Constraints and Symmetries in Mechanics of Affine Motion

B. Gołubowska, V. Kovalchuk, J.J. Sławianowski

Institute of Fundamental Technological Research
Polish Academy of Sciences
5^{B}, Pawińskiego str., 02-106 Warsaw, Poland

XV ${ }^{\text {th }}$ International Conference on
Geometry, Integrability and Quantization
Sts. Constantine and Elena, Varna, Bulgaria

Plan of the presentation:

- Affine motion and affine bodies
- Special solutions of unconstrained motion:
- Gyroscopic constraints
- Isochoric constraints (incompressible body)
- Constraints implied by linear conformal group (rotations and dilatations)
- Constraints of purely rotation-free affine motion
- Elimination of reaction forces:
- d'Alembert prescription
- Vakonomic prescription
- Nonholonomic constraints of rotation-free affine motion:
- Polar decomposition
- Vakonomic lagrangian and resulting equations of motion
- Usual (non-vakonomic) constraints and equations of motion
- Nonlinear vakonomic constraints

- Affine motion and affine bodies

We describe the configuration of an affine body by

$$
x^{i}(r, \varphi ; t)=r^{i}(t)+\varphi^{i}{ }_{K}(t) a^{K}
$$

where x^{i} are spatial variables, r^{i} are coordinates of the centre of mass, $\varphi^{i}{ }_{K}$ are internal (relative) parameters, and a^{K} are material variables.

To describe equations of motion we use the following definitions:

- the total mass of the body and the co-moving (constant) tensor of inertia in the material space

$$
M=\int d \mu, \quad J^{K L}=\int a^{K} a^{L} d \mu(a)
$$

- when the centre of mass is placed at $a^{K}=0$, then

$$
J^{K}=\int a^{K} d \mu(a)=0
$$

- the total force and the spatial components of the co-moving dipole of forces distribution

$$
F^{i}=\int \mathcal{F}^{i}(a) d \mu(a), \quad N^{i j}=\int \varphi_{K}^{i} \varphi^{j}{ }_{L} a^{K} a^{L} d \mu(a)=\varphi^{i}{ }_{K} \varphi^{j}{ }_{L} \int a^{K} a^{L} d \mu(a)
$$

- Affine motion and affine bodies (cont.)

The equations of motion can be written in the following form:

$$
M \frac{d^{2} r^{i}}{d t^{2}}=F^{i}, \quad \varphi_{K}^{i} \frac{d^{2} \varphi^{j} L}{d t^{2}} J^{K L}=N^{i j}
$$

Alternative balance forms of the above equations of motion:

$$
\frac{d p^{i}}{d t}=F^{i}, \quad \frac{d K^{i j}}{d t}=\frac{d \varphi^{i} K_{K}}{d t} \frac{d \varphi^{j}{ }_{L}}{d t} J^{K L}+N^{i j}
$$

where p^{i} is a linear momentum and K is an affine spin:

$$
p^{i}=M \frac{d r^{i}}{d t}, \quad K^{i j}=\varphi_{K}^{i} \frac{d \varphi^{j}}{d t} J^{K L}
$$

The angular momentum (spin) $S^{i j}=K^{i j}-K^{j i}$ is conserved, if $N^{i j}$ is symmetric:

$$
\frac{d S^{i j}}{d t}=N^{i j}-N^{j i}
$$

In other words:

$$
\frac{d p^{i}}{d t}=F^{i}, \quad \frac{d K^{i j}}{d t}=\Omega^{i}{ }_{m} K^{m j}+N^{i j}
$$

where the affine velocity, called also Eringen's "gyration", is

$$
\Omega^{i}{ }_{j}=\frac{d \varphi^{i}{ }_{A}}{d t} \varphi^{-1 A}{ }_{j}, \quad \widehat{\Omega}^{A}{ }_{B}=\varphi^{-1 A}{ }_{i} \Omega^{i}{ }_{j} \varphi^{j}{ }_{B} .
$$

- Affine motion and affine bodies (cont.)

