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integrable in the sense of Liouville.

Liouville proved that if, in a system with n degrees of freedom (i.e., with a
2n-dimensional phase space), n independent first integrals in involution are
known, then the system in integrable by quadratures method.

(V. 1. Arnold “Mathematical Methods of Classical Mechanics”)
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= On the other hand, G. De Filippo, G. Marmo, M. Salerno and G. Vilasi
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integrable in the sense of Liouville.

Liouville proved that if, in a system with n degrees of freedom (i.e., with a
2n-dimensional phase space), n independent first integrals in involution are
known, then the system in integrable by quadratures method.

(V. 1. Arnold “Mathematical Methods of Classical Mechanics”)

= On the other hand, G. De Filippo, G. Marmo, M. Salerno and G. Vilasi
constituted a new characterization of integrable systems.

For example, there are researches such as the following.

o“A geometrical setting for the Lax representation” (1982)

®“A new characterization of completely integrable systems” (1984)
o“When do recursion operators generate new conservation laws?” (1992)
e“Hamiltonian dynamics” (2001)
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We put A is vector field on M?".

In this case, the theorem similar to the following is known.

Theorem. (DMSV, see "Hamiltonian dynamics”[4])

A vector field A is separable, integrable and Hamiltonian for certain symplectic
structure when A admits an invariant, mixed, diagonalizable tensor field T with
vanishing Nijenhuis torsion and doubly degenerate eigenvalues without stationary
points. Then, the vector field A is a separable and completely integrable
Hamiltonian system.
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In this case, the theorem similar to the following is known.

Theorem. (DMSV, see "Hamiltonian dynamics”[4])

A vector field A is separable, integrable and Hamiltonian for certain symplectic
structure when A admits an invariant, mixed, diagonalizable tensor field T with
vanishing Nijenhuis torsion and doubly degenerate eigenvalues without stationary
points. Then, the vector field A is a separable and completely integrable
Hamiltonian system.

Now, the operator T is called a recursion operator.
In short ...

Recursion operator
T : recursion operator <= O L T=0. ONy=0. Odeql = 2.
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We put A is vector field on M?".

In this case, the theorem similar to the following is known.

Theorem. (DMSV, see "Hamiltonian dynamics”[4])

A vector field A is separable, integrable and Hamiltonian for certain symplectic
structure when A admits an invariant, mixed, diagonalizable tensor field T with
vanishing Nijenhuis torsion and doubly degenerate eigenvalues without stationary
points. Then, the vector field A is a separable and completely integrable
Hamiltonian system.

Now, the operator T is called a recursion operator.
In short ...

Recursion operator
T : recursion operator <= O L T=0. ONy=0. Odeql = 2.

Since a recursion operator is constructed based on the local coordinate system
(0, p), is not uniquely determined.
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For example ...
Rigid body, Kepler dynamics, Harmonic oscillator, Poincaré half-space model
We were able to obtain a recursion operator on the basis of some metrics such

as Poincaré metric. Specifically, we consider recursion operators using some
solutions of the Einstein equation.
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Well-known

Following recursion operator is known so far as a concrete example.

For example ...

Rigid body, Kepler dynamics, Harmonic oscillator, Poincaré half-space model

We were able to obtain a recursion operator on the basis of some metrics such
as Poincaré metric. Specifically, we consider recursion operators using some
solutions of the Einstein equation.

Purpose

We consider geodesic flows on the pseudo-Riemann metric and Kerr-Newman
metric as concrete examples, and we construct recursion operators.
Moreover, we get constants of motion with the recursion operator.

Tsukasa Takeuchi Ph.D. student, The Akira Yoshioka Laboratory, Department of Mathematics, Institute of Science, Tokyo University of Science

A Construction of a Recursion Operator for Some Solutions of the Einstein Field Equations



Preface The Minkowski metr Solution of the Einstein field equations

Lem

Tsukasa Takeuchi Ph.D. student, The Akira Yoshioka Laboratory, Department of Mathematics, Institute of Science, Tokyo University of Science

A Construction of a Recursion Operator for Some Solutions of the Einstein Field Equations



Preface The Minkowski metr Solution of the Einstein field equations

, A= .. (qk = Xk, Pk = Xn+k).
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1
A q . k k n+k
Weput T = A , A= .. (g = x*, px = x™).
qn
Then we have the following Lemmas.
Lemma.l Nt =0.
T 0T dTS 0T

(N)h—Tka -7 -
i T gk I gxk k gxi k gxi
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1
A q o k k n+k
Weput T = A , A= .. (g = x*, px = x™).
qn
Then we have the following Lemmas.
Lemma.l Nt =0.

othy ot _ aTN 9T
((NT)”h =Tk kI n 1 gh '.]

