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The Einstein addition ⊕

in (Rn
c ,⊕)

u⊕v =
1

1 + u·v
c2

{

u +
1

γ
u

v +
1

c2

γu

1 + γu

(u·v)u

}

(1)

for all u and v in the c-ball R
n
c

R
n
c = {v ∈ R

n : ‖v‖ < c} (2)

of the Euclidean n-space R
n, γ

u
being the

Lorentz factor

γ
u

=
1

√

1 −
‖u‖

2

c2

, γ
u

real ⇔ u ∈ R
n
c (3)

Einstein addition and the gamma factor are

related by the gamma identity,

γ
u⊕v

= γ
u
γ
v

(

1 +
u·v

c2

)

(4)

so that u,v ∈ R
n
c ⇒ u⊕v ∈ R

n
c .
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Reduction to the common vector addition:

When c → ∞, Einstein addition ⊕ in the ball R
n
c

reduces to the common vector addition, +, in the

Euclidean n-space R
n:

lim
c→∞

(Rn
c ,⊕) = (Rn, +) (5)

The groupoid (Rn, +) is regulated

1. algebraically, by the

(associative-commutative) algebra of vector

spaces; and

2. geometrically, by Euclidean geometry.

We will find that, in full analogy:

The Einstein groupoid (Rn
c ,⊕) is regulated

1. algebraically, by the

nonassociative-noncommutative algebra of

gyrovector spaces; and

2. geometrically, by the hyperbolic geometry of

Bolyai and Lobachevsky.
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Einstein’s addition is noncommutative. In general

u⊕v 6= v⊕u (6)

u,v ∈ R
n
c . Moreover, Einstein’s addition is also

nonassociative. In general

(u⊕v)⊕w 6= u⊕(v⊕w) (7)

u,v,w ∈ R
n
c . Before the advent of gyrogroup

theory in 1988 physicists have difficulty

explaining why the Einstein velocity addition fell

into such despair.

One might suppose that there is a price to pay in

mathematical regularity when replacing ordinary

vector addition with Einstein’s addition. But we

will now see that this is not the case.
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a⊕b = gyr[a, b](b⊕a) Gyrocommutative Law

a⊕b = gyr[a, b](b⊕a) Gyrocommutative Law

Coincidentally, the gyration that repairs the

breakdown of commutativity in the Möbius

addition repairs the breakdown of associativity as

well, giving rise to identities that capture

analogies,

a⊕(b⊕c) = (a⊕b)⊕gyr[a, b]c Left Gyroassoc. Law

(a⊕b)⊕c = a⊕(b⊕gyr[b, a]c) Right Gyroassoc. Law

gyr[a, b] = gyr[a⊕b, b] Left Reduction Prop.

gyr[a, b] = gyr[a, b⊕a] Right Red. Property
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The emerging coincidences expose an algebraic

structure that merits extension by abstraction,

leading to the concept of the grouplike structure

called a gyrogroup.

Gyrogroups are generalized groups that share

remarkable analogies with groups. In full analogy

with groups

(1) gyrogroups are classified into

gyrocommutative gyrogroups and

non-gyrocommutative gyrogroups; and

(2) some gyrocommutative gyrogroups admit

scalar multiplication, turning them into

gyrovector spaces.

(3) Gyrovector spaces, in turn, provide the

setting for hyperbolic geometry just as

vector spaces provide the setting for

Euclidean geometry, thus enabling the two

geometries to be unified.
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Definition 1 (Gyrogroups). The groupoid (G,⊕)

is a gyrogroup if its binary operation satisfies the

following axioms. In G there is at least one

element, 0, called a left identity, satisfying for all

a, b, z ∈ G

0⊕a = a Left Identity

⊖a⊕a = 0 Left Inverse

a⊕(b⊕z) = (a⊕b)⊕gyr[a, b]z Left Gyroassociative

gyr[a, b] ∈ Aut(G,⊕) Gyroautomorphism

gyr[a, b] = gyr[a⊕b, b] Left Reduction Property

Definition 2 (Gyrocommutative Gyrogroups).

