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Plan of the presentation:

• Affine motion and affine bodies

• Special solutions of unconstrained motion:

– Gyroscopic constraints

– Isochoric constraints (incompressible body)

– Constraints implied by linear conformal group (rotations and dilatations)

– Constraints of purely rotation-free affine motion

• Elimination of reaction forces:

– d’Alembert prescription

– Vakonomic prescription

• Nonholonomic constraints of rotation-free affine motion:

– Polar decomposition

– Vakonomic lagrangian and resulting equations of motion

– Usual (non-vakonomic) constraints and equations of motion

• Nonlinear vakonomic constraints
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• Affine motion and affine bodies

We describe the configuration of an affine body by

xi (r, ϕ; t) = ri(t) + ϕiK(t)aK ,

where xi are spatial variables, ri are coordinates of the centre of mass, ϕiK are internal (relative) param-
eters, and aK are material variables.

To describe equations of motion we use the following definitions:

• the total mass of the body and the co-moving (constant) tensor of inertia in the material space

M =

∫
dµ, JKL =

∫
aKaLdµ(a)

• when the centre of mass is placed at aK = 0, then

JK =

∫
aKdµ(a) = 0

• the total force and the spatial components of the co-moving dipole of forces distribution

F i =

∫
F i(a)dµ(a), N ij =

∫
ϕiKϕ

j
La

KaLdµ(a) = ϕiKϕ
j
L

∫
aKaLdµ(a).
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• Affine motion and affine bodies (cont.)

The equations of motion can be written in the following form:

M
d2ri

dt2
= F i, ϕiK

d2ϕjL
dt2

JKL = N ij.

Alternative balance forms of the above equations of motion:

dpi

dt
= F i,

dKij

dt
=
dϕiK
dt

dϕjL
dt

JKL +N ij,

where pi is a linear momentum and K is an affine spin:

pi = M
dri

dt
, Kij = ϕiK

dϕjL
dt

JKL.

The angular momentum (spin) Sij = Kij −Kji is conserved, if N ij is symmetric:

dSij

dt
= N ij −N ji.

In other words:
dpi

dt
= F i,

dKij

dt
= Ωi

mK
mj +N ij,

where the affine velocity, called also Eringen’s “gyration”, is

Ωi
j =

dϕiA
dt

ϕ−1A
j, Ω̂A

B = ϕ−1A
iΩ

i
jϕ

j
B.
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• Affine motion and affine bodies (cont.)

If Lagrangian is given by
L = T − V

(
ri, ϕiK

)
,

where the kinetic energy is

T = Ttr + Tint =
M

2
gij
dri

dt

drj

dt
+

1

2
gij
dϕiK
dt

dϕjL
dt

JKL,

then the forces and the momentum of forces are

F i = −gij ∂V
∂rj

, N ij = −ϕiA
∂V

∂ϕkA
gkj.

There is also another formula:
dKij

dt
= N ij + 2

∂Tint
∂gij

.

When there exist dissipative forces non-derivable from Lagrangian, then there appear some additional
terms. In the simplest case, we choose them just linear or quadratic in generalized velocities.
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• Gyroscopic constraints

There are some additional geometric, namely group-implied, forces imposed on the system. For ex-

ample, gyroscopic constraints (pseudo-holonomic constraints of rigid motion) imply that Ωi
j, Ω̂A

B are
respectively g- and η-skew-symmetric angular velocities in spatial and co-moving representations,

Ωi
j = −Ωj

i = −gjkΩk
lg
li, Ω̂A

B = −Ω̂B
A = −ηBCΩ̂C

Dη
DA,

where g is the metric tensor of the physical space and η is the material metric.
It is easy to see that the above conditions are holonomic and may be written down as the conditions

of isometry,
gijϕ

i
Aϕ

j
B = ηAB.

Then the reaction moments NR are symmetric,

NRij = NRji

and our equations are independent of explicitly non-specified reactions. Of course, gyroscopic reactions
do not vanish, but their full tensor contractions with skew-symmetric affine virtual velocities (angular
velocities) are vanishing in virtue of constraints.

So, if we are taking the skew-symmetric part of original equations, we can eliminate reaction moments
and then obtain the effective equations of motion.
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• Isochoric constraints (incompressible body)

In the case of incompressible body (isochoric constraints) the traces of affine velocities vanish:

Tr Ω = Ωi
i = 0.

The total contractions of such virtual Ω-s with the reaction affine moment NR must vanish:

NR
ijΩji = NR

ijΩk
igjk = 0.

It is easy to see that then reactions are pure traces,

NR
i
j = λδij, NR

ij = λgij,

where

λ =
1

n
Tr NR =

1

n
gijNR

ij.