T gxk I gxk kKgxi K oxi

If A= —i (h=1,---,n),then L,T =0.
9pn

Lemma.2

Ti.
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The Minkowski metric

The Minkowski metric

We will construct a recursion operator for the geodesic flow of the Minkowski
metric.
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We will construct a recursion operator for the geodesic flow of the Minkowski
metric.

O Constitute a specific example using pseudo-Riemannian metrics.
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The Minkowski metric

We will construct a recursion operator for the geodesic flow of the Minkowski
metric.

O Constitute a specific example using pseudo-Riemannian metrics.
= First, we consider a simple case namely the Minkowski metric.
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= First, we consider a simple case namely the Minkowski metric.
Then, we get constants of motion with the recursion operator.

Tsukasa Takeuchi Ph.D. student, The Akira Yoshioka Laboratory, Department of Mathematics, Institute of Science, Tokyo University of Science

A Construction of a R Operator for Some Solutions of the Einstein Field Equations



The Minkowski metric

The Minkowski metric

We will construct a recursion operator for the geodesic flow of the Minkowski
metric.
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The Minkowski metric

The Minkowski metric

We will construct a recursion operator for the geodesic flow of the Minkowski
metric.

O Constitute a specific example using pseudo-Riemannian metrics.

= First, we consider a simple case namely the Minkowski metric.
Then, we get constants of motion with the recursion operator.
Finally, we construct a recursion operator for the another vector field.

We construct the vector field A for the geodesic flow on the Minkowski metric.

4
0 0

A=—-p— + Pk—»

oq kz; 99k

where a matrix gjj and a equation of geodesic flow are

-1
g =gl = 1 _dquJ,rKd_qud_qu_o _ad

! 1P ge gt dt o o\ T ar )

1
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The Minkowski metric

4
We put symplectic form w = Z dp A dg.
i=1
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The Minkowski metric

4
We put symplectic form w = Z dp A dg.
i=1

Then, we constructed the Hamiltonian function H satisfying

iaw=—dH.
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The Minkowski metric

4
We put symplectic form w = Z dp A dg.
i=1

Then, we constructed the Hamiltonian function H satisfying
iaw=—dH.

At this time, the Hamiltonian function such as the following can be obtained.
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The Minkowski metric

4
We put symplectic form w = Z dp A dg.
i=1

Then, we constructed the Hamiltonian function H satisfying
iaw=—dH.
At this time, the Hamiltonian function such as the following can be obtained.

Hamiltonian function
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Hamiltonian function
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The Minkowski metric

Hamiltonian function

H=% N AL

k=2

We consider the Hamilton-Jacobi equation by this Hamiltonian function. The
Hamiltonian function does not include gk (and ).
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The Minkowski metric

Hamiltonian function

H=% N AL

k=2

We consider the Hamilton-Jacobi equation by this Hamiltonian function. The
Hamiltonian function does not include gk (and q;). Therefore, we get
p« (k = 2,3,4) are circular coordinate.
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The Minkowski metric

Hamiltonian function

4
1
H = E —pi + kgz p|2( .
We consider the Hamilton-Jacobi equation by this Hamiltonian function. The
Hamiltonian function does not include gk (and q;). Therefore, we get
p« (k = 2,3,4) are circular coordinate.
In other words, p are first integral. Here, we put py are constant.

Tsukasa Takeuchi Ph.D. student, The Akira Yoshioka Laboratory, Department of Mathematics, Institute of Science, Tokyo University of Science

A Construction of a Recursion Operator for Some Solutions of the Einstein Field Equations



The Minkowski metric

Hamiltonian function

4
1
H = E —pi + kgz p|2( .
We consider the Hamilton-Jacobi equation by this Hamiltonian function. The
Hamiltonian function does not include gk (and q;). Therefore, we get
p« (k = 2,3,4) are circular coordinate.
In other words, p are first integral. Here, we put py are constant.

Hamilton-Jacobi equation

4
2E=-pl + Z a, (ak (= p)Oconst).
k=2
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The Minkowski metric

Hamiltonian function

4
1
H = E —pi + kgz p|2( .
We consider the Hamilton-Jacobi equation by this Hamiltonian function. The
Hamiltonian function does not include gk (and q;). Therefore, we get
p« (k = 2,3,4) are circular coordinate.
In other words, p are first integral. Here, we put py are constant.

