POSITIVE DEFINITE KERNELS AND QUANTIZATION

Anatol Odzijewicz

Institute of Mathematics
University in Białystok
$X V^{\text {th }}$ International Conference on
Geometry, Integrability and Quantization
Varna, June 7-12, 2013

Hamiltonian Dynamical Systems \quad Quantum Dynamical Systems

- Symplectic manifold (M, ω)
- Hamiltonian flow $\sigma_{t}: M \longrightarrow M$
- defined by Hamilton equation $X\llcorner\omega=d F$,
where $F \in C^{\infty}(M, \mathbb{R})$ and $X \in \Gamma^{\infty}(M, T M)$
is tangent to $\{\sigma\}_{t \in \mathbb{R}}$.
- \mathcal{H} - Hilbert space
- Unitary flow $U_{t}=e^{i t \hat{F}}$ where \hat{F} - a selfadjoint operator $\hat{F}: \mathcal{D}(\hat{F}) \longrightarrow \mathcal{H}$
unbounded in general

quantization

Hamiltonian
Dynamical System

Quantum
Dynamical
System

Example

$$
\left(\mathcal{H}, e^{i t \hat{F}}, \hat{F}: \mathcal{D}(\hat{F}) \longrightarrow \mathcal{H}\right) \Longrightarrow(M, \omega, F)
$$

$\hat{F}=\int \lambda d E(\lambda)$ - selfadjoint operator with semisimple spectrum
Thus

- $\mathcal{H} \cong L^{2}(\mathbb{R}, d \sigma)$ where $d \sigma(\lambda)=\langle 0| d E(\lambda)|0\rangle$ and $|0\rangle$ - cyclic for \hat{F}
- $|n\rangle:=P_{n}(\hat{F})|0\rangle, n=0,1, \ldots$ - orthonormal basis in \mathcal{H}, where P_{n} - orthogonal polynomials with respect to $d \sigma$

We assume the condition

$$
\limsup _{n \longrightarrow \infty} \frac{\sqrt[n]{|\mu|_{n}}}{n}<+\infty
$$

on the absolute moments

$$
|\mu|_{n}:=\int_{\mathbb{R}}|\omega|^{n} d \sigma(\omega)=\frac{1}{P_{0}^{2}}\langle 0||\hat{F}||0\rangle
$$

of the operator \hat{F}.

Then, there exists the open strip $\Sigma \subset \mathbb{C}$ in complex plane \mathbb{C}, which is invariant under the translations

$$
\tau_{t} z:=z+t
$$

$t \in \mathbb{R}$ and such that the characteristic functions

$$
\chi(s)=\int_{\mathbb{R}} e^{-i \omega s} d \sigma(\omega)
$$

$s \in \mathbb{R}$, of the measure $d \sigma$ posses holomorphic prolongation χ_{Σ} on Σ.

Hence, one has the positive definite kernel on Σ

$$
K_{\Sigma}(\bar{z}, v):=\chi_{\Sigma}(\bar{z}-v) .
$$

The map $\mathfrak{K}_{\Sigma}: \Sigma \longrightarrow \mathcal{H} \cong \mathcal{B}(\mathbb{C}, \mathcal{H})$ defined by

$$
\mathfrak{K}_{\Sigma}(z):=\sum_{n=0}^{\infty} \chi_{n}(z)|n\rangle
$$

where

$$
\chi_{n}(z):=\int e^{-i z \omega} P_{n}(\omega) d \sigma(\omega)
$$

for $z \in \Sigma$, gives factorization

$$
K_{\Sigma}(\bar{z}, v)=\mathfrak{K}_{\Sigma}(z)^{*} \mathfrak{K}_{\Sigma}(v)
$$

of the kernel K_{Σ}.

