
INTEGRABLE DIFFERENTIAL-DIFFERENCE
EQUATIONS IN 2+1 DIMENSIONS

Ilia Roustemoglou

Department of Mathematical Sciences,

Loughborough University, UK

I.Roustemoglou@lboro.ac.uk

Joint work with:

E.V. Ferapontov, V. Novikov

Varna, June 8th, 2013

1



Dispersive/Dispersionless equations
Consider KP equation

(ut − uux − uxxx)x = uyy

Change ∂x → ε∂x, ∂y → ε∂y, ∂t → ε∂t(
ut − uux−ε2uxxx

)
x
= uyy

Set ε→ 0 to obtain the so called dispersionless KP (dKP)

(ut − uux)x = uyy

which can be written in the hydrodynamic form

ut − uux = wy

wx = uy

2



Plan

• Differential equations in 2+1 dimensions

– Method of hydrodynamic reductions. Example of dKP

– Dispersive deformations of dispersionless integrable systems

– Non-Degeneracy

• Differential-Difference equations in 2+1 dimensions

– Method of hydrodynamic reductions. Dispersive deformations

– Example of Toda

– Classification results

∗ Intermidiate long wave type non-locality

∗ Toda type non-locality

∗ Fully discrete non-locality

• Concluding Remarks

3



The method of hydrodynamic reductions
Applies to quasilinear equations

A(u)ux +B(u)uy + C(u)ut = 0,

u = (u1, ..., un)t and A,B,C are n× n matrices. We seek n-phase solutions

u = u(R1, ..., Rn)

where the phases Ri(x, y, t) are required to satisfy a pair of commuting equations

Ri
y = µi(R)Ri

x, Ri
t = λi(R)Ri

x

(n-component reductions)

Definition A 2+1D quasilinear system is said to be integrable if it possesses

infinitely many n-component reductions parametrized by n arbitrary functions of a

single argument
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Example of dKP
One-component reductions will be enough for our purposes.

Consider

ut − uux = wy, uy = wx

Seek for one-phase solutions or planar simple waves

u = R, w = w(R)

where R satisfies

Ry = µ(R)Rx, Rt = λ(R)Rx

here

w′(R) = µ(R)

λ(R) = µ2(R) +R is the so called dispersion relation and

µ(R) is an arbitrary function
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Dispersive deformations of dispersionless integrable
systems
Here is KP equation

ut − uux−ε2uxxx = wy, wx = uy

Look for one phase solutions

u = R, w = w(R)+ε(. . . ) + ε2(. . . ) +O(ε3)

where

Ry = µ(R)Rx+ε(. . . ) + ε2(. . . ) +O(ε3)

Rt = (µ2(R) +R)Rx+ε(. . . ) + ε2(. . . ) +O(ε3)

Here (. . . ) are required to be homogeneous polynomials in x- derivatives of R.

Substituting in the equation using Ryt = Rty we obtain
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The deformed one-phase solutions

u = R, w = w(R)+ε2(µ′Rxx +
1

2
(µ′′ − (µ′)3)R2

x) +O(ε4)

and the deformed reductions

Ry =µRx+ε
2

(
µ′Rxx +

1

2
(µ′′ − (µ′)3)R2

x

)
x

+O(ε4)

Rt =(µ2 +R)Rx+ε
2
(
(2µµ′ + 1)Rxx + (µµ′′ − µ(µ′)3 + (µ′)2/2)R2

x

)
x
+O(ε4)

-KP decoupled in infinite many ways to a pair of 1+1d equations (µ is arbitrary)

- Calculations are done up to ε8 (although ε4 is enough). Open to prove that

reductions are inherited to any order ε

Conjecture For any 2+1D integrable system, all hydrodynamic reductions of the

dispersionless system can be deformed into reductions of its dispersive counterpart.
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Dispersive deformations of dispersionless integrable systems

Now suppose

ut = uux + wy+ε(. . . ) + ε2(. . . ), wx = uy

where (. . . ) denote differential polynomials of order two and three respectively in

x- and y- derivatives of u and w.

