POSITIVE DEFINITE KERNELS AND QUANTIZATION

Anatol Odzijewicz

Institute of Mathematics University in Białystok

XVth International Conference on Geometry, Integrability and Quantization Varna, June 7–12, 2013

Hamiltonian Dynamical Systems	Quantum Dynamical Systems
• Symplectic manifold (M, ω) • Hamiltonian flow $\sigma_t : M \longrightarrow M$ • defined by Hamilton equation $X_{\perp}\omega = dF$, where $F \in C^{\infty}(M, \mathbb{R})$ and $X \in \Gamma^{\infty}(M, TM)$ is tangent to $\{\sigma\}_{t \in \mathbb{R}}$.	• \mathcal{H} — Hilbert space • Unitary flow $U_t = e^{it\hat{F}}$ where \hat{F} — a selfadjoint operator $\hat{F} : \mathcal{D}(\hat{F}) \longrightarrow \mathcal{H}$ unbounded in general

quantization

 \implies

Hamiltonian Dynamical System

Quantum Dynamical System

Example

$$(\mathcal{H}, e^{it\hat{F}}, \hat{F} : \mathcal{D}(\hat{F}) \longrightarrow \mathcal{H}) \Longrightarrow (M, \omega, F)$$

 $\hat{F} = \int \lambda dE(\lambda)$ — selfadjoint operator with semisimple spectrum

Thus

• $\mathcal{H} \cong L^2(\mathbb{R}, d\sigma)$ where $d\sigma(\lambda) = \langle 0 | dE(\lambda) | 0 \rangle$ and $| 0 \rangle$ — cyclic for \hat{F}

• $|n\rangle := P_n(\hat{F})|0\rangle$, n = 0, 1, ... orthonormal basis in \mathcal{H} , where P_n — orthogonal polynomials with respect to $d\sigma$

We assume the condition

$$\limsup_{n \longrightarrow \infty} \frac{\sqrt[n]{|\mu|_n}}{n} < +\infty$$

on the absolute moments

$$|\mu|_n := \int_{\mathbb{R}} |\omega|^n d\sigma(\omega) = rac{1}{P_0^2} \langle 0| |\hat{F}| |0
angle$$

of the operator \hat{F} .

Then, there exists the open strip $\Sigma\subset\mathbb{C}$ in complex plane $\mathbb{C},$ which is invariant under the translations

$$\tau_t z := z + t$$

 $t \in \mathbb{R}$ and such that the characteristic functions

$$\chi(s) = \int_{\mathbb{R}} e^{-i\omega s} d\sigma(\omega),$$

 $s \in \mathbb{R}$, of the measure $d\sigma$ posses holomorphic prolongation χ_{Σ} on Σ .

Hence, one has the positive definite kernel on $\boldsymbol{\Sigma}$

$$K_{\Sigma}(\bar{z},v) := \chi_{\Sigma}(\bar{z}-v).$$

The map $\mathfrak{K}_{\Sigma}:\Sigma\longrightarrow\mathcal{H}\cong\mathcal{B}(\mathbb{C},\mathcal{H})$ defined by

$$\mathfrak{K}_{\Sigma}(z) := \sum_{n=0}^{\infty} \chi_n(z) |n\rangle$$

where

$$\chi_n(z) := \int e^{-iz\omega} P_n(\omega) d\sigma(\omega),$$

for $z \in \Sigma$, gives factorization

$$K_{\Sigma}(\bar{z},v) = \mathfrak{K}_{\Sigma}(z)^* \mathfrak{K}_{\Sigma}(v)$$

of the kernel K_{Σ} .

One has

$$e^{-it\hat{F}}\mathfrak{K}_{\Sigma}(z) = \mathfrak{K}_{\Sigma}(z+t).$$

The states $\mathfrak{K}_{\Sigma}(z), z \in \mathbb{Z}$, span an essential domain $\mathcal{D}(\hat{F})$ of \hat{F} and

$$\widehat{F}\mathfrak{K}_{\Sigma}(z)=irac{d}{dz}\mathfrak{K}_{\Sigma}(z).$$

The function

$$F = (\log \circ \chi_{\Sigma})'(\bar{z} - z).$$

and the vector field tangent to the translation flow au(t)

$$X = \frac{\partial}{\partial z} + \frac{\partial}{\partial \bar{z}}$$

satisfy

$$X \llcorner \Omega_{\Sigma} = dF$$

for symplectic form

$$\Omega_{\Sigma} = i\partial\bar{\partial}(\log \circ K_{\Sigma})(\bar{z},z) = i(\log \circ \chi_{\Sigma})''(\bar{z}-z)d\bar{z} \wedge dz.$$