One has

$$
e^{-i t \hat{F}_{\mathfrak{K}_{\Sigma}}(z)=\mathfrak{K}_{\Sigma}(z+t)}
$$

The states $\mathfrak{K}_{\Sigma}(z), z \in \mathbb{Z}$, span an essential domain $\mathcal{D}(\hat{F})$ of \hat{F} and

$$
\hat{F} \mathfrak{K}_{\Sigma}(z)=i \frac{d}{d z} \mathfrak{K}_{\Sigma}(z) .
$$

The function

$$
F=\left(\log \circ \chi_{\Sigma}\right)^{\prime}(\bar{z}-z) .
$$

and the vector field tangent to the translation flow $\tau(t)$

$$
X=\frac{\partial}{\partial z}+\frac{\partial}{\partial \bar{z}}
$$

satisfy

$$
X\left\llcorner\Omega_{\Sigma}=d F\right.
$$

for symplectic form

$$
\Omega_{\Sigma}=i \partial \bar{\partial}\left(\log \circ K_{\Sigma}\right)(\bar{z}, z)=i\left(\log \circ \chi_{\Sigma}\right)^{\prime \prime}(\bar{z}-z) d \bar{z} \wedge d z
$$

Applying the geometric quantization to Hamiltonian system ($M=\Sigma, \omega=\Omega_{\Sigma}, F$) we back to the initial quantum system $\left(\mathcal{H}, e^{i t \hat{F}}, \hat{F}: \mathcal{D}(\hat{F}) \longrightarrow \mathcal{H}\right)$.
geometric
quantization

$$
\left(M=\Sigma, \omega=\Omega_{\Sigma}, F\right) \quad \Longrightarrow \quad\left(\mathcal{H}, e^{i t \hat{F}}, \hat{F}: \mathcal{D}(\hat{F}) \longrightarrow \mathcal{H}\right)
$$

Positive definite kernels on the principal bundles

- P - a set
- V and \mathcal{H} - Hilbert spaces
- $\mathcal{B}(V, \mathcal{H})$ - Banach space of bounded linear operators from V into \mathcal{H}
(i) The $\mathcal{B}(V)$-valued positive definite kernels, i.e. maps
$K: P \times P \rightarrow \mathcal{B}(V)$ such that for any finite sequences
$p_{1}, \ldots, p_{J} \in P$ and $v_{1}, \ldots, v_{J} \in V$ one has

$$
\sum_{i, j=1}^{J}\left\langle v_{i}, K\left(p_{i}, p_{j}\right) v_{j}\right\rangle \geqq 0
$$

where $\langle\cdot, \cdot\rangle$ denotes the scalar product in V.
One has

$$
K(q, p)=K(p, q)^{*}
$$

for each $q, p \in P$.
(ii) The maps $\mathfrak{K}: P \rightarrow \mathcal{B}(V, \mathcal{H})$ satisfying the condition

$$
\{\mathfrak{K}(p) v: p \in P \text { and } v \in V\}^{\perp}=\{0\} .
$$

(iii) The Hilbert spaces $\mathcal{K} \subset V^{P}$ realized by the functions $f: P \rightarrow V$ such that evaluation functionals

$$
E_{p} f:=f(p)
$$

are continuous maps of Hilbert spaces $E_{p}: \mathcal{K} \rightarrow V$ for every $p \in P$.

There exist functorial equivalences between the categories of the object defined above.

- Equivalence between (ii) and (iii) is given as follows. For $\mathfrak{K}: P \rightarrow \mathcal{B}(V, \mathcal{H})$ we define monomorphism of vector spaces $J: \mathcal{H} \rightarrow V^{P}$ by

$$
J(\psi)(p):=\mathfrak{K}(p)^{*} \psi
$$

and

$$
\mathfrak{K}(p):=E_{p}^{*},
$$

where $\psi \in \mathcal{H}, p \in P$.

- The passage from (ii) to (i) is given by

$$
K(q, p):=\mathfrak{K}(q)^{*} \mathfrak{K}(p) .
$$

- In order to show the implication (i) \Rightarrow (iii) let us take vector subspace $\mathcal{K}_{0} \subset V^{P}$ consisting of the following functions

$$
f(p):=\sum_{i=1}^{l} K\left(p, p_{i}\right) v_{i}
$$

defined for the finite sequences $p_{1}, \ldots, p_{I} \in P$ and $v_{1}, \ldots, v_{l} \in V$.