So, to eliminate the Lagrange multiplier λ, we must take the constraints condition (i.e., detϕ = const)
jointly with the g-traceless part of the initial equation itself:

ϕiA
d2ϕjB
dt2

JAB − 1

n
gabϕ

a
A
d2ϕbB
dt2

JABgij = N ij − 1

n
gabN

abgij.
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• Constraints implied by linear conformal group (rotations and dilatations)

In such a case an affine velocity (gyration) has the form:

Ωi
j = ωij + αδij

where ωij is the g-skew-symmetric angular velocity, and α is an arbitrary real, dilatational parameter, so
that

gijϕ
i
Aϕ

j
B = ληAB, λ > 0.

The reaction-free equations of motion consist of the skew-symmetric part of the original equation and
of the g-trace of that equation, and reaction moments NR

ij are symmetric and g-traceless:

ϕiA
d2ϕjB
dt2

JAB − ϕjA
d2ϕiB
dt2

JAB = N ij −N ji

gijϕ
i
A
d2ϕjB
dt2

JAB = gijN
ij.

• Constraints of purely rotation-free affine motion

It is a very interesting example of nonholonomic constraints, when Ω is g-symmetric (the only geomet-
rically correct definition):

Ωi
j − Ωj

i = Ωi
j − gjkgilΩk

l = 0.

Then the reactions forces are anti-symmetric. So, the above equation must be joined with the sym-
metric part of equations of motion as balance laws:

ϕiA
d2ϕjB
dt2

JAB + ϕjA
d2ϕiB
dt2

JAB = N ij +N ji.
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• Elimination of reaction forces: d’Alembert prescription

Let Lagrangian of the dynamical system be L (q, q̇), i.e., it is a function of generalized coordinates
q1, . . . , qn and their velocities, but we can also take the time into a consideration explicitly, i.e., L (t, q, q̇).

Then the constraints are given by the following expressions:

Fa (q, q̇) = 0 (Fa (t, q, q̇) = 0) , a = 1, . . . ,m.

In applications mostly often we have the constraints linear in velocities:

Fa (q, q̇) = ωai (q) q̇
i.

Then the d’Alembert principle give us the following equations of motion:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Ri,

where Ri are reaction forces, which vanish on velocities compatible with constraints:

ωai (q) q̇
i = 0, i.e., Riq̇

i = 0.

This implies that
Ri = λaωai.
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• d’Alembert prescription (cont.)

By analogy the similar expressions can be written also for systems with dissipative forces. The non-
constrained dynamics is given by the following equations of motion:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Di,

where Di are covariant vectors of non-variational, e.g., friction forces.
The corresponding constrained systems is given by the expressions:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Di +Ri

Fa (q(t), q̇(t)) = ωai(q)q̇
i = 0

where Ri are the reaction forces.
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• Elimination of reaction forces: Vakonomic prescription

The variational principle constrained by Fa = 0 is given by the following expressions:

δ

∫
L (q(t), q̇(t)) dt = 0, Fa (q(t), q̇(t)) = 0,

where the variations δqi (t) are subject to constraints.
The Lusternik theorem give us that the above variational principle is equivalent to the corresponding

non-restricted principle:

δ

∫
L [µ] (q(t), q̇(t))dt = 0

where µ is the Lagrange multiplier and L [µ] is given by

L [µ] (q(t), q̇(t)) = L(q(t), q̇(t))− µaFa(q(t), q̇(t)).

Mathematically here µa are some a priori unknown functions of time.
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• Linear vakonomic constraints

The variational principle for L [µ] implies that for constraints that are linear in velocities,

Fa(q(t), q̇(t)) = ωai(q(t))q̇
i(t)

we can write the following equations of motion:

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

dµa

dt
ωai − µa

(
∂ωaj
∂qi
− ∂ωai

∂qj

)
q̇j

Fa(q(t), q̇(t)) = ωai(q(t))q̇
i(t) = 0.

This is the system of (n+m) differential equations for the (n+m) variables qi (t) and µa (t) as functions
of time.

Correspondingly the constraints reactions are given as follows:

Ri =
dµa

dt
ωai + µa

(
∂ωai
∂qj
− ∂ωaj

∂qi

)
dqj

dt
.
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• Elimination of reaction forces: Linear constraints (summary)

So, there are two prescriptions for calculating Ri, namely:

1. d’Alembert prescription:
Ri = λaωai, i.e., Riq̇

i = 0

for every virtual velocity satisfying the constraints,

2. Vaconomic prescription:

Ri =
dµa

dt
ωai + µa

(
∂ωai
∂qj
− ∂ωaj

∂qi

)
dqj

dt
.