Hamilton-Jacobi equation

4
2E=-pl + Z a, (ak (= p)Oconst).
k=

N

Hence we get a generating function Wiis ...
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The Minkowski metric

Hamiltonian function

4
1
H = E —pi + kgz p|2( .
We consider the Hamilton-Jacobi equation by this Hamiltonian function. The
Hamiltonian function does not include gk (and q;). Therefore, we get
p« (k = 2,3,4) are circular coordinate.
In other words, p are first integral. Here, we put py are constant.

Hamilton-Jacobi equation

2E 2, (ax (= px)O const.).

I
I
S
+
N
QD
=

Hence we get a generating function Wiis ...

Generating function

4
ai -2E o1 + Z aOk-
k=2
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The Minkowski metric

We determine the canonical coordinate system (P, Q) using the generating
function W.
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The Minkowski metric

We determine the canonical coordinate system (P, Q) using the generating
function W.

Canonical coordinate system

=E, = ar = , PL=—-—— , Pk=—— = —— — .
Q= Q=P =g T e e *
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The Minkowski metric

Now, we put T is

T=iQi i®C“:)i+i®in .
= \9P Qi
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The Minkowski metric

Now, we put T is

T=Z4:Q-(i®dp-+i®dq).
£ < \ap, o)

In this case, from Lemma.1 and Lemma.2, we see that L,T = 0, Nt = 0Oand
degQ; = 2.
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The Minkowski metric

Now, we put T is

T=Z4:Q-(i®dp-+i®dq).
£ < \ap, o)

In this case, from Lemma.1 and Lemma.2, we see that L,T = 0, Nt = 0Oand
degQ; = 2.

Thus, T is a recursion operator.
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The Minkowski metric

Now, we put T is

4
ngQ-(a—Pl®dPl+£®in)

In this case, from Lemma.1 and Lemma.2, we see that L,T = 0, Nt = 0Oand
degQ; = 2.
Thus, T is a recursion operator.

Recursion operator

4
T=ZQ-(6—PI®dP.+a—Q®dQ)
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The Minkowski metric

Now, we put T is

4
ngQ-(a—Pl®dPl+£®in)

In this case, from Lemma.1 and Lemma.2, we see that L,T = 0, Nt = 0Oand
degQ; = 2.
Thus, T is a recursion operator.

Recursion operator

4
T=§Qi(a—a®dp.+a—Ql®dQ)

If we take Tr(T), Tr(T?), Tr(T3) and Tr(T?), it is possible to obtain the constants of
motion.
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The Minkowski metric

Also, if we expressed in the original coordinate system of T and Tr(T¢), T and
Tr(T%) become ...
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Also, if we expressed in the original coordinate system of T and Tr(T¢), T and
Tr(T%) become ...

Representation of the original coordinate system
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The Minkowski metric Solution of the Einstein field equations

Also, if we expressed in the original coordinate system of T and Tr(T¢), T and
Tr(T%) become ...

Representation of the original coordinate system

Recursion operator

0 0
T= Z( ®dpJ+B'£®dpJ+A'£®dqj)
’]l
H
P2
E(pz—H) P2
where A=|Ps , B=&(‘A—A).
—(ps — H) Ps P
Py
Pa
Z(p—-H
pl(p4 ) Ps
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The Minkowski metric Solution of the Einstein field equations

Also, if we expressed in the original coordinate system of T and Tr(T¢), T and
Tr(T%) become ...

Representation of the original coordinate system

Recursion operator

0 0
T= Z( ®dpJ+B'£®dpJ+A'£®dqj)
’]l
H
P2
E(pz—H) P2
where A=|Ps , B=&(‘A—A).
—(ps — H) Ps P
Py
Pa
Z(p—-H
pl(p4 ) Ps

Constants of motion

™TY) = 3-1 (- + 2+ + pj)€+2(pg+ B+ ), (€=1234).
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The Minkowski metric

We reconsider in the canonical coordinate system.

Recursion operator

T=Z4:Q-(i®dp+i®dq).
AU !
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The Minkowski metric

We reconsider in the canonical coordinate system.

Recursion operator

T=Z4:Q-(i®dp+i®dq).
\op L aQ,

We regard T as a matrix:
Q.

S
_ _ Q2
T= s , S= Qs .
Q4
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The Minkowski metric

We reconsider in the canonical coordinate system

Recursion operator
4
P P
T=%YolZLedr+-Lad
ZQ(OP.® 50 ® Q)

We regard T as a matrix:
Q.