Due to positive definiteness of the kernel $K: P \times P \rightarrow \mathcal{B}(V)$ we define a scalar product between $g(\cdot)=\sum_{j=1}^{J} K\left(\cdot, q_{j}\right) w_{j} \in \mathcal{K}_{0}$ and $f \in \mathcal{K}_{0}$ as follows

$$
\langle g \mid f\rangle:=\sum_{i=1}^{l} \sum_{j=1}^{J}\left\langle K\left(p_{i}, q_{j}\right) w_{j}, v_{i}\right\rangle
$$

We obtain $\mathcal{K} \subset V^{P}$ as a closure of \mathcal{K}_{0} with respect to the norm given by the above scalar product.

Proposition

Let P be a smooth manifold and V a finite dimensional complex Hilbert space. Then the following properities are equivalent:
(a) The positive definite kernel $K: P \times P \rightarrow \mathcal{B}(V)$ is a smooth map.
(b) The map $\mathfrak{K}: P \rightarrow \mathcal{B}(V, \mathcal{H})$ is smooth.
(c) The Hilbert space $\mathcal{K} \subset V^{P}$ defined in (iii) consists of smooth functions, i.e. $\mathcal{K} \subset C^{\infty}(P, V)$.

From now let us assume that P is a principal bundle

over the smooth manifold M with some Lie group G as the structural group. Additionally we introduce a faithful representation of G

$$
T: G \longrightarrow \operatorname{Aut}(V)
$$

in Hilbert space V and suppose that positive definite kernel $K: P \times P \rightarrow \mathcal{B}(V)$ has equivariance property

$$
K(p, q g)=K(p, q) T(g)
$$

where $p, q \in P$ and $g \in G$. This property is equivalent to each of the following two properties

$$
\mathfrak{K}(p g)=\mathfrak{K}(p) T(g)
$$

and

$$
f(p g)=T\left(g^{-1}\right) f(p)
$$

for $f \in \mathcal{K}$.

Using the action of G on $P \times V$ defined by

$$
P \times V \ni(p, v) \mapsto\left(p g, T\left(g^{-1}\right) v\right) \in P \times V
$$

one obtains the T-associated vector bundle

over M with the quotient manifold $\mathbb{V}:=(P \times V) / G$ as its total space.

Given $\pi(p)=m, \pi(q)=n$, we define by

$$
K_{T}(m, n)([(p, v)],[(q, w)]):=\langle v, K(p, q) w\rangle
$$

the section

$$
K_{T}: M \times M \longrightarrow p r_{1}^{*} \overline{\mathbb{V}}^{*} \otimes p r_{2}^{*} \mathbb{V}^{*}
$$

of the bundle $p r_{1}^{*} \overline{\mathbb{V}}^{*} \otimes p r_{2}^{*} \mathbb{V}^{*} \rightarrow M \times M$.
The diagonal $K_{T \mid \Delta}$ of the kernel K_{T} determines positive semi-definite hermitian structure $H_{K}:=K_{T \mid \Delta}$ on the bundle $\widetilde{\pi}: \mathbb{V} \rightarrow M$.

One has $I: \mathcal{H} \rightarrow C^{\infty}(M, \mathbb{V})$ a linear monomorphism of vector spaces defined by

$$
I(\psi)(\pi(p)):=\left[\left(p, \mathfrak{K}(p)^{*} \psi\right)\right]=[(p, J(\psi)(p))]
$$

Apart of hermitian structure H_{K} the positive hermitian kernel K defines on P a $\mathcal{B}(V)$-valued differential one-form

$$
\vartheta(p):=\left(\mathfrak{K}(p)^{*} \mathfrak{K}(p)\right)^{-1} \mathfrak{K}(p)^{*} d \mathfrak{K}(p)=K(p, p)^{-1} d_{q} K(p, q)_{\mid q=p},
$$

which satisfy

$$
\vartheta(p g)=T\left(g^{-1}\right) \vartheta(p) T(g)
$$

and

$$
\langle v, K(p, p) \vartheta(p) w\rangle+\langle\vartheta(p) v, K(p, p) w\rangle=d\langle v, K(p, p) w\rangle .
$$

Thus we conclude that $\vartheta \in C^{\infty}\left(P, T^{*} P \otimes \mathcal{B}(V)\right)$ is the one-form of the metric connection ∇_{K} consistent with the hermitian structure H_{K}.