Applying the geometric quantization to Hamiltonian system $(M = \Sigma, \omega = \Omega_{\Sigma}, F)$ we back to the initial quantum system $(\mathcal{H}, e^{it\hat{F}}, \hat{F} : \mathcal{D}(\hat{F}) \longrightarrow \mathcal{H}).$

$$\begin{array}{c} geometric\\ quantization\\ (\mathcal{M} = \Sigma, \omega = \Omega_{\Sigma}, F) & \Longrightarrow & (\mathcal{H}, e^{it\hat{F}}, \hat{F} : \mathcal{D}(\hat{F}) \longrightarrow \mathcal{H}) \end{array}$$

Positive definite kernels on the principal bundles

• *P* — a set

- V and \mathcal{H} Hilbert spaces
- $\bullet \ \mathcal{B}(V,\mathcal{H})$ Banach space of bounded linear operators from V into $\mathcal H$

(i) The $\mathcal{B}(V)$ -valued positive definite kernels, i.e. maps $K : P \times P \to \mathcal{B}(V)$ such that for any finite sequences $p_1, \ldots, p_J \in P$ and $v_1, \ldots, v_J \in V$ one has

$$\sum_{i,j=1}^{J} \langle v_i, K(p_i, p_j) v_j \rangle \ge 0,$$

where $\langle\cdot,\cdot\rangle$ denotes the scalar product in V. One has

$$K(q,p) = K(p,q)^*$$

for each $q, p \in P$.

(ii) The maps $\mathfrak{K}: P \to \mathcal{B}(V, \mathcal{H})$ satisfying the condition

$$\{\mathfrak{K}(p)v: p \in P \text{ and } v \in V\}^{\perp} = \{0\}.$$

(iii) The Hilbert spaces $\mathcal{K} \subset V^P$ realized by the functions $f : P \to V$ such that evaluation functionals

$$E_p f := f(p)$$

are continuous maps of Hilbert spaces $E_p : \mathcal{K} \to V$ for every $p \in P$.

There exist functorial equivalences between the categories of the object defined above.

• Equivalence between (ii) and (iii) is given as follows. For $\mathfrak{K}: P \to \mathcal{B}(V, \mathcal{H})$ we define monomorphism of vector spaces $J: \mathcal{H} \to V^P$ by

 $J(\psi)(p) := \mathfrak{K}(p)^* \psi,$

and

$$\mathfrak{K}(p) := E_p^*,$$

where $\psi \in \mathcal{H}$, $p \in P$.

• The passage from (ii) to (i) is given by

$$K(q,p) := \mathfrak{K}(q)^* \mathfrak{K}(p).$$

• In order to show the implication (i) \Rightarrow (iii) let us take vector subspace $\mathcal{K}_0 \subset V^P$ consisting of the following functions

$$f(p) := \sum_{i=1}^{l} K(p, p_i) v_i,$$

defined for the finite sequences $p_1, \ldots, p_l \in P$ and $v_1, \ldots, v_l \in V$.

Due to positive definiteness of the kernel $K : P \times P \to \mathcal{B}(V)$ we define a scalar product between $g(\cdot) = \sum_{j=1}^{J} K(\cdot, q_j) w_j \in \mathcal{K}_0$ and $f \in \mathcal{K}_0$ as follows

$$\langle g|f
angle := \sum_{i=1}^{I} \sum_{j=1}^{J} \langle K(p_i, q_j) w_j, v_i
angle.$$

We obtain $\mathcal{K} \subset V^P$ as a closure of \mathcal{K}_0 with respect to the norm given by the above scalar product.

