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Dispersive/Dispersionless equations

Consider KP equation

(Ut — YUy — Uggs), = Uyy
Change 0, — €0y, 0y — €0y, Oy — €0y

(ut — uux—EQumx)w = Uyy
Set € — 0 to obtain the so called dispersionless KP (dKP)

(U — Uty ), = Uy

which can be written in the hydrodynamic form
Ut — Ully = Wy

Wy = Uy
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The method of hydrodynamic reductions

Applies to quasilinear equations
A(u)u, + B(u)u, + C(u)u; =0,
u=(u',..,u")" and A, B, C are n X n matrices. We seek n-phase solutions
u=u(R,...,R")
where the phases Ri(:c, Y, t) are required to satisfy a pair of commuting equations

R, = (R)R,, Ri=X(R)E,

Yy xr
(n-component reductions)

Definition A 2+1D quasilinear system is said to be integrable if it possesses
infinitely many n-component reductions parametrized by n arbitrary functions of a

single argument



Example of dKP

One-component reductions will be enough for our purposes.

Consider

Seek for one-phase solutions or planar simple waves
u=R, w=w(R)

where R satisfies

here
w'(R) = pu(R)
M R) = p?(R) + Ris the so called dispersion relation and

(( R) is an arbitrary function



Dispersive deformations of dispersionless integrable
systems

Here is KP equation

2 _

Look for one phase solutions
u=R, w=w(R)+e(...)+e(...)+0(e)

where
R, = p(R)Ry+e(...)+€e*(...) +0(e)
Ry = (W*(R) + R)Ry+e(...) +e2(...) + O(€)

Here (... ) are required to be homogeneous polynomials in x- derivatives of .

Substituting in the equation using I2,;; = R, we obtain



The deformed one-phase solutions

1
u=R, w=wR)+e (W Rz + 51" = (1)) R2) + O(e")
and the deformed reductions
1
Ry =iBat (1 Res 5"~ (OP)RE) +0(e)

R =(p? + R)Ro+e” ((2up’ + 1) Rew + (up” — p(p')’ + (W)?/2)R3)  + O()

-KP decoupled in infinite many ways to a pair of 1+1d equations (u is arbitrary)

- Calculations are done up to € (although €% is enough). Open to prove that

reductions are inherited to any order ¢

Conjecture For any 2+1D integrable system, all hydrodynamic reductions of the
dispersionless system can be deformed into reductions of its dispersive counterpart.



Dispersive deformations of dispersionless integrable systems

Now suppose
Up = Uy + wy+e(... ) +e2(..), wy = uy

where (. .. ) denote differential polynomials of order two and three respectively in

- and y- derivatives of u and w.
Require that one-phase solutions can be deformed as
w=R, w=w(R)te(...)+e(...)+0()
where
R, =p(R)Ry+e(...)+e*(...) +0(e?)
Ri = (L3(R) + R)Ry+e(...) +2(...) +O(€)
And we will obtain KP equation.

e Reconstruction procedure does not always lead to one dispersive equation.



Non-degeneracy conditions
All equations considered possess a dispersionless limit of the form
U = PUy + YUy + MWy, Wz = Uy,
here ¢, 1), ) are functions of u, w, which is supposed to be non-degenerate when

i) the dispersion relation A\ = ¢ + ) + p?n defines an irreducible conic, i.e n # 0

ii) the system is not totally linearly degenerate, which is characterised by the

equations

Example: uy = Wy, Wz = Uy



Differential-Difference equations

We consider
ur = F(u,w)

here u(x,y,t) is a scalar field, w(x, y, t) is the nonlocal variable, F'is a

differential/difference operator in x and vy

Notation: The e-shift operators

T f(z,y) = fx+ey), T, f(z,y)=f(z—evy)

The forward/backward discrete derivatives

T, — 1
AT = N

o 1-7!

€ €

1 _
same for T, T,7", AF, A
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Hydrodynamic Reductions And Dispersive
Deformations

Example of Toda.