• Holonomic constraints

For the holonomic constraints
Fa (q) = 0, a = 1, . . . ,m

in the reaction forces survives only the first term and then they are given by the usual d’Alembert
expression

Ri = λaωai with the multiplier λa =
dµa

dt
.
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• Nonholonomic constraints of rotation-free affine motion

Let us remind that the affine velocity and its co-moving counterpart are given by the expressions:

Ωi
j =

dϕiA
dt

ϕ−1A
j, Ω̂A

B = ϕ−1A
i
dϕiB
dt

= ϕ−1A
iΩ

i
jϕ

j
B.

For the gyroscopic (metrically rigid) motion we have that

Ωi
j + Ωj

i = Ωi
j + gjaΩ

a
bg
bi = 0

i.e., they are g-antisymmetric. This is nonholonomic description of holonomic constraints. Skew-symmetric
matrices form a Lie algebra and those equations are integrated to the orthogonal group.

By analogy, the rotation-free motion is primarily described by

Ωi
j − Ωj

i = Ωi
j − gjkgilΩk

l = 0

i.e., by the g-symmetry. But symmetric matrices do not form a Lie algebra. Moreover, those are truly
nonholonomic constraints and they are not integrated to any submanifold.
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• Polar decomposition

The polar decomposition of ϕ can be written as follows:

ϕ = UA,

where U is an orthogonal (isometric) matrix and A is an η-symmetric one:

U ∈ O (U, η;V, g) , A ∈ Symm (U, η) , i.e., ηAB = gijϕ
i
Aϕ

j
B, ηACA

C
B = ηBCA

C
A.

The co-moving angular velocity ω̂ of the U -rotator is given by

ω̂ = U−1dU

dt
.

The kinetic energy can be written as the sum of the translational and internal (relative) terms:

T = Ttr + Tint =
M

2
gij
dri

dt

drj

dt
+

1

2
gij
dϕiA
dt

dϕjB
dt

JAB.

In the polar decomposition the internal kinetic energy Tint becomes as follows:

Tint =
1

2
ηKL

dAKA
dt

dALB
dt

JAB + ηKLω̂
K
CA

C
A
dALB
dt

JAB +
1

2
ηKLω̂

K
Cω̂

L
DA

C
AA

D
BJ

AB.
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• Polar decomposition (cont.)

Obviously, ω̂ is η-skew-symmetric:

ηACω̂
C
B = −ηBCω̂CA.

The g-symmetry constraints on Ω imply that

ω̂ =
1

2

[
A−1,

dA

dt

]
=

1

2

(
A−1dA

dt
− dA

dt
A−1

)
.

Substituting this to the expression for the internal kinetic energy Tint, we obtain that

TVak
int =

1

2
ηKL

dAKA
dt

dALB
dt

JAB +
1

4
ηKLA

−1K
D
dADC
dt

ACA
dALB
dt

JAB

+
1

8
ηKLA

−1K
E
dAEC
dt

ACAA
−1L

F
dAFD
dt

ADBJ
AB.

The simplest vakonomic Lagrangian is obtained by putting:

LVak
int = TVak

int + V (G) ,

where the potential V depends on the Green deformation tensor G:

GAB = gijϕ
i
Aϕ

j
B = ηCDA

C
AA

D
B.
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• Vakonomic lagrangian and resulting equations of motion

The variational derivative of TVak
int with respect to the symmetric tensor AAB = ηACA

C
B = ABA is

given by

δTVak
int

δAAB

∣∣∣∣
symm

= −1

4

d2

dt2
A(A

LJ
B)L − 1

4

d

dt

((
A−1

)
(A
EJ

B)LdA
E
C

dt
ACL

)
−1

4
ηKL

d

dt

(
dAKE
dt

(
A−1

)
L(AAB)

D

)
JED

−1

4
ηKL

d

dt

((
A−1

)K
E
dAEC
dt

ACF
(
A−1

)
L(AAB)

D

)
JFD

−1

4
ηKL

dAKE
dt

dAFD
dt

ADG
(
A−1

)
L(A
(
A−1

)
B)
FJ

EG

−1

4
ηKL

(
A−1

)K
E
dAEC
dt

ACM
dAFD
dt

ADN
(
A−1

)
L(A
(
A−1

)
B)
FJ

MN

+
1

4
ηKL

dAKD
dt

(
A−1

)L
E
dAE(A

dt
JB)D

+
1

4
ηKL

(
A−1

)K
E
dAEC
dt

ACD
(
A−1

)L
F
dAF (A

dt
JB)D.

When there are hyperelastic forces derivable from the potential V depending only on the Green defor-
mation tensor G, then equations of motion have the following form:

δTVak
int

δAAB

∣∣∣∣
symm

= −AKCηK(AN̂B)C .
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• Usual (non-vakonomic) constraints and equations of motion

One can show that for the usual (non-vakonomic) constraints of the rotation-free motion the evolution
of the system is given by the symmetric part of the following tensor equation:

AJη
d2A

dt2
− 1

2
AJηA

d

dt

[
A−1,

dA

dt

]
− AJη

d

dt

[
A−1,

dA

dt

]
+

1

4
AJηA

d

dt

[
A−1,

dA

dt

]2
= N,

where

Jη
K
L = JKMηML, N

KL
= AKMA

L
NN̂

MN ,

N̂AB = ϕ−1A
iϕ

−1B
jN

ij, N ij = −gjkϕiM
∂V

∂ϕkM
.