Proposition

Let P be a smooth manifold and V a finite dimensional complex Hilbert space. Then the following properities are equivalent:

- (a) The positive definite kernel $K : P \times P \rightarrow \mathcal{B}(V)$ is a smooth map.
- (b) The map $\mathfrak{K}: P \to \mathcal{B}(V, \mathcal{H})$ is smooth.
- (c) The Hilbert space $\mathcal{K} \subset V^P$ defined in (iii) consists of smooth functions, i.e. $\mathcal{K} \subset C^{\infty}(P, V)$.

From now let us assume that P is a principal bundle

over the smooth manifold M with some Lie group G as the structural group. Additionally we introduce a faithful representation of G

$$T: G \longrightarrow \operatorname{Aut}(V)$$

in Hilbert space V and suppose that positive definite kernel $K : P \times P \rightarrow \mathcal{B}(V)$ has equivariance property

$$K(p,qg) = K(p,q)T(g)$$

where $p, q \in P$ and $g \in G$. This property is equivalent to each of the following two properties

$$\mathfrak{K}(pg) = \mathfrak{K}(p)T(g)$$

and

$$f(pg) = T(g^{-1})f(p)$$

for $f \in \mathcal{K}$.

Using the action of G on $P \times V$ defined by

$$\mathsf{P} imes \mathsf{V}
i (\mathsf{p},\mathsf{v}) \mapsto (\mathsf{p}\mathsf{g},\mathsf{T}(\mathsf{g}^{-1})\mathsf{v}) \in \mathsf{P} imes \mathsf{V}$$

one obtains the T-associated vector bundle

$$V \longrightarrow \mathbb{V}$$

$$\downarrow_{\widetilde{\pi}}$$
 M

over M with the quotient manifold $\mathbb{V} := (P \times V)/G$ as its total space.

Given $\pi(p) = m$, $\pi(q) = n$, we define by

$$K_T(m,n)([(p,v)],[(q,w)]) := \langle v,K(p,q)w \rangle,$$

the section

$$K_T: M imes M \longrightarrow \mathit{pr}_1^* \overline{\mathbb{V}}^* \otimes \mathit{pr}_2^* \mathbb{V}^*$$

of the bundle $pr_1^*\overline{\mathbb{V}}^*\otimes pr_2^*\mathbb{V}^* \to M \times M.$

The diagonal $K_{T|\Delta}$ of the kernel K_T determines positive semi-definite hermitian structure $H_K := K_{T|\Delta}$ on the bundle $\tilde{\pi} : \mathbb{V} \to M$.

One has $I : \mathcal{H} \to C^{\infty}(M, \mathbb{V})$ a linear monomorphism of vector spaces defined by

$$I(\psi)(\pi(p)) := [(p, \mathfrak{K}(p)^*\psi)] = [(p, J(\psi)(p))].$$

Apart of hermitian structure H_K the positive hermitian kernel K defines on P a $\mathcal{B}(V)$ -valued differential one-form

$$\vartheta(p) := (\mathfrak{K}(p)^* \mathfrak{K}(p))^{-1} \mathfrak{K}(p)^* d\mathfrak{K}(p) = K(p,p)^{-1} d_q K(p,q)_{|q=p},$$

which satisfy

$$\vartheta(pg) = T(g^{-1})\vartheta(p)T(g)$$

and

$$\langle v, K(p,p)\vartheta(p)w \rangle + \langle \vartheta(p)v, K(p,p)w \rangle = d \langle v, K(p,p)w \rangle.$$

Thus we conclude that $\vartheta \in C^{\infty}(P, T^*P \otimes \mathcal{B}(V))$ is the one-form of the metric connection ∇_K consistent with the hermitian structure H_K .

One-parameter groups of automorphisms and prequantization

Let $\xi \in C^{\infty}(P, TP)$ be the vector field tangent to the flow of authomorphisms $\tau : (\mathbb{R}, +) \to \operatorname{Aut}(P, \vartheta)$ of the principal bundle

$$\tau_t(pg)=\tau_t(p)g,$$

where $g \in G$ and $p \in P$, which preserve the connection form ϑ

$$\tau_t^*\vartheta=\vartheta.$$

Then one has

$$\xi(pg) = DR_g(p)\xi(p),$$

and

$$\mathcal{L}_{\xi}\vartheta=0,$$

where $R_g(p) := pg$, $DR_g(p)$ is the derivative of R_g at p and \mathcal{L}_{ξ} is Lie derivative with respect to ξ .