S
_ _ Q2
T= s , S= Qs .
Q4

And we define Kj, w; and I as follows:

4
Ki:=Q P, w1:=ZdKi/\dG’i (@i =Q), T ZKIBP
i=1 :
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The Minkowski metric

We reconsider in the canonical coordinate system

Recursion operator
4
7] a
T= i|—®dP + —®d
Z @ (apl L aQ, Q)
We regard T as a matrix:
Q.
S
T= , S= Q2 .
S Qs
Q4

And we define Kj, w; and I as follows:

4
Ki:=Q P, a)1:=ZdKi/\dG’i (@i =Q), T ZKIBP
i=1 :

At this time, w1 is a symplectic form and satisfies the following

w1 = Lrw.
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The Minkowski metric

Now, we constract another vector field by using A and T,

0
Ans1 = [An, T, (Ao=A= —a—Pl)-
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The Minkowski metric

Now, we constract another vector field by using A and T,

Ans1 = [An, T, (Ao=A= _6_P1)

ori TN AN
A1 =[AT] = Al — T — =-Q;—
r=[0 1] 2;( axi axi)axJ & apl

Ay =[AL,T] = —QP—, A3=[A,T] = -Q®—

19P,’ 1aP
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The Minkowski metric

Now, we constract another vector field by using A and T,
An+1 = [An, T], (Ao=A= _6_P1)

ori TN AN
A1 =[AT] = Al — _T1i = -0 —
r=[0 1] 2‘1( axi axi)axJ & apl

d
A = [A,T] = —QP—, Az =[A,T] =-Q°
2 = [Ag,T] QlaP 3 =[Ag,T] QlaP

And we define the following Poisson bracket { , }; by using the symplectic form

(fogh = ) (s

i,j=1

w1:

)i (0f ag  of ag)
i\oP;j 0Q;  0Q; dP;
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The Minkowski metric

Now, we constract another vector field by using A and T,

Ans1 = [An, T, (Ao=A= _6_P1)

ori TN AN
A1 =[AT] = Al — T =-Q;—
r=[0 1] 2‘1( axi axi)axJ & apl

As = [As,T] = ~Q3-2

_ — 2
Az = [A,T] = ~QP—— e

1ap

And we define the following Poisson bracket { , }; by using the symplectic form
w1.

3 i (0f dg af ag
(fogh =) (S 1)1-(6_p,.a_q 'a_qa_Fn)'

i,j=1
Thus, we get Ak = {Hi,* } = {His1,* 1
_ 1y _1l _1w
where Hi = EQl’ Hz = §Q1, Hs = ZQl-
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The Minkowski metric

We choose a vector field A; and a Hamiltonian function Hj.

. 7] . . 1
vector field A = -Q;— Hamiltonian function H; = =Q?
— 0P 271
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The Minkowski metric

We choose a vector field A; and a Hamiltonian function Hj.

. 7] . . 1
vector field A = -Q;— Hamiltonian function H; = =Q?
— 0P 271

In this case, a recursion operator corresponding to the A; is described as
follows:

T —iQ-(i®dP-+i®dQ)
1—i=1 i aP, i 6Qi .
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The Minkowski metric

We choose a vector field A; and a Hamiltonian function Hj.

. 7] . . 1
vector field A = -Q;— Hamiltonian function H; = =Q?
— 0P 271

In this case, a recursion operator corresponding to the A; is described as
follows:

T —iQ-(i®dP-+i®dQ)
1—i=1 i aP, i 6Qi .

T, and T are the same, so T is a recursion operator not only on A; but also
original A.
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The Minkowski metric

We choose a vector field A; and a Hamiltonian function Hj.

' 7] — . 1
vector field A = -Q;— Hamiltonian function H; = —Q2
E— 0P 271
In this case, a recursion operator corresponding to the A; is described as
follows:

T —iQ-(i®dP-+i®dQ)
1—i=1 i aP, i aQi .

T, and T are the same, so T is a recursion operator not only on A; but also
original A.

In the same way, by A, and H,, we have that T, coincide with T. Similarly, we
have that T3 coincide with T.
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Solution of the Einstein field equations

Solution of the Einstein field equations

We consider geodesic flow on Kerr-Newman metric, and we construct a
recursion operator. And we get constants of motion with the recursion operator.

Einstein field equations  (1915-1916)

Gy + Ay = kT

1 Lo
Gy =Ry — ERg,,VIZI Einstein tensor,
Al Cosmological term, O Constant.

= Field equation (Einstein’s field equations of General Relativity(EFE))

= Several exact solutions are given.
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Solution of the Einstein field equations

Exact solutions of Einstein field equatio
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Solution of the Einstein field equations

Exact solutions of Einstein field equatio

For example ...
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Solution of the Einstein field equations

Exact solutions of Einstein field equatio

For example ...