Require that one-phase solutions can be deformed as

u = R, w = w(R)+ε(. . . ) + ε2(. . . ) +O(ε3)

where

Ry = µ(R)Rx+ε(. . . ) + ε2(. . . ) +O(ε3)

Rt = (µ2(R) +R)Rx+ε(. . . ) + ε2(. . . ) +O(ε3)

And we will obtain KP equation.

• Reconstruction procedure does not always lead to one dispersive equation.
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Non-degeneracy conditions
All equations considered possess a dispersionless limit of the form

ut = ϕux + ψuy + ηwy, wx = uy,

here ϕ,ψ, η are functions of u,w, which is supposed to be non-degenerate when

i) the dispersion relation λ = ϕ+µψ+µ2η defines an irreducible conic, i.e η 6= 0

ii) the system is not totally linearly degenerate, which is characterised by the

equations

ηw = 0, ψw + ηu = 0, φw + ψu = 0, φu = 0

Example: ut = wy, wx = uy
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Differential-Difference equations
We consider

ut = F (u,w)

here u(x, y, t) is a scalar field, w(x, y, t) is the nonlocal variable, F is a

differential/difference operator in x and y

Notation: The ε-shift operators

Txf(x, y) = f(x+ ε, y), T−1x f(x, y) = f(x− ε, y)

The forward/backward discrete derivatives

4+
x =

Tx − 1

ε
, 4−x =

1− T−1x

ε

same for Ty, T
−1
y , 4+

y , 4−y
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Hydrodynamic Reductions And Dispersive
Deformations
Example of Toda.

Consider

ut = u4−y w, wx = 4+
y u

The corresponding dispersionless limit

ut = uwy, wx = uy

Seek solutions of the form u = R,w = w(R) where

Ry = µ(R)Rx, Rt = µ2(R)RRx

and w′(R) = µ(R)
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Solutions and reductions of the dispersionless system can be deformed into

solutions and reductions for the full Toda equation

u = R,

w = w(R)+εw1Rx + ε2(w2Rxx + w3R
2
x) +O(ε3)

and
Ry =µRx+ε

2(α1Rxxx + α2RxRxx + α3R
3
x) +O(ε4)

Rt =µ
2RRx+ε

2(β1Rxxx + β2RxRxx + β3R
3
x) +O(ε4)

with wi, αi, βi functions of R.

After substituting in the equation we obtain
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w1 =
1

2
µ2

w2 =
1

12
µ2 (2µ+Rµ′

)
w3 =

1

24

(
R
(
µ′
)2 (

2µ−Rµ′
)
+ µ2 (11µ′ +Rµ′′

))
α1 =

1

12
Rµ2µ′

α2 =
1

12
R
((
µ′
)2 (

4µ−Rµ′
)
+ 2µ2µ′′

)
α3 =

1

24
R
(
3µ′µ′′

(
2µ−Rµ′

)
+ µ2µ′′′

)
β1 =

1

12
Rµ3 (µ+ 2Rµ′

)
β2 =

1

12
Rµ

(
R
(
µ′
)2 (

11µ− 2Rµ′
)
+ 4µ2 (3µ′ +Rµ′′

))
β3 =

R

12

(
R
(
µ′
)3 (

2µ−Rµ′
)
+ 8Rµ2µ′µ′′ + µ

(
µ′
)2 (

11µ− 3R2µ′′
)
+ µ3 (4µ′′ +Rµ′′′

))
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Classification scheme
Suppose now that

ut = f4−y g, wx = 4+
y u.