Consider

ur = ul, W, Wy = A;ju
The corresponding dispersionless limit
Ut = UW,, Wy = Uy
Seek solutions of the form u = R, w = w(R) where
R, =uwR)R,, Ri=p*(R)RR,

and w'(R) = p(R)
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Solutions and reductions of the dispersionless system can be deformed into

solutions and reductions for the full Toda equation
u = R,
w = w(R)+ew Ry + € (waRyy + w3R2) + O(€?)

and
R, =uRy+e* (a1 Rypy + o Ry Ry + a3R2) + O(e)

Ry =p?RR;+€* (81 Ruze + BoReRuw + B3RS + O(e?)
with w;, a;, B; functions of R.

After substituting in the equation we obtain
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Wy =-—p° (21 + Ry)

W1 :ilu
1
12
1

w3 —ﬂ

(B (4)" (2n = Bi') + 1> (114 + RBp”) )

1 2 7
——R
a1 =5 p

a2
a3

B

1
12
1

24

€
12

R ((N/)Z (4M . R,LL/) 4+ 2,LL2,LL,/)
R (Slu/,u// (2’u o R,u') 4+ Iu2lu///)

Ry’ (u+ 2Ry

1
B2 :ERM (R (,u’)2 (11,u — 2R,u’) + 4p” (3,u' + R,LL//))

B3

_R
12

(R (,LL/)3 (2/~L . R/Ll) n 8R,u2,u’,u”
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ny (,LL/)Q (11” B 3Rzlu//> I NS (4,LL// 1 RM///))



Classification scheme

Suppose now that
ur = fA, g, wg = A;u.

The requirement that all one-phase solutions of the dispersionless system are

inherited by the full dispersive equation leads to strong constraints on f, g

At order €:
gu:(), fufw:()a fw(fgww+gwfw)zov

But f,, = O is linearly degenerate case. So: g, =0, f, =0
Atorder €2: f"(u) =0, g¢"(w)?— ¢ (w)g" (w) =0
So already at this order we know

w

flu)=au+ 5 and glw)=w or glw)=-e",
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Classes of equations
Named after their non-localities
l. Intermediate Long Wave type 1
Up = QU + YUy + Twe +nwy, +e(..) + (.. )

T, +1
Nfw= ="
2
Il. Intermediate Long Wave type 2

Uy

ur = huy +nwy + FATg+pATq,  Afw =
lll. Toda type
U = ue + fA;g+pA ¢, we =D u

IV. Fully discrete type
ug = fAFg+hAk —|—pA;q—|—frAy_s, ATw = A;u
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Classification Results: I. ATw = L=ty

The following examples constitute a complete list of integrable equations of the form
_ 2
Ut = PUy + YUy + TWy + Ny +€(...) +e(...)

with the non-locality of intermediate long wave type:

Ut = Uly T+ Wy, (1)
ur = (w4 ae®)uy + wy, (2)
2
_ 2 &
ur = wuy + (uw)y + 19 Lyyy (3)

2 2
5 € 3U
Y
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Classification Results: |. Lax Pairs

Eq | Lazx pair Dis/less limit Dis/less Lax pair
H Tet) = ehy — uyp Ut = UlUy + Wy eSw:Sy—u
2

Tt = ce~"1py —
Pt = Syy + (W — Suy)hy

eSz = e Sy — o

@ e(Ty —21)¢y = —2u(Ty + 1)y ur = u?uy + (uw)y GSerlSy = —2u
Yt = T5Vyyy + (W — Fuy )y Wy = Uy St = 1_1252 + wSy
N U Sz _
H (T — 1)y = 50 (Te — DYp— | ug = u?uy + (uw),y zstriSy = —2u
2u(Ty + 1) We = Uy

2
Y = i_2¢yyy + (w — %Uy)¢y+

1
§(wy - %uyy)TP
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Classification Results: Il. AJw = =ty

The following examples constitute a complete list of integrable equations of the form
ug = Yuy, +nwy + fATg+pA g

with the non-locality of intermediate long wave type:

Ut = Uly + Wy,
up = (w4 ae)u, + w,y,
AT+ A
Up = WUy + Wy + — 5 T U (5)

ug = wuy, +wy, + e (A5 + AL )e™. (6)
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Classification Results: Il. Lax Pairs

Eq | Lax pair Dis/less limit | Dis/less Lax pair
1> ey = (Twe")Tptp + e“Tx_lgb up = 2e2%qy,+ Sy = 2e" cosh Sy
ey = %eTx(1+Tx)uT£¢ — %6(1+T51)“T;2¢ wuy +wy | St = e?“sinh 25,

+ Ty (we) Tptp + we Ty tap W = Uy + 2we" cosh Sy
@ ey = e (Tzp + T;lw) ur = 2e*%uz+ Sy = 2e" cosh Sy
€y = %6(1+Tx)uT§¢ — %6(1+T51)“T£2¢—|— wuy +wy | St = e?“sinh 2S5,

we (Tpp + Ty 1) + %e“[(A;r + Az ety W = Uy + 2we" cosh Sy
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Classification Results: lll. W, = A;u

The following examples constitute a complete list of integrable equations of the form
U = Qug + fAT g+ pA g
with the non-locality of Toda type:

ug = uljw, (7)
u = (au+tp)A, e, (8)
ur = e'NVulSVu+Vuld (e Vu), (9)
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Classification Resulis: lll. Lax Pairs

Eq | Lax pair Dis/less limit Dis/less Lax pair
H €Ly = ur) Ut = UWy eSv S, = u
ey = —Typ + (Ty_lw)w We = Uy Sy = —eSv +w

Ty = (aTyu + B)Y — (Tyu) Ty

ePr = —eV Ty + ae¥ P

e®v S, = au-+ B —uesv

S = —eWeSy L eV

Ty = 6\/%1% — (Tyu) Ty
— ulyuy

Yy = %ew Y — %(Ty_lew)Ty_lw

eSySQIj = S: —ueSy — U

St = €¥ sinh .Sy
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Classification Results: IV. ATw = A fu

The following examples provide a complete list of integrable equations of the form
_ AT - + -
= fALg+hA Kk +pAjq+rA,s

with the fully discrete non-locality:

ug = ul, (u —w) (10)
up = u(AF + A )w (11)
ug = (e " + B)A e, (12)
up = (e + B)(AF + A, )e” (13)

Ut:\/@—ﬁe%’(w UAJF\/Oz— 62“+A e’ “\/oz 62“) (14)
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Eq | Lax pair Dis/less limit Dis/less Lax pair

10) | ToTyyp = =Ty + (Tyu)Tzep ur = u(uy — wy) eSr Ty = —eSy 4 yedz
ey = Typ — wip Wy = Uy Sy =eSv —w

11 T Ty = Ty — up ur = u(uy + wy) eSr TS5y = Sy —y
e = Ty + (Ty_lw)w Wa = Uy S = eSv +w

12) | Ty = oooaTo W+ arbomtd | ue = (a+ Be)e x| e Sy = £e Tl
eTx_lwt = —ee Y — (uy — wy) e 525, = —e UG —

ae_wa_lw + Be= W We = Uy ae We Sz 4 e~ W

19) | Ty ' = — S Totp + qoiygth | ue = (ae® + fe¥x | ey = =oe Tl

€Ty = ee Py — B(Tre™ ) Tpp— (uy + wy) eSS — e US, —
a(Tze™ )y Wg = Uy BeWeSz — qeW
14) | ToTyp = G(Tye ) Tyh+ ur = a(eW )y — eSetSy = Fe ueSy 4

Ty(e™ “y/a—pBe?¥) Y
Jo—Be2u (Tzyp — €“1h)
ey = —ae Ty —I—B(Ty_lew)Ty_lw

e UeSr — 1
S = —ae%eSv+
BeWe=Sy
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Concluding Remarks

e Method for classifying integrable differential and differential-difference equations
with non-degenerate dispersionless limit

e No differential-delay equations passed the integrability test

e The method can be extended to fully discrete 3D equations (work in progress)
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