The space of vector fields preserving connection we denoted by $\mathcal{E}_G^0 \subset C_G^\infty(P, TP)$. For connection 1-form ϑ and the $DT(e)(\mathfrak{g})$ -valued pseudotensorial 0-form, i.e. $DT(e)(\mathfrak{g})$ -valued function such that

$$F(pg) = T(g^{-1})F(p)T(g),$$

one has

$$egin{aligned} \Omega &:= \mathbf{D}artheta = dartheta + rac{1}{2}[artheta,artheta], \ \mathbf{D}F &= dF + [artheta,F]. \end{aligned}$$

 $C_G^{\infty}(P, DT(e)(\mathfrak{g}))$ — the space of $DT(e)(\mathfrak{g})$ -valued functions satisfying equivariance condition Now let us investigate the Lie algebra \mathcal{P}_G which consists of pairs $(F, \xi) \in C_C^{\infty}(P, DT(e)(\mathfrak{g})) \times C_C^{\infty}(P, TP)$ such that

$$\xi \llcorner \Omega = \mathbf{D}F \qquad \Longleftrightarrow \qquad \mathcal{L}_{\xi} \vartheta = \mathbf{D}(F + \vartheta(\xi))$$

with the bracket $\llbracket \cdot, \cdot \rrbracket : \mathcal{P}_G \times \mathcal{P}_G \to \mathcal{P}_G$ defined for $(F, \xi), (G, \eta) \in \mathcal{P}_G$ by

$$[\![(F,\xi), (G,\eta)]\!] := (\{F,G\}, [\xi,\eta]),$$

where

$$\{F, G\} := 2\Omega(\xi, \eta) + \mathbf{D}G(\xi) - \mathbf{D}F(\eta) + [F, G] =$$
$$= -2\Omega(\xi, \eta) + [F, G] = \mathbf{D}G(\xi) + [F, G]$$

and $[\xi, \eta]$ is the commutator of vector fields.

• Let \mathcal{E}_G be the Lie algebra of vector fields $\xi \in C_G^{\infty}(P, TP)$ for which exists $F \in C_G^{\infty}(P, DT(e)(\mathfrak{g}))$ such that $(F, \xi) \in \mathcal{P}_G$.

• Denote by \mathcal{N}_G the set of $F \in C^{\infty}_G(P, DT(e)(\mathfrak{g}))$ such that $\mathbf{D}F = 0$.

• The subspace $\mathcal{P}_G^0 \subset \mathcal{P}_G$ of such elements $(F,\xi) \in \mathcal{P}_G$ that $\xi \in \mathcal{E}_G^0$ and $F = F_0 - \vartheta(\xi)$, where $\mathbf{D}F_0 = 0$.

Summing up we have

where horizontal arrows form the exact sequences of Lie algebras and vertical arrows are Lie algebra monomorphisms.

$$\iota_1(F) := (F, 0), \quad pr_2(F, \xi) := \xi.$$

From now on we will assume that M is a connected manifold and denote by P(p) the set of elements of P which one can join with p by curves horizontal with respect to the connection ϑ . By G(p) we denote the subgroup $G(p) \subset G$ consisting of those $g \in G$ for which $pg \in P(p)$, i.e. G(p) is the holonomy group based at p. Let us recall that for connected base manifold M all holonomy groups G(p) and their Lie algebras $\mathfrak{g}(p)$ are conjugated in G and \mathfrak{g} , respectively. Recall also that Lie algebra $\mathfrak{g}(p)$ is generated by $\Omega_{p'}(X(p'), Y(p'))$, where $p' \in P(p)$ and $X(p'), Y(p') \in T_{p'}P$. After these preliminary remarks we conclude that for $(F,\xi) \in \mathcal{P}_G$ the function F takes values F(p') in $\mathfrak{g}(p)$ if $p' \in P(p)$. In the special case if $F \in \mathcal{N}_G$, i.e. when $\mathbf{D}F = 0$, function F is constant on P(p) and $F(p) \in DT(e)(\mathfrak{g}(p)) \cap DT(e)(\mathfrak{g}'(p))$, where $\mathfrak{g}'(p)$ is the centralizer of the Lie subalgebra $\mathfrak{g}(p)$ in \mathfrak{g} .