The requirement that all one-phase solutions of the dispersionless system are

inherited by the full dispersive equation leads to strong constraints on f, g

At order ε:

gu = 0, fufw = 0, fw (fgww + gwfw) = 0,

But fu = 0 is linearly degenerate case. So: gu = 0, fw = 0

At order ε2: f ′′(u) = 0, g′′(w)2 − g′(w)g′′′(w) = 0

So already at this order we know

f(u) = αu+ β and g(w) = w or g(w) = ew,
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Classes of equations
Named after their non-localities

I. Intermediate Long Wave type 1

ut = ϕux + ψuy + τwx + ηwy + ε(. . . ) + ε2(. . . )

4+
xw =

Tx + 1

2
uy

II. Intermediate Long Wave type 2

ut = ψuy + ηwy + f4+
x g + p4−x q, 4+

xw =
Tx + 1

2
uy

III. Toda type

ut = φux + f4+
y g + p4−y q, wx = 4+

y u

IV. Fully discrete type

ut = f4+
x g + h4−x k + p4+

y q + r4−y s, 4+
xw = 4+

y u
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Classification Results: I.4+
xw = Tx+1

2 uy
The following examples constitute a complete list of integrable equations of the form

ut = ϕux + ψuy + τwx + ηwy + ε(. . . ) + ε2(. . . )

with the non-locality of intermediate long wave type:

ut = uuy + wy, (1)

ut = (w + αeu)uy + wy, (2)

ut = u2uy + (uw)y +
ε2

12
uyyy, (3)

ut = u2uy + (uw)y +
ε2

12

(
uyy −

3

4

u2y
u

)
y

. (4)
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Classification Results: I. Lax Pairs

Eq Lax pair Dis/less limit Dis/less Lax pair

(1) Txψ = εψy − uψ ut = uuy + wy eSx = Sy − u
εψt =

ε2

2
ψyy + (w − ε

2
uy)ψ wx = uy St =

1
2
S2
y + w

(2) Txψ = εe−uψy − αψ ut = (w + αeu)uy + wy eSx = e−uSy − α
ψt =

ε
2
ψyy + (w − ε

2
uy)ψy wx = uy St =

1
2
S2
y + wSy

(3) ε(Tx − 1)ψy = −2u(Tx + 1)ψ ut = u2uy + (uw)y
eSx−1
eSx+1

Sy = −2u

ψt =
ε2

12
ψyyy + (w − ε

2
uy)ψy wx = uy St =

1
12
S3
y + wSy

(4) ε(Tx − 1)ψy = ε
2

uy

u
(Tx − 1)ψ− ut = u2uy + (uw)y

eSx−1
eSx+1

Sy = −2u

2u(Tx + 1)ψ wx = uy

ψt =
ε2

12
ψyyy + (w − ε

2
uy)ψy+ St =

1
12
S3
y + wSy

1
2
(wy − ε

2
uyy)ψ
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Classification Results: II.4+
xw = Tx+1

2 uy
The following examples constitute a complete list of integrable equations of the form

ut = ψuy + ηwy + f4+
x g + p4−x q

with the non-locality of intermediate long wave type:

ut = uuy + wy,

ut = (w + αeu)uy + wy,

ut = wuy + wy +
4+

x +4−x
2

e2u, (5)

ut = wuy + wy + eu(4+
x +4−x )eu. (6)
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Classification Results: II. Lax Pairs

Eq Lax pair Dis/less limit Dis/less Lax pair

(5) εψy = (Txeu)Txψ + euT−1
x ψ ut = 2e2uux+ Sy = 2eu coshSx

εψt =
1
2
eTx(1+Tx)uT 2

xψ − 1
2
e(1+T

−1
x )uT−2

x ψ wuy + wy St = e2u sinh 2Sx

+ Tx(weu)Txψ + weuT−1
x ψ wx = uy + 2weu coshSx

(6) εψy = eu(Txψ + T−1
x ψ) ut = 2e2uux+ Sy = 2eu coshSx

εψt =
1
2
e(1+Tx)uT 2

xψ − 1
2
e(1+T

−1
x )uT−2

x ψ+ wuy + wy St = e2u sinh 2Sx

weu(Txψ + T−1
x ψ) + ε

2
eu[(4+

x +4−x )eu]ψ wx = uy + 2weu coshSx
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Classification Results: III. wx = 4+
y u