One-parameter groups of automorphisms and prequantization

Let $\xi \in C^{\infty}(P, T P)$ be the vector field tangent to the flow of authomorphisms $\tau:(\mathbb{R},+) \rightarrow \operatorname{Aut}(P, \vartheta)$ of the principal bundle

$$
\tau_{t}(p g)=\tau_{t}(p) g
$$

where $g \in G$ and $p \in P$, which preserve the connection form ϑ

$$
\tau_{t}^{*} \vartheta=\vartheta
$$

Then one has

$$
\xi(p g)=D R_{g}(p) \xi(p)
$$

and

$$
\mathcal{L}_{\xi} \vartheta=0
$$

where $R_{g}(p):=p g, D R_{g}(p)$ is the derivative of R_{g} at p and \mathcal{L}_{ξ} is Lie derivative with respect to ξ.

The space of vector fields preserving connection we denoted by $\mathcal{E}_{G}^{0} \subset C_{G}^{\infty}(P, T P)$.
For connection 1-form ϑ and the $D T(e)(\mathfrak{g})$-valued pseudotensorial 0 -form, i.e. $D T(e)(\mathfrak{g})$-valued function such that

$$
F(p g)=T\left(g^{-1}\right) F(p) T(g)
$$

one has

$$
\begin{gathered}
\Omega:=\mathbf{D} \vartheta=d \vartheta+\frac{1}{2}[\vartheta, \vartheta] \\
\mathbf{D} F=d F+[\vartheta, F] .
\end{gathered}
$$

$C_{G}^{\infty}(P, D T(e)(\mathfrak{g}))$ - the space of $D T(e)(\mathfrak{g})$-valued functions satisfying equivariance condition
Now let us investigate the Lie algebra \mathcal{P}_{G} which consists of pairs $(F, \xi) \in C_{G}^{\infty}(P, D T(e)(\mathfrak{g})) \times C_{G}^{\infty}(P, T P)$ such that

$$
\xi\left\llcorner\Omega=\mathbf{D} F \quad \Longleftrightarrow \quad \mathcal{L}_{\xi} \vartheta=\mathbf{D}(F+\vartheta(\xi))\right.
$$

with the bracket $\llbracket \cdot, \cdot \rrbracket: \mathcal{P}_{G} \times \mathcal{P}_{G} \rightarrow \mathcal{P}_{G}$ defined for $(F, \xi),(G, \eta) \in \mathcal{P}_{G}$ by

$$
\llbracket(F, \xi),(G, \eta) \rrbracket:=(\{F, G\},[\xi, \eta])
$$

where

$$
\begin{gathered}
\{F, G\}:=2 \Omega(\xi, \eta)+\mathbf{D} G(\xi)-\mathbf{D} F(\eta)+[F, G]= \\
\quad=-2 \Omega(\xi, \eta)+[F, G]=\mathbf{D} G(\xi)+[F, G]
\end{gathered}
$$

and $[\xi, \eta]$ is the commutator of vector fields.

- Let \mathcal{E}_{G} be the Lie algebra of vector fields $\xi \in C_{G}^{\infty}(P, T P)$ for which exists $F \in C_{G}^{\infty}(P, D T(e)(\mathfrak{g}))$ such that $(F, \xi) \in \mathcal{P}_{G}$.
- Denote by \mathcal{N}_{G} the set of $F \in C_{G}^{\infty}(P, D T(e)(\mathfrak{g}))$ such that DF $=0$.
- The subspace $\mathcal{P}_{G}^{0} \subset \mathcal{P}_{G}$ of such elements $(F, \xi) \in \mathcal{P}_{G}$ that $\xi \in \mathcal{E}_{G}^{0}$ and $F=F_{0}-\vartheta(\xi)$, where $\mathbf{D} F_{0}=0$.

