+ J2

2
+ J2

3
) + 2(J1J2 − J2J3 + J3J1) = λ2

1
+ λ2

2
+ λ2

3
,

F3 = · · · · · · = λ3
1
+ λ3

2
+ λ3

3
.

Thus, the constants of motion are obtained by traces of thekth powers ofT.
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5. Application of a recursion operator for the geodesic flow onSn - 2

The symplectic formω1, which is induced by (5) and (6), is written as follows:

ω1 =
∑
i,ℓ

Si
ℓ
dJi ∧ dφℓ.

We get

dKi =

n∑
k=1

(tS)i
k
dJk, ω1 =

n∑
i=1

dKi ∧ dαi , (αi = φi).

Theω1 can be considered as the Lie derivertive of the simplectic formω given by
equation (4) with respect to the vector field

Γ =

n∑
i=1

Ki
∂

∂J i
,

therefore,
ω1 = LΓω.
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5. Application of a recursion operator for the geodesic flow onSn - 3

A sequence of Abelian symmetries (Γ-scheme[5])

We can set the new vector fields∆i+1 as follows:

∆i+1 := [∆i , Γ] , ∆0 = ∆ =
J1 + · · · + Jn

2a2

(
∂

∂φ1
+ · · · + ∂

∂φn

)
,

so that

∆i+1 = (−1)i+1 (i + 1) ! (J1 + · · · + Jn)i+2

2i+1a2

(
∂

∂φ1
+ · · · + ∂

∂φn

)
, (i = 0, . . . , n − 1).

The generated∆i by the commutator are the Hamiltonian vector field which commute
between them:

[∆i , ∆ℓ] = 0,

and corresponding Hamiltonian function is

H i+1 = (−1)i+1 1

(i + 3) · 2i+1a2
(J1 + · · · + Jn)i+3.
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∆i+1 = (−1)i+1 (i + 1) ! (J1 + · · · + Jn)i+2

2i+1a2

(
∂

∂φ1
+ · · · + ∂

∂φn

)
, (i = 0, . . . , n − 1).

The generated∆i by the commutator are the Hamiltonian vector field which commute
between them:

[∆i , ∆ℓ] = 0,

and corresponding Hamiltonian function is

H i+1 = (−1)i+1 1

(i + 3) · 2i+1a2
(J1 + · · · + Jn)i+3.
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5. Application of a recursion operator for the geodesic flow onSn - 4

In general, from a recursion operatorT, given by (5) and (6), the commutator
generates a sequence of Abelian symmetries between each∆i+1 s.t.

∆i+1 := [∆i , Γ] . (7)

Thus, we obtained the following proposition:
.
Proposition (1)
..

......

In then-dimensional sphere case, there exists the sequence of Abelian symmetries, generated
by (7), s.t.

∆0 = ∆ =
J1 + · · · + Jn
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And, the corresponding Hamiltonian function is

H i+1 = (−1)i+1 1

(i + 3) · 2i+1a2
(J1 + · · · + Jn)i+3.
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6. Conclusion
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6. Conclusion

☆ The geodesic flow onn-dimensional sphere has a recursion operatorT.

☆ Using the properties of theT, we got a sequence of Aberian symmetric vector fields and a
sequence of involutive Hamiltonian function.

★ Is there aT1, likewise the case of the Minkowski metric?If there is,T1 = T or T1 , T?
(WIP)

★ How about on the other geometric structure?(WIP)
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