The gyrogroup (G,⊕) is gyrocommutative if for all

a, b ∈ G

a ⊕ b = gyr[a, b](b ⊕ a) Gyrocommutative Law
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The Gyration

Expressed in Terms of

Einstein Addition

Solving the Left Gyroassociative Law

a⊕(b⊕z) = (a⊕b)⊕gyr[a, b]z

we have

gyr[a, b]z = ⊖(a⊕b)⊕{a⊕(b⊕z)}

and

‖gyr[a, b]z‖ = ‖z‖

calling gyr[a, b] the gyration generated by a and b.

Thus, the application of gyr[a, b] to z gives a

rotation of z, so that gyrations are, in fact,

rotations.
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Scalar Multiplication ⊗

for Einstein’s gyrogroups (Rn
c ,⊕)

n⊗v = v⊕ . . .⊕v (n terms) (8)

n⊗v = c
(1 + ‖v‖/c)n − (1 − ‖v‖/c)n

(1 + ‖v‖/c)n + (1 − ‖v‖/c)n

v

‖v‖
(9)

r⊗v = c
(1 + ‖v‖/c)r − (1 − ‖v‖/c)r

(1 + ‖v‖/c)r + (1 − ‖v‖/c)r

v

‖v‖

= c tanh

(

r tanh−1 ‖v‖

c2

)

v

‖v‖

(10)

where r ∈ R, v ∈ R
n
c , v 6= 0; and r⊗0 = 0.
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The scalar multiplication possesses the following

properties. For any positive integer n and for all

r, r
1
, r

2
∈ R and v ∈ R

n
c ,

n⊗v = v⊕ . . .⊕v n terms

(r
1
+ r

2
)⊗v = r

1
⊗v⊕r

2
⊗v

(r
1
r
2
)⊗v = r

1
⊗(r

2
⊗v)

r⊗(r
1
⊗v⊕r

2
⊗v) = r⊗(r

1
⊗v)⊕r⊗(r

2
⊗v)

‖r⊗v‖ = |r|⊗‖v‖

|r|⊗v

‖r⊗v‖
=

v

‖v‖

‖u⊕v‖ ≤ ‖u‖⊕‖v‖

gyr[a, b](r⊗v) = r⊗gyr[a, b]v

gyr[r1⊗v, r2⊗v] = I

(11)

Remarkably, we have a monodistributive law but

no distributive law.
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Solving the Equation

a⊕x = b (12)

for x in a gyrogroup (G,⊕). If x is a solution,

then by the right gyroassociative law and the

identity gyr[a,⊖a] = id we have

x = 0⊕x

= (⊖a⊕a)⊕x

= ⊖a⊕(a⊕gyr[a,⊖a]x)

= ⊖a⊕(a⊕x)

= ⊖a⊕b

(13)

Thus if a solution exists, it must be given

uniquely by

x = ⊖a⊕b (14)
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Solving the Equation

x⊕a = b (15)

for x in a gyrogroup (G,⊕). If x is a solution

then, by the left gyroassociative law and the left

loop property we have

x = x⊕0

= x⊕(a⊕(⊖a))

= (x⊕a)⊕gyr[x, a](⊖a)

= (x⊕a)⊕(⊖gyr[x, a]a)

= (x⊕a)⊖gyr[x, a]a

= b⊖gyr[x, a]a

= b⊖gyr[x⊕a, a]a

= b⊖gyr[b, a]a

= b ⊟ a

(16)

where we use the obvious notation:

a⊖b = a⊕(⊖b).
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Definition 3 (Gyrogroup Dual Operation).