Summing up we have

$$
\begin{aligned}
& 0 \rightarrow \mathcal{N}_{G} \xrightarrow{\iota_{1}} \mathcal{P}_{G}^{0} \xrightarrow{p r_{2}} \mathcal{E}_{G}^{0} \rightarrow 0,
\end{aligned}
$$

where horizontal arrows form the exact sequences of Lie algebras and vertical arrows are Lie algebra monomorphisms.

$$
\iota_{1}(F):=(F, 0), \quad p_{2}(F, \xi):=\xi
$$

From now on we will assume that M is a connected manifold and denote by $P(p)$ the set of elements of P which one can join with p by curves horizontal with respect to the connection ϑ. By $G(p)$ we denote the subgroup $G(p) \subset G$ consisting of those $g \in G$ for which $p g \in P(p)$, i.e. $G(p)$ is the holonomy group based at p. Let us recall that for connected base manifold M all holonomy groups $G(p)$ and their Lie algebras $\mathfrak{g}(p)$ are conjugated in G and \mathfrak{g}, respectively. Recall also that Lie algebra $\mathfrak{g}(p)$ is generated by $\Omega_{p^{\prime}}\left(X\left(p^{\prime}\right), Y\left(p^{\prime}\right)\right)$, where $p^{\prime} \in P(p)$ and $X\left(p^{\prime}\right), Y\left(p^{\prime}\right) \in T_{p^{\prime}} P$. After these preliminary remarks we conclude that for $(F, \xi) \in \mathcal{P}_{G}$ the function F takes values $F\left(p^{\prime}\right)$ in $\mathfrak{g}(p)$ if $p^{\prime} \in P(p)$. In the special case if $F \in \mathcal{N}_{G}$, i.e. when $\mathbf{D} F=0$, function F is constant on $P(p)$ and $F(p) \in D T(e)(\mathfrak{g}(p)) \cap D T(e)\left(\mathfrak{g}^{\prime}(p)\right)$, where $\mathfrak{g}^{\prime}(p)$ is the centralizer of the Lie subalgebra $\mathfrak{g}(p)$ in \mathfrak{g}.

In order to describe the Lie algebra \mathcal{P}_{G}^{0} we define the linear monomorphism $\Phi: \mathcal{E}_{G}^{0} \rightarrow \mathcal{P}_{G}^{0}$ of Lie algebras by

$$
\Phi(\xi):=(-\vartheta(\xi), \xi)
$$

One has the decomposition

$$
\mathcal{P}_{G}^{0}=\iota_{1}\left(\mathcal{N}_{G}\right) \oplus \Phi\left(\mathcal{E}_{G}^{0}\right)
$$

of \mathcal{P}_{G}^{0} into the direct sum of Lie subalgebra $\Phi\left(\mathcal{E}_{G}^{0}\right)$ and ideal $\iota_{1}\left(\mathcal{N}_{G}\right)$ of central elements of \mathcal{P}_{G}^{0}.

Now let us define the following Lie subalgebra

$$
\mathcal{H}_{G}^{0}:=D \pi\left(\mathcal{E}_{G}^{0}\right)
$$

of $C^{\infty}(M, T M)$, where $D \pi: T P \rightarrow T M$ is the tangent map of the bundle map $\pi: P \rightarrow M$.
We define the vector subspace $\mathcal{F}_{G}^{0} \subset C_{G}^{\infty}(P, D T(e)(\mathfrak{g})) \times \mathcal{H}_{G}^{0}$ consisting of such elements $(F, X) \in C_{G}^{\infty}(P, D T(e)(\mathfrak{g})) \times \mathcal{H}_{G}^{0}$ which satisfy the condition (Hamilton equation)

$$
X^{*}\llcorner\Omega=\mathbf{D} F
$$

where X^{*} is the horizontal lift of X with respect to ϑ.
One has

$$
\xi=X^{*}-F^{*} \in \mathcal{E}_{G}^{0}
$$

where F^{*} is a vertical field defined by the function $F \in C_{G}^{\infty}(P, D T(e)(\mathfrak{g}))$