The following examples constitute a complete list of integrable equations of the form

ut = φux + f4+
y g + p4−y q

with the non-locality of Toda type:

ut = u4−y w, (7)

ut = (αu+ β)4−y ew, (8)

ut = ew
√
u4+

y

√
u+
√
u4−y (ew

√
u), (9)
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Classification Results: III. Lax Pairs

Eq Lax pair Dis/less limit Dis/less Lax pair

(7) εTyψx = uψ ut = uwy eSySx = u

εψt = −Tyψ + (T−1
y w)ψ wx = uy St = −eSy + w

(8) εTyψx = (αTyu+ β)ψ − (Tyu)Tyψ ut = (αu+ β)ewwy eSySx = αu+β−ueSy

εψt = −ewTyψ + αewψ wx = uy St = −eweSy + αew

(9) εTyψx = ε
√
Tyu

u
ψx − (Tyu)Tyψ ut = ew(uy + uwy) eSySx = Sx−ueSy −u

−
√
uTyu ψ wx = uy St = ew sinhSy

εψt =
1
2
ewTyψ − 1

2
(T−1
y ew)T−1

y ψ
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Classification Results: IV.4+
xw = 4+

y u

The following examples provide a complete list of integrable equations of the form

ut = f4+
x g + h4−x k + p4+

y q + r4−y s

with the fully discrete non-locality:

ut = u4−y (u− w) (10)

ut = u(4+
x +4−y )w (11)

ut = (αe−u + β)4−y eu−w, (12)

ut = (αeu + β)(4+
x +4−y )ew (13)

ut =
√
α− βe2u

(
ew−u4+

y

√
α− βe2u +4−y (ew−u

√
α− βe2u)

)
(14)
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Eq Lax pair Dis/less limit Dis/less Lax pair

(10) TxTyψ = −Tyψ + (Tyu)Txψ ut = u(uy − wy) eSx+Sy = −eSy +ueSx

εψt = Tyψ − wψ wx = uy St = eSy − w

(11) TxTyψ = Tyψ − uψ ut = u(uy + wy) eSx+Sy = eSy − u
εψt = Tyψ + (T−1

y w)ψ wx = uy St = eSy + w

(12) T−1
y ψ = eu

α+βeu
T−1
x ψ + 1

α+βeu
ψ ut = (α+ βeu)e−w× e−Sy = eue−Sx+1

α+βeu

εT−1
x ψt = −εe−uψt− (uy − wy) e−SxSt = −e−uSt−
αe−wT−1

x ψ + βe−wψ wx = uy αe−we−Sx + βe−w

(13) T−1
y ψ = − eu

αeu+β
Txψ + 1

αeu+β
ψ ut = (αeu + β)ew× e−Sy = −eueSx+1

αeu+β

εTxψt = εe−uψt − β(Txew)Txψ− (uy + wy) eSxSt = e−uSt−
α(Txew)ψ wx = uy βeweSx − αew

(14) TxTyψ = α
β
(Tye−u)Tyψ+ ut = α(ew−u)y− eSx+Sy = α

β
e−ueSy+

Ty(e
−u
√
α−βe2u)√

α−βe2u
(Txψ − euψ) β(ew+u)y e−ueSx − 1

εψt = −αewTyψ + β(T−1
y ew)T−1

y ψ wx = uy St = −αeweSy+

βewe−Sy
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Concluding Remarks

• Method for classifying integrable differential and differential-difference equations

with non-degenerate dispersionless limit

• No differential-delay equations passed the integrability test

• The method can be extended to fully discrete 3D equations (work in progress)
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