In order to describe the Lie algebra \mathcal{P}_G^0 we define the linear monomorphism $\Phi: \mathcal{E}_G^0 \to \mathcal{P}_G^0$ of Lie algebras by

$$\Phi(\xi) := (-\vartheta(\xi), \xi).$$

One has the decomposition

$$\mathcal{P}_G^0 = \iota_1(\mathcal{N}_G) \oplus \Phi(\mathcal{E}_G^0)$$

of \mathcal{P}_{G}^{0} into the direct sum of Lie subalgebra $\Phi(\mathcal{E}_{G}^{0})$ and ideal $\iota_{1}(\mathcal{N}_{G})$ of central elements of \mathcal{P}_{G}^{0} .

Now let us define the following Lie subalgebra

$$\mathcal{H}_G^0 := D\pi(\mathcal{E}_G^0),$$

of $C^{\infty}(M, TM)$, where $D\pi : TP \to TM$ is the tangent map of the bundle map $\pi : P \to M$. We define the vector subspace $\mathcal{F}_{G}^{0} \subset C_{G}^{\infty}(P, DT(e)(\mathfrak{g})) \times \mathcal{H}_{G}^{0}$ consisting of such elements $(F, X) \in C_{G}^{\infty}(P, DT(e)(\mathfrak{g})) \times \mathcal{H}_{G}^{0}$ which satisfy the condition (Hamilton equation)

$$X^* \llcorner \Omega = \mathbf{D}F,$$

where X^* is the horizontal lift of X with respect to ϑ . One has

$$\xi = X^* - F^* \in \mathcal{E}_G^0,$$

where F^* is a vertical field defined by the function $F \in C^{\infty}_{G}(P, DT(e)(\mathfrak{g}))$

Proposition

One has the Lie algebras isomorphism between $(\mathcal{E}_{G}^{0}, [\cdot, \cdot])$ and $(\mathcal{F}_{G}^{0}, \{\!\!\{\cdot, \cdot\}\!\!\})$, where the Lie bracket of $(F, X), (G, Y) \in \mathcal{F}_{G}^{0}$ is defined by

$$\{\!\!\{(F,X),(G,Y)\}\!\!\} := (-2\Omega(X^*,Y^*) + [F,G],[X,Y]).$$

The following exact sequence of Lie algebras has place

$$0 \to \mathcal{N}_G \xrightarrow{\iota_1} \mathcal{F}_G^0 \xrightarrow{pr_2} \mathcal{H}_G^0 \to 0,$$

where $\iota_1(F) := (F, 0)$ and $pr_2(F, X) := X$.

The integration of the horizontal part $\xi^h = X^*$ of $\xi \in \mathcal{E}^0_G$ gives the flow $\{\tau^h_t\}_{t\in\mathbb{R}}$ being the horizontal lift of the flow

$$\sigma: (\mathbb{R}, +) \longrightarrow \mathsf{Diff}(M)$$

defined by the projection of $\{\tau_t\}_{t\in\mathbb{R}}$ on the base M of the principal bundle P. The vector field $X \in \mathcal{H}_G^0$ is the velocity vector field of $\{\sigma_t\}_{t\in\mathbb{R}}$.

The flow

$$\widetilde{\tau}_t[(p,v)] := [(\tau_t(p),v)]$$

defines

$$(\widetilde{\Sigma}_t \psi)(\pi(p)) := \widetilde{\tau}_t \psi(\sigma_{-t} \circ \pi(p)) = \widetilde{\tau}_t \psi(\pi(\tau_{-t}(p))) = \widetilde{\tau}_t \psi(\pi(\tau_{-t}^h(p))),$$

where $\psi \in C^{\infty}(M, \mathbb{V})$. The generator $Q_{(F,X)}$ of the one parameter group $\widetilde{\Sigma}_t$ is *G*-version of Kostant–Souriau prequantization operator

$$Q_{(F,X)} := -(\nabla_X + \widetilde{F}),$$

where $(F, X) \in \mathcal{F}_G^0$ and

$$\widetilde{F}([(p,v)]) := [(p,F(p)v)].$$

$$Q:\mathcal{F}_G^0\longrightarrow \mathrm{End}(C^\infty(M,\mathbb{V}))$$

one has prequantization property

$$[Q_{(F,X)}, Q_{(G,Y)}] = Q_{\{\!\!\{(F,X), (G,Y)\}\!\!\}}.$$

In the non-degenerate case, i.e. when (F, X) is defined by F we have

$$[Q_F,Q_G]=Q_{\{F,G\}},$$

where $Q_F := Q_{(F,X_F)}$ and the bracket $\{F,G\}$ is defined by

$$\{F, G\} := -2\Omega(X_F^*, Y_G^*) + [F, G].$$

Quantization

We will quantize those flows which preserve $\mathcal{B}(V)\text{-valued}$ positive definite kernel K