« [Schwarzschild metric (1916)
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Exact solutions of Einstein field equation

For example ...

« [Schwarzschild metric (1916)

o  Reissner-Nordstrom metric (1916,1918)
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Solution of the Einstein field equations

Exact solutions of Einstein field equation

For example ...

« [Schwarzschild metric (1916)

o  Reissner-Nordstrom metric (1916,1918)

 [KEHREHE] (1963)
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Solution of the Einstein field equations

Exact solutions of Einstein field equation

For example ...

« [Schwarzschild metric (1916)

o  Reissner-Nordstrom metric (1916,1918)

 [KEHREHE] (1963)

e Kerr-Newman metric (1965)
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Exact solutions of Einstein field equation

For example ...

« [Schwarzschild metric (1916)

o  Reissner-Nordstrom metric (1916,1918)

 [KEHREHE] (1963)

e Kerr-Newman metric (1965)

We consider recursion operators using some solutions of the Einstein equation.
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Solution of the Einstein field equations

Exact solutions of Einstein field equation

For example ...
« [Schiwarzschildimetic] (1916)
o  Reissner-Nordstrom metric (1916,1918)

 [KEHREHE] (1963)

e Kerr-Newman metric (1965)

We consider recursion operators using some solutions of the Einstein equation.

The Schwarzschild metric is the simplest solution among the four solution in the
Einstein field equations. Also the Kerr-Newman metric is the most complex
solution in this.
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Solution of the Einstein field equations

Exact solutions of Einstein field equation

For example ...
« [Schiwarzschildimetic] (1916)
o  Reissner-Nordstrom metric (1916,1918)

 [KEHREHE] (1963)

e Kerr-Newman metric (1965)

We consider recursion operators using some solutions of the Einstein equation.

The Schwarzschild metric is the simplest solution among the four solution in the
Einstein field equations. Also the Kerr-Newman metric is the most complex
solution in this.

Now, we consider _ and the Kerr-Newman metric .
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Solution of the Einstein field equations

Kerr-Newman metric

1 . 2asin’ 9
ds = -— (K - a?sin? 0) gtz 4 2230 ¢ (Q2 - 2Mr) dtdg
p2 p2
2 £ 2
(7] .
+2 a2+ p2de? + sme {(r2 + a2)2 - a2k sin 0} d¢?.
K p2

K:=r2-2rM + a° + Q?, p?:=r?+ a’cosé.
MO the mass of the black hole,
J0O angular momentum, Q0O electric charge
t € (~00,00), T € (2M, ), 6 € (O,m), ¢ € (0,2n). (&% + Q* < M?)
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Solution of the Einstein field equations

Kerr-Newman metric

1 . 2asin’ 9
ds = -— (K - a?sin? 0) gtz 4 2230 ¢ (Q2 - 2Mr) dtdg
p? p?
2 £ 2
(7] .
+p?dr2 +p2de® + % {(r2 + a2)2 - a2k sin 0} d¢?.

P
K:=r2-2rM + a° + Q?, p?:=r?+ a’cosé.
MO the mass of the black hole,
J0O angular momentum, Q0O electric charge
t € (~00,00), T € (2M, ), 6 € (O,m), ¢ € (0,2n). (&% + Q* < M?)

IREiietiel (= o)
in2
42 = _(1_ 2|v|2r) 4e — 4aMrzsm 0dtd¢
p p
2a°Mr sin’ 9
02
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Solution of the Einstein field equations

Kerr-Newman metric

1 .
ds = —-= (K - a’sin? 0) dt? +
P p?
2 2
sin© @ 2 .
+2 a4 p2de? + —— {(r2 + a2) — a’ksin? 0} de?.
K p2
k:=1?2=2rM + & + Q2

2""5—"’20(()2 — 2Mr) dtdg
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Solution of the Einstein field equations

Kerr-Newman metric

1 .
ds = —-= (K - a’sin? 0) dt? +
P p?
2 2
sin© @ 2 .
2 ar s p2de? + —— {(r2 + a2) — a’ksin? 0} de?.
K p2
k:=1?2=2rM + & + Q2

2""5—"’20(()2 — 2Mr) dtdg

Reissner-Nordstrom metric  (J = 0)

ds

-1
—%dt2 + (52) dr? + r2dé? + r? sin® 9d¢?
r r

2 2\"1
_(1_ @ + %] dt? + (1— @ + %) dr? + r?de? + r? sin® 6d¢?.
r r
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Solution of the Einstein field equations