If Lagrangian is given by

$$
L=T-V\left(r^{i}, \varphi_{K}^{i}\right)
$$

where the kinetic energy is

$$
T=T_{\mathrm{tr}}+T_{\mathrm{int}}=\frac{M}{2} g_{i j} \frac{d r^{i}}{d t} \frac{d r^{j}}{d t}+\frac{1}{2} g_{i j} \frac{d \varphi^{i}{ }_{K}}{d t} \frac{d \varphi^{j}{ }_{L}}{d t} J^{K L},
$$

then the forces and the momentum of forces are

$$
F^{i}=-g^{i j} \frac{\partial V}{\partial r^{j}}, \quad N^{i j}=-\varphi_{A}^{i} \frac{\partial V}{\partial \varphi_{A}^{k}} g^{k j}
$$

There is also another formula:

$$
\frac{d K^{i j}}{d t}=N^{i j}+2 \frac{\partial T_{i n t}}{\partial g_{i j}}
$$

When there exist dissipative forces non-derivable from Lagrangian, then there appear some additional terms. In the simplest case, we choose them just linear or quadratic in generalized velocities.

- Gyroscopic constraints

There are some additional geometric, namely group-implied, forces imposed on the system. For example, gyroscopic constraints (pseudo-holonomic constraints of rigid motion) imply that $\Omega^{i}{ }_{j}, \widehat{\Omega}^{A}{ }_{B}$ are respectively g - and η-skew-symmetric angular velocities in spatial and co-moving representations,

$$
\Omega^{i}{ }_{j}=-\Omega_{j}{ }^{i}=-g_{j k} \Omega^{k}{ }_{1} g^{l i}, \quad \widehat{\Omega}^{A}{ }_{B}=-\widehat{\Omega}_{B}{ }^{A}=-\eta_{B C} \widehat{\Omega}^{C}{ }_{D} \eta^{D A},
$$

where g is the metric tensor of the physical space and η is the material metric.
It is easy to see that the above conditions are holonomic and may be written down as the conditions of isometry,

$$
g_{i j} \varphi^{i}{ }_{A} \varphi^{j}{ }_{B}=\eta_{A B} .
$$

Then the reaction moments N_{R} are symmetric,

$$
N_{R i j}=N_{R j i}
$$

and our equations are independent of explicitly non-specified reactions. Of course, gyroscopic reactions do not vanish, but their full tensor contractions with skew-symmetric affine virtual velocities (angular velocities) are vanishing in virtue of constraints.

So, if we are taking the skew-symmetric part of original equations, we can eliminate reaction moments and then obtain the effective equations of motion.

- Isochoric constraints (incompressible body)

In the case of incompressible body (isochoric constraints) the traces of affine velocities vanish:

$$
\operatorname{Tr} \Omega=\Omega_{i}^{i}=0 .
$$

The total contractions of such virtual Ω-s with the reaction affine moment N_{R} must vanish:

$$
N_{R}{ }^{i j} \Omega_{j i}=N_{R}{ }^{i j} \Omega^{k}{ }_{i} g_{j k}=0
$$

It is easy to see that then reactions are pure traces,

$$
N_{R}{ }^{i}{ }_{j}=\lambda \delta^{i}{ }_{j}, \quad N_{R}{ }^{i j}=\lambda g^{i j}
$$

where

$$
\lambda=\frac{1}{n} \operatorname{Tr} N_{R}=\frac{1}{n} g_{i j} N_{R}^{i j}
$$

So, to eliminate the Lagrange multiplier λ, we must take the constraints condition (i.e., $\operatorname{det} \varphi=\operatorname{const}$) jointly with the g-traceless part of the initial equation itself:

$$
\varphi^{i}{ }_{A} \frac{d^{2} \varphi^{j} B}{d t^{2}} J^{A B}-\frac{1}{n} g_{a b} \varphi^{a}{ }_{A} \frac{d^{2} \varphi^{b}{ }_{B}}{d t^{2}} J^{A B} g^{i j}=N^{i j}-\frac{1}{n} g_{a b} N^{a b} g^{i j}
$$