 $K(\tau_t(p), \tau_t(q)) = K(p, q), \quad \text{for } p, q \in P \text{ and } t \in \mathbb{R}$

i.e. $\{\tau_t\}_{t\in\mathbb{R}}\subset \operatorname{Aut}(P,K)\subset \operatorname{Aut}(P,\vartheta)$

Theorem

The flow $\{\tau_t\}_{t\in\mathbb{R}} \subset Aut(P, K)$ if and only if there exists an unitary flow $U_t : \mathcal{H} \to \mathcal{H}$ on the Hilbert space \mathcal{H} such that

$$\mathfrak{K}(\tau_t(p)) = U_t \mathfrak{K}(p),$$

where the map $\mathfrak{K} : P \to \mathcal{B}(V, \mathcal{H})$ satisfies conditions of the definition (ii) and factorizes the kernel $K(p,q) = \mathfrak{K}(p)^* \mathfrak{K}(q)$. The unitary flow $\{U_t\}_{t \in \mathbb{R}}$ is defined by $\{\tau_t\}_{t \in \mathbb{R}}$ in a unique way.

Theorem

The vector space $\mathcal{H}_0 := span\{\mathfrak{K}(p)(v), p \in P, v \in V\}$ is the essential domain of the generator \hat{F} , where \hat{F} is generator of $U_t = e^{it\hat{F}}$. One has the filtration

$$\mathcal{U}_0 \subset \mathcal{U}_1 \subset \ldots \subset \mathcal{U}_\infty \subset \mathcal{D}(\widehat{F})$$

of the domain $\mathcal{D}(\widehat{F})$ of the operator \widehat{F} onto its essential domains, where

$$\mathcal{U}_{l} := \mathcal{U}_{l-1} + \widehat{F}(\mathcal{U}_{l-1}), \quad \mathcal{U}_{0} := \mathcal{H}_{0}.$$

This filtration is preserved by the flow $\{U_t\}_{t\in\mathbb{R}}$. Moreover

$$\widehat{F}\mathcal{U}_{l}\subset\mathcal{U}_{l+1}$$

and

$$\mathcal{U}_{\infty}\subset\mathcal{D}(\widehat{F}^{\prime}),$$

for $I \in \mathbb{N} \cup \{0\}$.

The following relations are valid

$$U_t = I^{-1} \circ \widetilde{\Sigma}_t \circ I$$

 $\quad \text{and} \quad$

$$\widehat{F}=iI^{-1}\circ Q_{(F,X)}\circ I.$$

One also has

$$F(p) = i(\mathfrak{K}(p)^* \mathfrak{K}(p)^{-1} \mathfrak{K}^*(p) \hat{F} \mathfrak{K}(p).$$

For the further investigation of \widehat{F} we will describe its representation in a trivialization

$$s_{\alpha}: \Omega_{\alpha} \to P, \quad \pi \circ s_{\alpha} = id_{\Omega_{\alpha}}$$

of $\pi: P \to M$, where $\bigcup_{\alpha \in A} \Omega_{\alpha} = M$ is a covering of M by the open subsets.