Proposition

One has the Lie algebras isomorphism between $\left(\mathcal{E}_{G}^{0},[\cdot, \cdot]\right)$ and $\left(\mathcal{F}_{G}^{0},\{\{\cdot, \cdot\}\}\right)$, where the Lie bracket of $(F, X),(G, Y) \in \mathcal{F}_{G}^{0}$ is defined by

$$
\{(F, X),(G, Y)\}:=\left(-2 \Omega\left(X^{*}, Y^{*}\right)+[F, G],[X, Y]\right)
$$

The following exact sequence of Lie algebras has place

$$
0 \rightarrow \mathcal{N}_{G} \xrightarrow{\iota_{1}} \mathcal{F}_{G}^{0} \xrightarrow{p r_{2}} \mathcal{H}_{G}^{0} \rightarrow 0,
$$

where $\iota_{1}(F):=(F, 0)$ and $p r_{2}(F, X):=X$.

The integration of the horizontal part $\xi^{h}=X^{*}$ of $\xi \in \mathcal{E}_{G}^{0}$ gives the flow $\left\{\tau_{t}^{h}\right\}_{t \in \mathbb{R}}$ being the horizontal lift of the flow

$$
\sigma:(\mathbb{R},+) \longrightarrow \operatorname{Diff}(M)
$$

defined by the projection of $\left\{\tau_{t}\right\}_{t \in \mathbb{R}}$ on the base M of the principal bundle P. The vector field $X \in \mathcal{H}_{G}^{0}$ is the velocity vector field of $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$.

The flow

$$
\widetilde{\tau}_{t}[(p, v)]:=\left[\left(\tau_{t}(p), v\right)\right]
$$

defines
$\left(\widetilde{\Sigma}_{t} \psi\right)(\pi(p)):=\widetilde{\tau}_{t} \psi\left(\sigma_{-t} \circ \pi(p)\right)=\widetilde{\tau}_{t} \psi\left(\pi\left(\tau_{-t}(p)\right)\right)=\widetilde{\tau}_{t} \psi\left(\pi\left(\tau_{-t}^{h}(p)\right)\right)$,
where $\psi \in C^{\infty}(M, \mathbb{V})$.
The generator $Q_{(F, X)}$ of the one parameter group $\widetilde{\Sigma}_{t}$ is G-version of Kostant-Souriau prequantization operator

$$
Q_{(F, X)}:=-\left(\nabla_{X}+\widetilde{F}\right)
$$

where $(F, X) \in \mathcal{F}_{G}^{0}$ and

$$
\widetilde{F}([(p, v)]):=[(p, F(p) v)] .
$$

For

$$
Q: \mathcal{F}_{G}^{0} \longrightarrow \operatorname{End}\left(C^{\infty}(M, \mathbb{V})\right)
$$

one has prequantization property

$$
\left[Q_{(F, X)}, Q_{(G, Y)}\right]=Q_{\{(F, X),(G, Y)\}} .
$$

In the non-degenerate case, i.e. when (F, X) is defined by F we have

$$
\left[Q_{F}, Q_{G}\right]=Q_{\{F, G\}},
$$

where $Q_{F}:=Q_{\left(F, X_{F}\right)}$ and the bracket $\{F, G\}$ is defined by

$$
\{F, G\}:=-2 \Omega\left(X_{F}^{*}, Y_{G}^{*}\right)+[F, G]
$$

Quantization

We will quantize those flows which preserve $\mathcal{B}(V)$-valued positive definite kernel K

$$
K\left(\tau_{t}(p), \tau_{t}(q)\right)=K(p, q), \quad \text { for } p, q \in P \text { and } t \in \mathbb{R}
$$

i.e. $\left\{\tau_{t}\right\}_{t \in \mathbb{R}} \subset \operatorname{Aut}(P, K) \subset \operatorname{Aut}(P, \vartheta)$