- Constraints implied by linear conformal group (rotations and dilatations)

In such a case an affine velocity (gyration) has the form:

$$
\Omega^{i}{ }_{j}=\omega^{i}{ }_{j}+\alpha \delta^{i}{ }_{j}
$$

where $\omega^{i}{ }_{j}$ is the g-skew-symmetric angular velocity, and α is an arbitrary real, dilatational parameter, so that

$$
g_{i j} \varphi^{i}{ }_{A} \varphi_{B}^{j}=\lambda \eta_{A B}, \quad \lambda>0 .
$$

The reaction-free equations of motion consist of the skew-symmetric part of the original equation and of the g-trace of that equation, and reaction moments $N_{R}{ }^{i j}$ are symmetric and g-traceless:

$$
\begin{aligned}
\varphi^{i}{ }_{A} \frac{d^{2} \varphi^{j}{ }_{B}}{d t^{2}} J^{A B}-\varphi^{j}{ }_{A} \frac{d^{2} \varphi^{i}{ }_{B}}{d t^{2}} J^{A B} & =N^{i j}-N^{j i} \\
g_{i j} \varphi^{i}{ }_{A} \frac{d^{2} \varphi^{j}{ }_{B}}{d t^{2}} J^{A B} & =g_{i j} N^{i j} .
\end{aligned}
$$

- Constraints of purely rotation-free affine motion

It is a very interesting example of nonholonomic constraints, when Ω is g-symmetric (the only geometrically correct definition):

$$
\Omega^{i}{ }_{j}-\Omega_{j}{ }^{i}=\Omega^{i}{ }_{j}-g_{j k} g^{i l} \Omega^{k}{ }_{l}=0 .
$$

Then the reactions forces are anti-symmetric. So, the above equation must be joined with the symmetric part of equations of motion as balance laws:

$$
\varphi^{i}{ }_{A} \frac{d^{2} \varphi^{j} B}{d t^{2}} J^{A B}+\varphi^{j}{ }_{A} \frac{d^{2} \varphi^{i}{ }_{B}}{d t^{2}} J^{A B}=N^{i j}+N^{j i} .
$$

- Elimination of reaction forces: d'Alembert prescription

Let Lagrangian of the dynamical system be $L(q, \dot{q})$, i.e., it is a function of generalized coordinates q^{1}, \ldots, q^{n} and their velocities, but we can also take the time into a consideration explicitly, i.e., $L(t, q, \dot{q})$.

Then the constraints are given by the following expressions:

$$
F_{a}(q, \dot{q})=0 \quad\left(F_{a}(t, q, \dot{q})=0\right), \quad a=1, \ldots, m
$$

In applications mostly often we have the constraints linear in velocities:

$$
F_{a}(q, \dot{q})=\omega_{a i}(q) \dot{q}^{i}
$$

Then the d'Alembert principle give us the following equations of motion:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}-\frac{\partial L}{\partial q^{i}}=R_{i}
$$

where R_{i} are reaction forces, which vanish on velocities compatible with constraints:

$$
\omega_{a i}(q) \dot{q}^{i}=0, \quad \text { i.e., } \quad R_{i} \dot{q}^{i}=0 .
$$

This implies that

$$
R_{i}=\lambda^{a} \omega_{a i}
$$

- d'Alembert prescription (cont.)

By analogy the similar expressions can be written also for systems with dissipative forces. The nonconstrained dynamics is given by the following equations of motion:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}-\frac{\partial L}{\partial q^{i}}=D_{i}
$$

where D_{i} are covariant vectors of non-variational, e.g., friction forces.
The corresponding constrained systems is given by the expressions:

$$
\begin{aligned}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}-\frac{\partial L}{\partial q^{i}} & =D_{i}+R_{i} \\
F_{a}(q(t), \dot{q}(t)) & =\omega_{a i}(q) \dot{q}^{i}=0
\end{aligned}
$$

where R_{i} are the reaction forces.