We note that on $\pi^{-1}(\Omega_{lpha})$ one has

for p

$$\Omega(p) = T(h^{-1}) \left(d\vartheta_{\alpha}(m) + \frac{1}{2} [\vartheta_{\alpha}(m), \vartheta_{\alpha}(m)] \right) T(h),$$

$$\mathbf{D}F(p) = T(h^{-1}) \left(dF_{\alpha}(m) + [\vartheta_{\alpha}(m), F_{\alpha}(m)] \right) T(h),$$

$$= s_{\alpha}(m)h, \text{ where}$$

$$\vartheta_{\alpha} := s_{\alpha}^* \vartheta \quad \text{and} \quad F_{\alpha} := F \circ s_{\alpha}.$$

We find that for $\xi = X^* - F^* \in \mathcal{E}^0_G$ and for $\varphi_\alpha := F_\alpha + \vartheta_\alpha(X)$ we have

$$\mathcal{L}_{\boldsymbol{X}}\vartheta_{\alpha} = \boldsymbol{d}\varphi_{\alpha} + [\vartheta_{\alpha},\varphi_{\alpha}].$$

The positive definite kernel $K : P \times P \rightarrow \mathcal{B}(V)$ in the trivialization is described by

$$egin{aligned} &\mathfrak{K}_lpha(m) := \mathfrak{K} \circ s_lpha(m), \ &\mathcal{K}_{\overlinelphaeta}(m,n) := \mathfrak{K}^*_lpha(m) \mathfrak{K}_eta(n), \end{aligned}$$

for $m\in\Omega_{lpha}$ and $n\in\Omega_{eta}$ and connection form by

$$artheta_{lpha}(m) = (\mathfrak{K}_{lpha}(m)^* \mathfrak{K}_{lpha}(m))^{-1} \mathfrak{K}_{lpha}(m)^* d\mathfrak{K}_{lpha}(m).$$

We find that

$$i\widehat{F}\mathfrak{K}_{\alpha}(m)v = (X\mathfrak{K}_{\alpha})(m)v + \mathfrak{K}_{\alpha}(m)\varphi_{\alpha}(m)v, \qquad (1)$$

where $v \in V$, $m \in \Omega_{\alpha}$.

The selfadjointess of \widehat{F} implies the following relation

 $\mathfrak{K}_{\beta}(n)^{*}(X\mathfrak{K}_{\alpha})(m) + (X\mathfrak{K}_{\beta})(n)^{*}\mathfrak{K}_{\alpha}(m) + \mathfrak{K}_{\beta}(n)^{*}\mathfrak{K}_{\alpha}(m)\varphi_{\alpha}(m) + \varphi_{\beta}(n)^{*}\mathfrak{K}_{\beta}(n)$

between the kernel map $\mathfrak{K}_{\alpha} : \Omega_{\alpha} \to \mathcal{B}(V, \mathcal{H})$ and $(F, X) \in \mathcal{F}_{G}^{0}$.

In the s_{α} -gauge section $I(\psi) \in C^{\infty}(M, \mathbb{V})$ and $Q_{(F,X)}I(\psi)$ are given by

$$I(\psi)(m) = [(s_{\alpha}(m), \mathfrak{K}^*_{\alpha}(m)\mathfrak{K}_{\beta}(n)v)]$$

and by

$$(Q_{(F,X)}I(\psi))(m) = iI(\hat{F}\psi)(m) = [(s_{\alpha}(m), \mathfrak{K}^*_{\alpha}(m)\hat{F}\mathfrak{K}_{\beta}(n)v)]$$

respectively, $m \in \Omega_{\alpha}$. Hence we obtain the expression on $Q_{(F,X)}$ in terms of the kernel $K_{\bar{\alpha}\beta}(m,n)$:

$$Q_{(F,X)}(K_{\bar{\alpha}\beta}(\cdot,n))(m)v = -(XK_{\bar{\alpha}\beta})(\cdot,n)(m)v - \phi_{\alpha}(m)^{*}K_{\bar{\alpha}\beta}(m,n)v.$$

- A.O., M. Horowski, "Positive kernels and quantization", J. Geom. Phys. **63**, (2013), 80-98
- A.O., "On reproducing kernels and quantization of states", Commun. Math. Phys. **114**, (1988), 577–597
- A.O., "Coherent states and geometric quantization", Commun. Math. Phys. **150**, (1992), 385-413.
- A.O., M. Świętochowski, "Coherent states map for MIC-Kepler system", J. Math. Phys. 38(10), 1997
- M. Horowski, A.O., "Geometry of the Kepler System in Coherent States Approach", Ann. Inst. Henri Poincaré, Vol. 59, No. 1, 1993, p. 69-89.
- M. Horowski, A.O., A. Tereszkiewicz, "Some integrable systems in nonlinear quantum optics", J. Math. Phys. **44** (2003) 480-506.