Theorem
The flow $\left\{\tau_{t}\right\}_{t \in \mathbb{R}} \subset \operatorname{Aut}(P, K)$ if and only if there exists an unitary flow $U_{t}: \mathcal{H} \rightarrow \mathcal{H}$ on the Hilbert space \mathcal{H} such that

$$
\mathfrak{K}\left(\tau_{t}(p)\right)=U_{t} \mathfrak{K}(p)
$$

where the map $\mathfrak{K}: P \rightarrow \mathcal{B}(V, \mathcal{H})$ satisfies conditions of the definition (ii) and factorizes the kernel $K(p, q)=\mathfrak{K}(p)^{*} \mathfrak{K}(q)$. The unitary flow $\left\{U_{t}\right\}_{t \in \mathbb{R}}$ is defined by $\left\{\tau_{t}\right\}_{t \in \mathbb{R}}$ in a unique way.

Theorem
The vector space $\mathcal{H}_{0}:=\operatorname{span}\{\mathfrak{K}(p)(v), p \in P, v \in V\}$ is the essential domain of the generator \hat{F}, where \hat{F} is generator of $U_{t}=e^{i t \hat{F}}$.
One has the filtration

$$
\mathcal{U}_{0} \subset \mathcal{U}_{1} \subset \ldots \subset \mathcal{U}_{\infty} \subset \mathcal{D}(\widehat{F})
$$

of the domain $\mathcal{D}(\widehat{F})$ of the operator \widehat{F} onto its essential domains, where

$$
\mathcal{U}_{l}:=\mathcal{U}_{l-1}+\widehat{F}\left(\mathcal{U}_{l-1}\right), \quad \mathcal{U}_{0}:=\mathcal{H}_{0}
$$

This filtration is preserved by the flow $\left\{U_{t}\right\}_{t \in \mathbb{R}}$. Moreover

$$
\widehat{F} \mathcal{U}_{l} \subset \mathcal{U}_{l+1}
$$

and

$$
\mathcal{U}_{\infty} \subset \mathcal{D}\left(\hat{F}^{\prime}\right)
$$

for $I \in \mathbb{N} \cup\{0\}$.

The following relations are valid

$$
U_{t}=I^{-1} \circ \tilde{\Sigma}_{t} \circ I
$$

and

$$
\widehat{F}=i I^{-1} \circ Q_{(F, X)} \circ I
$$

One also has

$$
F(p)=i\left(\mathfrak{K}(p)^{*} \mathfrak{K}(p)^{-1} \mathfrak{K}^{*}(p) \hat{F} \mathfrak{K}(p) .\right.
$$

For the further investigation of \widehat{F} we will describe its representation in a trivialization

$$
s_{\alpha}: \Omega_{\alpha} \rightarrow P, \quad \pi \circ s_{\alpha}=i d_{\Omega_{\alpha}}
$$

of $\pi: P \rightarrow M$, where $\bigcup_{\alpha \in A} \Omega_{\alpha}=M$ is a covering of M by the open subsets.
We note that on $\pi^{-1}\left(\Omega_{\alpha}\right)$ one has

$$
\begin{gathered}
\Omega(p)=T\left(h^{-1}\right)\left(d \vartheta_{\alpha}(m)+\frac{1}{2}\left[\vartheta_{\alpha}(m), \vartheta_{\alpha}(m)\right]\right) T(h), \\
\mathbf{D} F(p)=T\left(h^{-1}\right)\left(d F_{\alpha}(m)+\left[\vartheta_{\alpha}(m), F_{\alpha}(m)\right]\right) T(h),
\end{gathered}
$$

for $p=s_{\alpha}(m) h$, where

$$
\vartheta_{\alpha}:=s_{\alpha}^{*} \vartheta \quad \text { and } \quad F_{\alpha}:=F \circ s_{\alpha} .
$$

We find that for $\xi=X^{*}-F^{*} \in \mathcal{E}_{G}^{0}$ and for $\varphi_{\alpha}:=F_{\alpha}+\vartheta_{\alpha}(X)$ we have

$$
\mathcal{L}_{\chi} \vartheta_{\alpha}=d \varphi_{\alpha}+\left[\vartheta_{\alpha}, \varphi_{\alpha}\right] .
$$