- Elimination of reaction forces: Vakonomic prescription

The variational principle constrained by $F_{a}=0$ is given by the following expressions:

$$
\delta \int L(q(t), \dot{q}(t)) d t=0, \quad F_{a}(q(t), \dot{q}(t))=0
$$

where the variations $\delta q^{i}(t)$ are subject to constraints.
The Lusternik theorem give us that the above variational principle is equivalent to the corresponding non-restricted principle:

$$
\delta \int L[\mu](q(t), \dot{q}(t)) d t=0
$$

where μ is the Lagrange multiplier and $L[\mu]$ is given by

$$
L[\mu](q(t), \dot{q}(t))=L(q(t), \dot{q}(t))-\mu^{a} F_{a}(q(t), \dot{q}(t)) .
$$

Mathematically here μ^{a} are some a priori unknown functions of time.

- Linear vakonomic constraints

The variational principle for $L[\mu]$ implies that for constraints that are linear in velocities,

$$
F_{a}(q(t), \dot{q}(t))=\omega_{a i}(q(t)) \dot{q}^{i}(t)
$$

we can write the following equations of motion:

$$
\begin{aligned}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}-\frac{\partial L}{\partial q^{i}} & =\frac{d \mu^{a}}{d t} \omega_{a i}-\mu^{a}\left(\frac{\partial \omega_{a j}}{\partial q^{i}}-\frac{\partial \omega_{a i}}{\partial q^{j}}\right) \dot{q}^{j} \\
F_{a}(q(t), \dot{q}(t)) & =\omega_{a i}(q(t)) \dot{q}^{i}(t)=0
\end{aligned}
$$

This is the system of $(n+m)$ differential equations for the $(n+m)$ variables $q^{i}(t)$ and $\mu^{a}(t)$ as functions of time.

Correspondingly the constraints reactions are given as follows:

$$
R_{i}=\frac{d \mu^{a}}{d t} \omega_{a i}+\mu^{a}\left(\frac{\partial \omega_{a i}}{\partial q^{j}}-\frac{\partial \omega_{a j}}{\partial q^{i}}\right) \frac{d q^{j}}{d t} .
$$

- Elimination of reaction forces: Linear constraints (summary)

So, there are two prescriptions for calculating R_{i}, namely:

1. d'Alembert prescription:

$$
R_{i}=\lambda^{a} \omega_{a i}, \quad \text { i.e., } \quad R_{i} \dot{q}^{i}=0
$$

for every virtual velocity satisfying the constraints,
2. Vaconomic prescription:

$$
R_{i}=\frac{d \mu^{a}}{d t} \omega_{a i}+\mu^{a}\left(\frac{\partial \omega_{a i}}{\partial q^{j}}-\frac{\partial \omega_{a j}}{\partial q^{i}}\right) \frac{d q^{j}}{d t} .
$$

- Holonomic constraints

For the holonomic constraints

$$
F_{a}(q)=0, \quad a=1, \ldots, m
$$

in the reaction forces survives only the first term and then they are given by the usual d'Alembert expression

$$
R_{i}=\lambda^{a} \omega_{a i} \quad \text { with the multiplier } \quad \lambda^{a}=\frac{d \mu^{a}}{d t}
$$

- Nonholonomic constraints of rotation-free affine motion

Let us remind that the affine velocity and its co-moving counterpart are given by the expressions:

$$
\Omega^{i}{ }_{j}=\frac{d \varphi^{i}{ }_{A}}{d t} \varphi^{-1 A}{ }_{j}, \quad \widehat{\Omega}^{A}{ }_{B}=\varphi^{-1 A}{ }_{i} \frac{d \varphi^{i}{ }_{B}}{d t}=\varphi^{-1 A}{ }_{i} \Omega^{i}{ }_{j} \varphi^{j}{ }_{B} .
$$

For the gyroscopic (metrically rigid) motion we have that

$$
\Omega^{i}{ }_{j}+\Omega_{j}{ }^{i}=\Omega^{i}{ }_{j}+g_{j a} \Omega^{a}{ }_{b} g^{b i}=0
$$

i.e., they are g-antisymmetric. This is nonholonomic description of holonomic constraints. Skew-symmetric matrices form a Lie algebra and those equations are integrated to the orthogonal group.