Kerr-Newman metric

1 .
ds = —-= (K - a’sin? 0) dt? +
P p?
2 2
sin© @ 2 .
+2 a4 p2de? + —— {(r2 + a2) — a’ksin? 0} de?.
K p2
k:=1?2=2rM + & + Q2

2""5—"12‘9(()2 — 2Mr) dtdg

Reissner-Nordstrom metric  (J = 0)

-1
ds = —ﬁzdt2 + (52) dr? + r2dé? + r? sin® 9d¢?
r r
2 2\~1
= —(1— LU 2] dt® + (1— LN g) dr? + r?de? + r? sin® 6d¢?.
r r2 r r2
[Sehwarzsehildimetiie] (Q =0, J =0)

-1
d< = _(1_ ZTM) dt? + (1 - ZTM) dr? + r2dé? + r? sin® 9dg°.
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Solution of the Einstein field equations

The Schwarzschild metric

-1
2M 2M .
ds = - 1-— de? + 1-— dr? + r2dé? + r? sin® 9dg>.
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Solution of the Einstein field equations

The Schwarzschild metric

-1
de = _(1_ @) dt? + (1 - @) dr? + r2de? + r? sin 9d¢>.

In this case, we get the vector field A is ...
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Solution of the Einstein field equations

The Schwarzschild metric

-1
de = _(1_ @) dt? + (1 - @) dr? + r2de? + r? sin 9d¢>.

In this case, we get the vector field A is ...

vector field
-1 -1
A:-(l_m) pli.b(l_m) pzi.bq;zmi.pLi
02 oq o7 o 003 qg sin? gz 9%
-2 P’ P2 cOSQ3
_M(l_Z_M) pi_Mp§+q;3p23+_4 i+4_i.
o o7 Q qsin®gz) 9Pz osin® g3 s

t=01 € (-00,00), =0 € (2M, ), 0 = gz € (0,7), ¢ = qs € (0, 2n).

Tsukasa Takeuchi
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Solution of the Einstein field equations

At this time, the Hamiltonian function H such as the following can be obtained.
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Solution of the Einstein field equations

At this time, the Hamiltonian function H such as the following can be obtained.

Hamiltonian function

H= 2 —(1— 2—M)_lpi+(1— Z—M) 0+ a0+ (qgsin2q3)_l AR

2 02
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Solution of the Einstein field equations

At this time, the Hamiltonian function H such as the following can be obtained.

Hamiltonian function

H= 2 —(1— 2—M)_lpi+(1— Z—M) 0+ a0+ (qgsin2q3)_l AR

2

Next, we consider the Hamilton-Jacobi equation by this Hamiltonian function.
The Hamiltonian function does not include g; and g.
Thus, we put p and 4 are constant.
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Solution of the Einstein field equations

Hamilton-Jacobi equation

dWl dW;,
W = W, s = = a, = —=8.
kz; k(Ok)y P = Iy o o B

-1 2 2 2
dw; dw.,
2Eq§+a2(1—2—M) qg—(l 2M)q§(—2) =(—3) +ﬂ— = K.
07 07 dop dog sin gs
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Solution of the Einstein field equations

Hamilton-Jacobi equation

dWl dW;,
W = W, s = = a, = —=8.
kz; k(Ok)y P = Iy o o B

-1 2 2 2
W
2Eq2+a2(1—2—M) q2—(1 2M)q(dW2) =(b) +'B—=
2 R/ * q do das/  sin’qs

Thus, we get a generating function W is ...

>
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Solution of the Einstein field equations

Hamilton-Jacobi equation

dWl dW;,
W = W, s = = a, = —=8.
kz_; k(Ok)y P = Iy o o B

-1 2 2 2
dw; dw.
2Eq2+a2(1—2—M) q2—(1 2M)q( 2) =(—3) + A = K.
2 R/ * q do das/  sin’qs
Thus, we get a generating function W is ...

Generating function

wW

ady + dqz f—dcﬁs+ﬂq4

ads + W + W3 + B0a.
It is difficult to describe W, and W3 by elementary function.
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Solution of the Einstein field equations

We determine the canonical coordinate system (P, Q) using the generating
function W.
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Solution of the Einstein field equations

We determine the canonical coordinate system (P, Q) using the generating
function W.

Canonical coordinate system

Q=E Q=K Q=a Q=8

oW,  O0W3 oW, OW3 W, oWs

’ = ot} =-Qi—-———, Pa=—— -
8Q  9Q. °T 8Q, 4Q) T tTeQs YT Qs
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Solution of the Einstein field equations

We determine the canonical coordinate system (P, Q) using the generating
function W.