In the explicit form the equations of motion are written as follows:

JAB
d2AB(C

dt2
AD)

A − JABA
B
E
d

dt

1

2

((
A−1

)E
F
d

dt

(
AF (C

)
AD)

A −
d

dt

(
AEF

) (
A−1

)F (C
AD)

A

)
− JAB

dABE
dt

((
A−1

)E
F
d

dt

(
AF (C

)
AD)

A −
d

dt

(
AEF

) (
A−1

)F (C
AD)

A

)
+

1

4
JABA

B
E

((
A−1

)E
G
d

dt

(
AGF

)
− d

dt

(
AEG

) (
A−1

)G
F

)
·
((
A−1

)F
H
d

dt

(
AH(C

)
AD)A − d

dt

(
AFH

) (
A−1

)H(C
AD)

A

)
= N

(CD)
.

The structures of vakonomic and d’Alembert equations are evidently different.
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• Solving the above equations of motion:

– solving the symmetric or vakonomic part of our equations of motion, we find A(t).

– then we substitute it to ω̂ and solving equation

dU

dt
= Uω̂

we find U(t).

– finally, substituting it to
ϕ(t) = U(t)A(t)

we solve the problem, at least in principle.
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• Nonlinear vakonomic constraints

In the case when there is no dissipation, calculating Euler-Lagrange equations for the modified La-
grangian L[µ] = L+ µaFa we obtain the system for the (n+m) variables qi(t), µa(t) :

d

dt

∂L

∂q̇i
− ∂L

∂qi
= µa

∂Fa
∂qi
− d

dt

(
µa
∂Fa
∂q̇i

)
, i = 1, . . . , n,

where µa(t), a = 1, . . . ,m, are Lagrange multipliers and Fa(q, q̇) = 0.
The reactions forces:

Ri = µa
∂Fa
∂qi
− d

dt

(
µa
∂Fa
∂q̇i

)
= µa

∂Fa
∂qi
− dµa

dt

∂Fa
∂q̇i
− µa ∂

2Fa
∂q̇i∂qj

dqj

dt
− µa ∂

2Fa
∂q̇i∂q̇j

d2qj

dt2
.

In general, such reactions need not be adiabatic. The equations of constrained motion have the form:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Di +Ri, Fa (q(t), q̇(t)) = 0.

Nonlinearity of nonholonomic constraints with respect to velocities has a qualitative effect on the
dynamical structure of reactions Ri (contains the term with second derivatives). Such acceleration-
dependent forces modify the inertial properties of the object. Besides, nonlinearity of M may influence
the energy balance because, in general, the above reactions Ri need not annihilate the velocity vectors.
After calculating the power of the reactions along curves in Q compatible with constraints M we obtain

Ri
dqi

dt
= µa

dFa
dt
− d

dt

(
µaq̇i

∂Fa
∂q̇i

)
.
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• Nonlinear vakonomic constraints (cont.)

The first term vanishes in virtue of constraints equations, so finally

Riq̇
i = − d

dt

(
µa
∂Fa
∂q̇i

q̇i
)
.

Then the energy balance has the form:

d

dt

(
E + µaq̇i

∂Fa
∂q̇i

)
= Diq̇

i

The balanced quantity

E[L,M ] := E + µaq̇i
∂Fa
∂q̇i

can be interpreted as the effective energy of the system constrained by the manifold M .
When M is fixed, E[L,M ] does not depend on the particular choice of functions Fa, used as left-hand

sides of equations of M .
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• Nonlinear vakonomic constraints (cont.)

The quantity E[L,M ] contains two parts:

• the natural energy

E[L] := q̇i
∂L

∂q̇i
− L

of the unconstrained system and

• the energy of constraints

E[M ] := µa
∂Fa
∂q̇i

q̇i.

In the case with no dissipative forces, the total energy E[L,M ] is a constant of motion. The existence
of this constant of motion is just the peculiarity and distinguishing feature of the Hamilton-Lusternik
algorithm.
E[L,M ] can be directly obtained from the modified Lusternik Lagrangian L[µ]:

E[L[µ]] := q̇i
∂L[µ]

∂q̇i
− L[µ] = E[L] + µa

∂Fa
∂q̇i

q̇i − µaFa,

where the last term vanishes on constraints M .
The mechanical work done by Hamilton-Lusternik reactions has a variational structure; it can be

interpreted as the exchange of energy between the system in question and the constraining object.
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***

The end.

Thank you for your attention!

***