By analogy, the rotation-free motion is primarily described by

$$
\Omega_{j}^{i}-\Omega_{j}{ }^{i}=\Omega_{j}^{i}-g_{j k} g^{i l} \Omega_{l}^{k}=0
$$

i.e., by the g-symmetry. But symmetric matrices do not form a Lie algebra. Moreover, those are truly nonholonomic constraints and they are not integrated to any submanifold.

- Polar decomposition

The polar decomposition of φ can be written as follows:

$$
\varphi=U A
$$

where U is an orthogonal (isometric) matrix and A is an η-symmetric one:

$$
U \in \mathrm{O}(U, \eta ; V, g), \quad A \in \operatorname{Symm}(U, \eta), \quad \text { i.e., } \quad \eta_{A B}=g_{i j} \varphi_{A}^{i} \varphi_{B}^{j}, \quad \eta_{A C} A_{B}^{C}=\eta_{B C} A_{A}^{C} .
$$

The co-moving angular velocity $\widehat{\omega}$ of the U-rotator is given by

$$
\widehat{\omega}=U^{-1} \frac{d U}{d t}
$$

The kinetic energy can be written as the sum of the translational and internal (relative) terms:

$$
T=T_{\mathrm{tr}}+T_{\mathrm{int}}=\frac{M}{2} g_{i j} \frac{d r^{i}}{d t} \frac{d r^{j}}{d t}+\frac{1}{2} g_{i j} \frac{d \varphi^{i}{ }_{A}}{d t} \frac{d \varphi^{j}{ }_{B}}{d t} J^{A B}
$$

In the polar decomposition the internal kinetic energy T_{int} becomes as follows:

$$
T_{\text {int }}=\frac{1}{2} \eta_{K L} \frac{d A^{K}{ }_{A}}{d t} \frac{d A^{L}{ }_{B}}{d t} J^{A B}+\eta_{K L} \widehat{\omega}_{C}^{K} A^{C}{ }_{A} \frac{d A^{L}{ }_{B}}{d t} J^{A B}+\frac{1}{2} \eta_{K L} \widehat{\omega}^{K}{ }_{C} \widehat{\omega}^{L}{ }_{D} A^{C}{ }_{A} A^{D}{ }_{B} J^{A B} .
$$

- Polar decomposition (cont.)

Obviously, $\widehat{\omega}$ is η-skew-symmetric:

$$
\eta_{A C} \widehat{\omega}^{C}{ }_{B}=-\eta_{B C} \widehat{\omega}^{C}{ }_{A} .
$$

The g-symmetry constraints on Ω imply that

$$
\widehat{\omega}=\frac{1}{2}\left[A^{-1}, \frac{d A}{d t}\right]=\frac{1}{2}\left(A^{-1} \frac{d A}{d t}-\frac{d A}{d t} A^{-1}\right) .
$$

Substituting this to the expression for the internal kinetic energy $T_{\text {int }}$, we obtain that

$$
\begin{aligned}
T_{\mathrm{int}}^{\mathrm{Vak}} & =\frac{1}{2} \eta_{K L} \frac{d A^{K}{ }_{A}}{d t} \frac{d A^{L}{ }_{B}}{d t} J^{A B}+\frac{1}{4} \eta_{K L} A^{-1 K}{ }_{D} \frac{d A^{D}{ }_{C}}{d t} A^{C}{ }_{A} \frac{d A^{L}{ }_{B}}{d t} J^{A B} \\
& +\frac{1}{8} \eta_{K L} A^{-1 K_{E}} \frac{d A^{E}{ }_{C}}{d t} A^{C}{ }_{A} A^{-1 L}{ }_{F} \frac{d A^{F}{ }_{D}}{d t} A_{B}^{D} J^{A B}
\end{aligned}
$$