Canonical coordinate system

Q=E Q=K Q=a Q=8

_ oW, 0Ws _ oW, 0Ws _ oW, P, = oW3
80, 00 2T a0 90 0T MTag T Taq M

Case of canonical coordinate system, a vector field A is written as follows:
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Solution of the Einstein field equations

We determine the canonical coordinate system (P, Q) using the generating
function W.

Canonical coordinate system

Q=E Q=K Q=a Q=8

_ oW, 0Ws _ oW, 0Ws _ oW, P, = oW3
80, 00 2T a0 90 0T MTag T Taq M

Case of canonical coordinate system, a vector field A is written as follows:

; 4
Vector field A={H,0}={Q,0)} = ——.
P,
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Solution of the Einstein field equations

In this case, a recursion operator T and the constants of motion Tr(T¢) are ...
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Solution of the Einstein field equat

In this case, a recursion operator T and the constants of motion Tr(T¢) are ...

Recursion operator T, Constants of motion Tr(T¢)
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Solution of the Einstein field equat

In this case, a recursion operator T and the constants of motion Tr(T¢) are ...

Recursion operator T, Constants of motion Tr(T¢)

Recursion operator

4
0 0

T = E — ®dP. + — ® dO.|.

k=le(3Pk® K an® Qk)
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The Minkowski metr Solution of the Einstein field equations

In this case, a recursion operator T and the constants of motion Tr(T¢) are ...

Recursion operator T, Constants of motion Tr(T¢)

Recursion operator

4
0 0

T = E — ®dP. + — ® dO.|.

k=le(3Pk® K an® Qk)

Constants of motion

4
T(T) =23 Q =2(E + K +a +6), (£=1234).
i=1
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Solution of the Einstein field equations

The Kerr-Newman metric

As same as the Schwarzschild metric case, we consider the Kerr-Newman
metric.
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Solution of the Einstein field equations

The Kerr-Newman metric

As same as the Schwarzschild metric case, we consider the Kerr-Newman
metric.

Kerr-Newman metric

d< = —iz (K - asin? 0) dt® + 2as_ir120 (Q2 - 2Mr) dtdg

p ) P 2
sin 2 ,
+ 2y p2de? + —— {(r2 + a2) - a’k sin? 0} dg?.
K p2
k=r2=2rM + &+ @, p?=r2+ a’cosé. (612+Q2 < M2)
= Q4 € (0, 27).

t=0; € (-00,00), I =02 € (2M, ), 6 = g3 € (0,7), ¢

— (x - @ sin® 6) p2 asin?6(Q - 2Mr) p=2

2
sin 0 {(r2 + a2) - &%k sir? 0} p2

asin? 6 (Q? - 2Mr) p~2
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Solution of the Einstein field equations

Vector field

We omitted details of this equation because it is too complicated.
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Vector field .
0 0
A= Z (Xi— + Yi—).
i=1 an aql

We omitted details of this equation because it is too complicated. However, we
were able to obtain a Hamiltonian function H such as the following.
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Vector field .
0 0
A= Z (Xi— + Yi—).
i=1 an aql

We omitted details of this equation because it is too complicated. However, we
were able to obtain a Hamiltonian function H such as the following.

Hamiltonian function

22
11| a? (q+a) K
H==-[{=sinfgg— ———— -
2 [] p2 % Kp? 1 png
1 a2 a a(q§+a2)
+—2p§+ — TS (Pt2 __—2 PLPaf.
P kp?  p?sin gg Kp

k=0;—2Maz + 8 + Q° = k(qp), p° = G + & coS Gz = p(Cz, Ga)-
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Vector field .
0 0
A= Z (Xi— + Yi—).
i=1 an aql

We omitted details of this equation because it is too complicated. However, we
were able to obtain a Hamiltonian function H such as the following.

Hamiltonian function

22
11| a? (q+a) K
H==-[{=sinfgg— ———— -
2 [] p2 % Kp? 1 png
1 a2 a a(q§+a2)
+—2p§+ — TS (Pt2 __—2 PLPaf.
P kp?  p?sin gg Kp

K

@ —2Maa + & + Q@ = k(0p), p° = 0 + & oS Gz = p*(Cla, Ga)-

The Hamiltonian function H does not include g; and g4. Hence, p; and p, are first
integral.
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Solution of the Einstein field equations

Then, we consider the Hamilton-Jacobi equation by this Hamiltonian function.
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Solution of the Einstein field equations

Then, we consider the Hamilton-Jacobi equation by this Hamiltonian function.