The positive definite kernel $K: P \times P \rightarrow \mathcal{B}(V)$ in the trivialization is described by

$$
\begin{aligned}
\mathfrak{K}_{\alpha}(m) & :=\mathfrak{K} \circ s_{\alpha}(m), \\
K_{\bar{\alpha} \beta}(m, n) & :=\mathfrak{K}_{\alpha}^{*}(m) \mathfrak{K}_{\beta}(n),
\end{aligned}
$$

for $m \in \Omega_{\alpha}$ and $n \in \Omega_{\beta}$ and connection form by

$$
\vartheta_{\alpha}(m)=\left(\mathfrak{K}_{\alpha}(m)^{*} \mathfrak{K}_{\alpha}(m)\right)^{-1} \mathfrak{K}_{\alpha}(m)^{*} d \mathfrak{K}_{\alpha}(m) .
$$

We find that

$$
\begin{equation*}
i \widehat{F} \mathfrak{K}_{\alpha}(m) v=\left(X \mathfrak{K}_{\alpha}\right)(m) v+\mathfrak{K}_{\alpha}(m) \varphi_{\alpha}(m) v, \tag{1}
\end{equation*}
$$

where $v \in V, m \in \Omega_{\alpha}$.
The selfadjointess of \widehat{F} implies the following relation
$\mathfrak{K}_{\beta}(n)^{*}\left(X \mathfrak{K}_{\alpha}\right)(m)+\left(X \mathfrak{K}_{\beta}\right)(n)^{*} \mathfrak{K}_{\alpha}(m)+\mathfrak{K}_{\beta}(n)^{*} \mathfrak{K}_{\alpha}(m) \varphi_{\alpha}(m)+\varphi_{\beta}(n)^{*} \mathfrak{K}_{\beta}(n)$ between the kernel map $\mathfrak{K}_{\alpha}: \Omega_{\alpha} \rightarrow \mathcal{B}(V, \mathcal{H})$ and $(F, X) \in \mathcal{F}_{G}^{0}$.

In the s_{α}-gauge section $I(\psi) \in C^{\infty}(M, \mathbb{V})$ and $Q_{(F, X)} I(\psi)$ are given by

$$
I(\psi)(m)=\left[\left(s_{\alpha}(m), \mathfrak{K}_{\alpha}^{*}(m) \mathfrak{K}_{\beta}(n) v\right)\right]
$$

and by

$$
\left(Q_{(F, X)} I(\psi)\right)(m)=i l(\hat{F} \psi)(m)=\left[\left(s_{\alpha}(m), \mathfrak{K}_{\alpha}^{*}(m) \hat{F} \mathfrak{K}_{\beta}(n) v\right)\right]
$$

respectively, $m \in \Omega_{\alpha}$. Hence we obtain the expression on $Q_{(F, X)}$ in terms of the kernel $K_{\bar{\alpha} \beta}(m, n)$:
$Q_{(F, X)}\left(K_{\bar{\alpha} \beta}(\cdot, n)\right)(m) v=-\left(X K_{\bar{\alpha} \beta}\right)(\cdot, n)(m) v-\phi_{\alpha}(m)^{*} K_{\bar{\alpha} \beta}(m, n) v$.
：A．O．，M．Horowski，＂Positive kernels and quantization＂，J． Geom．Phys．63，（2013），80－98

䡒 A．O．，＂On reproducing kernels and quantization of states＂， Commun．Math．Phys．114，（1988），577－597
國 A．O．，＂Coherent states and geometric quantization＂， Commun．Math．Phys．150，（1992），385－413．
A．O．，M．Świẹtochowski，＂Coherent states map for MIC－Kepler system＂，J．Math．Phys．38（10）， 1997
國 M．Horowski，A．O．，＂Geometry of the Kepler System in Coherent States Approach＂，Ann．Inst．Henri Poincaré，Vol． 59，No．1，1993，p．69－89．

击 M．Horowski，A．O．，A．Tereszkiewicz，＂Some integrable systems in nonlinear quantum optics＂，J．Math．Phys． 44 （2003）480－506．