The simplest vakonomic Lagrangian is obtained by putting:

$$
L_{\mathrm{int}}^{\mathrm{Vak}}=T_{\mathrm{int}}^{\mathrm{Vak}}+V(G),
$$

where the potential V depends on the Green deformation tensor G :

$$
G_{A B}=g_{i j} \varphi^{i}{ }_{A} \varphi_{B}^{j}=\eta_{C D} A_{A}^{C} A_{B}^{D}
$$

- Vakonomic lagrangian and resulting equations of motion

The variational derivative of $T_{\mathrm{int}}^{\mathrm{Vak}}$ with respect to the symmetric tensor $A_{A B}=\eta_{A C} A^{C}{ }_{B}=A_{B A}$ is given by

$$
\begin{aligned}
& \left.\frac{\delta T_{\mathrm{int}}^{\mathrm{Vak}}}{\delta A_{A B}}\right|_{\mathrm{symm}}=-\frac{1}{4} \frac{d^{2}}{d t^{2}} A^{\left(A_{L} J^{B) L}-\frac{1}{4} \frac{d}{d t}\left(\left(A^{-1}\right){ }^{(A}{ }_{E} J^{B) L} \frac{d A^{E}{ }_{C}}{d t} A^{C}{ }_{L}\right)\right.} \\
& -\frac{1}{4} \eta_{K L} \frac{d}{d t}\left(\frac{d A^{K}{ }_{E}}{d t}\left(A^{-1}\right)^{L(A} A^{B)}{ }_{D}\right) J^{E D} \\
& -\frac{1}{4} \eta_{K L} \frac{d}{d t}\left(\left(A^{-1}\right)^{K}{ }_{E} \frac{d A^{E}{ }_{C}}{d t} A^{C}{ }_{F}\left(A^{-1}\right)^{L(A} A^{B)}{ }_{D}\right) J^{F D} \\
& -\frac{1}{4} \eta_{K L} \frac{d A^{K}{ }_{E}}{d t} \frac{d A^{F}{ }_{D}}{d t} A^{D}{ }_{G}\left(A^{-1}\right)^{L(A}\left(A^{-1}\right)^{B)}{ }_{F} J^{E G} \\
& -\frac{1}{4} \eta_{K L}\left(A^{-1}\right)^{K}{ }_{E} \frac{d A^{E}{ }_{C}}{d t} A^{C}{ }_{M} \frac{d A^{F}{ }_{D}}{d t} A^{D}{ }_{N}\left(A^{-1}\right)^{L(A}\left(A^{-1}\right)^{B)}{ }_{F} J^{M N} \\
& +\frac{1}{4} \eta_{K L} \frac{d A^{K}{ }_{D}}{d t}\left(A^{-1}\right)^{L}{ }_{E} \frac{d A^{E(A}}{d t} J^{B) D} \\
& +\frac{1}{4} \eta_{K L}\left(A^{-1}\right)^{K}{ }_{E} \frac{d A^{E}{ }_{C}}{d t} A^{C}{ }_{D}\left(A^{-1}\right)^{L}{ }_{F} \frac{d A^{F(A}}{d t} J^{B) D} .
\end{aligned}
$$

When there are hyperelastic forces derivable from the potential V depending only on the Green deformation tensor G, then equations of motion have the following form:

$$
\left.\frac{\delta T_{\mathrm{int}}^{\mathrm{Vak}}}{\delta A_{A B}}\right|_{\mathrm{symm}}=-A_{K C} \eta^{K(A} \widehat{N}^{B) C}
$$