Hamilton-Jacobi equation

dw, dw,
W= > Wi(d), pr= = pm=—-=4§
kZ; day dog

(02 + a%)? dWs\2 a2 2a(f + &)
AR L AL
+ 2aeB =: K.

dW3) _ ﬂ_z

= —2Ea’ co gz + a%a? sin q3+(
dos

sin? gs
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Solution of the Einstein field equations

Then, we consider the Hamilton-Jacobi equation by this Hamiltonian function.

Hamilton-Jacobi equation

W= > W R = =a, =—_"=8.
kZ_; (90, P= o= pe= gt =p
(4 + a%)? dWs\2 a2 2a(q? + a?)
ER+—2—o? x| —2) + Eprr 2 g
2 dop K K
dw. 2
= —2Ea’cog s + a’a?sin q3+( 3) - ﬂ — + 2a08 =
dos sin? gz

Thus, we get a generating function W is ...
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Solution of the Einstein field equations

Then, we consider the Hamilton-Jacobi equation by this Hamiltonian function.

Hamilton-Jacobi equation

dWl dW,
W = W R = =aq, =——=8.
kz_; k(i) P = I Pa o B
(02 + a%)? dWs\2 a2 2a(f + &)
2Eq§+2—ar2 - K(—Z) + iﬁz + Z—aﬂ
do K K
dw; 2
= —2Ea’ co gz + a%a? sin q3+( 3) - A + 2aeB =: K.
dog sin® o3
Thus, we get a generating function W is ...
Generating function
W=amqm+ dQ2 f—dqs+ﬂQ4—OJQ1+W2+W3+ﬂQ4-
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Solution of the Einstein field equations

We determine the canonical coordinate system (P, Q) using the generating
function W.
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Solution of the Einstein field equations

We determine the canonical coordinate system (P, Q) using the generating
function W.

Canonical coordinate system

E9 QZ = K9 Q3 = a, Q4=ﬁ9
oW, 0W; P oW, 0W;

Q1

0Q 0’ 0Q 0Q
oW,  OWs oW, W3

e T

Qs  9Qs | 0Qs  0Qq

P1

2 T a~ am ?

P3
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Solution of the Einstein field equations

We determine the canonical coordinate system (P, Q) using the generating
function W.

Canonical coordinate system

Q1=E9 Q2=K9 Q3=Q, Q4=ﬁ9
oW, 0W; oW, 0W;
Pr=—fo 2 py= o2 3
0Q1 0Q 0Q, 0Q,
W, AW W, AW,
P3=-01 — — - — = - G

Qs  9Qs | 0Qs  0Qq

Case of canonical coordinate system, a vector field A is written as follows:

Vector field A={H,0)}= _9
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Solution of the Einstein field equations

At this time, a recursion operator T and the constants of motion Tr(T?) are ...
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Solution of the Einstein field equations

At this time, a recursion operator T and the constants of motion Tr(T?) are ...

Recursion operator T, Constants of motion Tr(T¢)
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Solution of the Einstein field equat

At this time, a recursion operator T and the constants of motion Tr(T?) are ...

Tsukasa Takeuchi Ph.D. student, The Akira Yoshioka Laboratory, Department of Mathematics, Institute of Science, Tokyo University of Science

A Construction of a Recursion Operator for Some Solutions of the Einstein Field Equations



Solution of the Einstein field equations

At this time, a recursion operator T and the constants of motion Tr(T?) are ...

Recursion operator T, Constants of motion Tr(T¢)

Recursion operator

Constants of motion

4
(T =2) Q =2(E' +K +a +f), (£=1,234).
i=1
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The Minkowski metr Solution of the Einstein field equations

At this time, a recursion operator T and the constants of motion Tr(T?) are ...

Recursion operator T, Constants of motion Tr(T¢)

Recursion operator

2 d d
T= | — ® dP, + — ® dQ/}.
;Q' (aPi e Q)
Constants of motion
4
T(T) =23 Q =2(E + K +a' +8), (£=1,234).
i=1

We were able to construct a recursion operator, determined by the geodesic
flow from Kerr-Newman metric.
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The Minkowski metr Solution of the Einstein field equations

At this time, a recursion operator T and the constants of motion Tr(T?) are ...

Recursion operator T, Constants of motion Tr(T¢)

Recursion operator

2 d d
T= | — ® dP, + — ® dQ/}.
;Q' (aPi e Q)
Constants of motion
4
T(T) =23 Q =2(E + K +a' +8), (£=1,234).
i=1

We were able to construct a recursion operator, determined by the geodesic
flow from Kerr-Newman metric.

Thus, we get it to be integrable system. And we get that it has a constants of
motion.
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Solution of the Einstein field equations
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Solution of the Einstein field equations

Thank you for your attention!
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