- Usual (non-vakonomic) constraints and equations of motion

One can show that for the usual (non-vakonomic) constraints of the rotation-free motion the evolution of the system is given by the symmetric part of the following tensor equation:

$$
A J_{\eta} \frac{d^{2} A}{d t^{2}}-\frac{1}{2} A J_{\eta} A \frac{d}{d t}\left[A^{-1}, \frac{d A}{d t}\right]-A J_{\eta} \frac{d}{d t}\left[A^{-1}, \frac{d A}{d t}\right]+\frac{1}{4} A J_{\eta} A \frac{d}{d t}\left[A^{-1}, \frac{d A}{d t}\right]^{2}=\bar{N}
$$

where

$$
\begin{array}{cc}
J_{\eta}{ }^{K}{ }_{L}=J^{K M} \eta_{M L}, & \bar{N}^{K L}=A^{K}{ }_{M} A^{L}{ }_{N} \widehat{N}^{M N} \\
\widehat{N}^{A B}=\varphi^{-1 A}{ }_{i} \varphi^{-1 B}{ }_{j} N^{i j}, & N^{i j}=-g^{j k} \varphi^{i}{ }_{M} \frac{\partial V}{\partial \varphi^{k}{ }_{M}} .
\end{array}
$$

In the explicit form the equations of motion are written as follows:

$$
\begin{aligned}
J^{A B} \frac{d^{2} A^{B(C}}{d t^{2}} A^{D)}{ }_{A} & -J_{B}^{A} A^{B}{ }_{E} \frac{d}{d t} \frac{1}{2}\left(\left(A^{-1}\right)^{E}{ }_{F} \frac{d}{d t}\left(A^{F(C}\right) A^{D)}{ }_{A}-\frac{d}{d t}\left(A^{E}{ }_{F}\right)\left(A^{-1}\right)^{F(C} A^{D)}{ }_{A}\right) \\
& -J^{A}{ }_{B} \frac{d A^{B}{ }_{E}}{d t}\left(\left(A^{-1}\right)^{E}{ }_{F} \frac{d}{d t}\left(A^{F(C}\right) A^{D)}{ }_{A}-\frac{d}{d t}\left(A^{E}{ }_{F}\right)\left(A^{-1}\right)^{F(C} A^{D)}{ }_{A}\right) \\
+ & \frac{1}{4} J^{A}{ }_{B} A^{B}{ }_{E}\left(\left(A^{-1}\right)^{E}{ }_{G} \frac{d}{d t}\left(A^{G}{ }_{F}\right)-\frac{d}{d t}\left(A^{E}{ }_{G}\right)\left(A^{-1}\right)^{G}{ }_{F}\right) \\
& \cdot\left(\left(A^{-1}\right)^{F}{ }_{H} \frac{d}{d t}\left(A^{H(C}\right) A^{D) A}-\frac{d}{d t}\left(A^{F}{ }_{H}\right)\left(A^{-1}\right)^{H(C} A^{D)}{ }_{A}\right)=\bar{N}^{(C D)} .
\end{aligned}
$$

The structures of vakonomic and d'Alembert equations are evidently different.

- Solving the above equations of motion:

- solving the symmetric or vakonomic part of our equations of motion, we find $A(t)$.
- then we substitute it to $\widehat{\omega}$ and solving equation

$$
\frac{d U}{d t}=U \widehat{\omega}
$$

we find $U(t)$.

- finally, substituting it to

$$
\varphi(t)=U(t) A(t)
$$

we solve the problem, at least in principle.

- Nonlinear vakonomic constraints

In the case when there is no dissipation, calculating Euler-Lagrange equations for the modified Lagrangian $L[\mu]=L+\mu^{a} F_{a}$ we obtain the system for the $(n+m)$ variables $q^{i}(t), \mu^{a}(t)$:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}-\frac{\partial L}{\partial q^{i}}=\mu^{a} \frac{\partial F_{a}}{\partial q^{i}}-\frac{d}{d t}\left(\mu^{a} \frac{\partial F_{a}}{\partial \dot{q}^{i}}\right), \quad i=1, \ldots, n,
$$

where $\mu^{a}(t), a=1, \ldots, m$, are Lagrange multipliers and $F_{a}(q, \dot{q})=0$.
The reactions forces:

$$
R_{i}=\mu^{a} \frac{\partial F_{a}}{\partial q^{i}}-\frac{d}{d t}\left(\mu^{a} \frac{\partial F_{a}}{\partial \dot{q}^{i}}\right)=\mu^{a} \frac{\partial F_{a}}{\partial q^{i}}-\frac{d \mu^{a}}{d t} \frac{\partial F_{a}}{\partial \dot{q}^{i}}-\mu^{a} \frac{\partial^{2} F_{a}}{\partial \dot{q}^{i} \partial q^{j}} \frac{d q^{j}}{d t}-\mu^{a} \frac{\partial^{2} F_{a}}{\partial \dot{q}^{i} \partial \dot{q}^{j}} \frac{d^{2} q^{j}}{d t^{2}} .
$$

In general, such reactions need not be adiabatic. The equations of constrained motion have the form:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}-\frac{\partial L}{\partial q^{i}}=D_{i}+R_{i}, \quad F_{a}(q(t), \dot{q}(t))=0
$$

Nonlinearity of nonholonomic constraints with respect to velocities has a qualitative effect on the dynamical structure of reactions R_{i} (contains the term with second derivatives). Such accelerationdependent forces modify the inertial properties of the object. Besides, nonlinearity of M may influence the energy balance because, in general, the above reactions R_{i} need not annihilate the velocity vectors. After calculating the power of the reactions along curves in Q compatible with constraints M we obtain

$$
R_{i} \frac{d q^{i}}{d t}=\mu^{a} \frac{d F_{a}}{d t}-\frac{d}{d t}\left(\mu^{a} \dot{q}^{i} \frac{\partial F_{a}}{\partial \dot{q}^{i}}\right)
$$

- Nonlinear vakonomic constraints (cont.)

The first term vanishes in virtue of constraints equations, so finally

$$
R_{i} \dot{q}^{i}=-\frac{d}{d t}\left(\mu^{a} \frac{\partial F_{a}}{\partial \dot{q}^{i}} \dot{q}^{i}\right)
$$

Then the energy balance has the form:

$$
\frac{d}{d t}\left(E+\mu^{a} \dot{q}^{i} \frac{\partial F_{a}}{\partial \dot{q}^{i}}\right)=D_{i} \dot{q}^{i}
$$

The balanced quantity

$$
E[L, M]:=E+\mu^{a} \dot{q}^{i} \frac{\partial F_{a}}{\partial \dot{q}^{i}}
$$

can be interpreted as the effective energy of the system constrained by the manifold M.
When M is fixed, $E[L, M]$ does not depend on the particular choice of functions F_{a}, used as left-hand sides of equations of M.

The balanced quantity

- Nonlinear vakonomic constraints (cont.)

The quantity $E[L, M]$ contains two parts:

- the natural energy

$$
E[L]:=\dot{q}^{i} \frac{\partial L}{\partial \dot{q}^{i}}-L
$$

of the unconstrained system and

- the energy of constraints

$$
E[M]:=\mu^{a} \frac{\partial F_{a}}{\partial \dot{q}^{i}} \dot{q}^{i}
$$

In the case with no dissipative forces, the total energy $E[L, M]$ is a constant of motion. The existence of this constant of motion is just the peculiarity and distinguishing feature of the Hamilton-Lusternik algorithm.
$E[L, M]$ can be directly obtained from the modified Lusternik Lagrangian $L[\mu]$:

$$
E[L[\mu]]:=\dot{q}^{i} \frac{\partial L[\mu]}{\partial \dot{q}^{i}}-L[\mu]=E[L]+\mu^{a} \frac{\partial F_{a}}{\partial \dot{q}^{i}} \dot{q}^{i}-\mu^{a} F_{a}
$$

where the last term vanishes on constraints M.
The mechanical work done by Hamilton-Lusternik reactions has a variational structure; it can be interpreted as the exchange of energy between the system in question and the constraining object.

The end.

Thank you for your attention!