Let (G, ⊕) be a gyrogroup. A secondary binary

operation ⊞ in G is defined by the equation

a ⊞ b = a⊕gyr[a,⊖b]b Secondary Operation

Theorem 4. Let (G,⊕) be a gyrogroup and let ⊞

be its dual binary operation given by Definition

(3),

a ⊞ b = a⊕gyr[a,⊖b]b (17)

Then

a⊕b = a ⊞ gyr[a, b]b (18)

and

Aut(G, ⊞) = Aut(G,⊕) (19)

Theorem 5 (Gyrogroup Cancellation Laws). Let

(G,⊕) be a gyrogroup, and let ⊞ be its dual

operation. Then, for all a, b, c ∈ G,

a⊕(⊖a⊕b) = b Left Cancellation Law

(b ⊟ a)⊕a = b Right Cancellation Law

(b⊖a) ⊞ a = b Dual Right Cancellation Law
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Euclidean Geodesics

Lp = a + (−a + b)t

Ls = (b − a)t + a
(20)

Newtonian Mechanics: v0 + at or at + v0

Relative to the Euclidean Metric

d(a,b) = ‖a − b‖

d(a,b) = ‖a − b‖
(21)

Hyperbolic Geodesics

Lp = a⊕(⊖a⊕b)⊗t

Ls = (b ⊟ a)⊗t⊕a
(22)

Einsteinian Mechanics: v0⊕a⊗t or a⊗t⊕v0

Relative to the Hyperbolic Dual Metrics

d⊕(a,b) = ‖a⊖b‖

d⊞(a,b) = ‖a ⊟ b‖
(23)
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Einstein gyrovector spaces

form the setting

for

the Beltrami ball model

of

hyperbolic geometry

just as

vector spaces

form the setting

for

the common model

of

Euclidean geometry.
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a

b

ma,b =
γ
a
a+γ

b
b

γ
a
+γ

b

p ‖a⊖ma,b‖ = ‖b⊖ma,b‖

d⊖(a,p)⊕d⊖(p,b) = d⊖(a,b)

a⊕(⊖a⊕b)⊗t

0 ≤ t ≤ 1

Figure 1: ⊕ = ⊕
E
. The gyroline segment linking

the two points a and b in an Einstein gyrovector

space (Vc,⊕E
,⊗). p is a generic point between a

and b and ma,b is the midpoint of a and b.
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a

b

m′
a,b

p

d⊟(a,p) ⊞ d⊟(p,b) = d⊟(a,b)

(b ⊟ a)⊗t⊕a

0 ≤ t ≤ 1

Figure 2: ⊕ = ⊕
E
. The cogyroline segment linking

the two points a and b in an Einstein gyrovector

space (Vc,⊕E
,⊗). p is a generaic point cobetween

a and b and m′

a,b is the comidpoint of a and b.
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The Hyperbolic Angle

and

The Hyperbolic Dual Angle

cosα =
⊖a⊕b

‖⊖a⊕b‖
·
⊖a⊕c

‖⊖a⊕c‖
(24)

Definition 6 (The Hyperbolic Dual Angle). The

measure of the hyperbolic dual angle α between

two geometric dual gyrovectors b ⊟ a and d ⊟ c is

given by the equation

cos α =
⊟a ⊞ b

‖ ⊟ a ⊞ b‖
·

⊟c ⊞ d

‖ ⊟ c ⊞ d‖
(25)
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◮

◮

a

b

c

α

cosα =
⊖a⊕b

‖⊖a⊕b‖
·
⊖a⊕c

‖⊖a⊕c‖

Figure 3: ⊕ = ⊕
E
. The Hyperbolic Angle in

the Einstein gyrovector plane = The Beltrami disc

model of hyperbolic geometry.

19



u

v

w

v′

w′

α

cosα =
⊖u⊕v

‖⊖u⊕v‖
·
⊖u⊕w

‖⊖u⊕w‖

Figure 4: ⊕ = ⊕
M

. A Möbius angle α generated by

the two intersecting Möbius geodesic rays. It is co-

incident with the hyperbolic angle of the Poincaré

disc model of hyperbolic geometry.
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Theorem 7 (The Hyperbolic π Theorem). Let

∆abc be the hyperbolic dual triangle in an

Einstein gyrovector space (Rn
c ,⊕,⊗) whose three

vertices are the points a,b, c ∈ R
n
c . Then, its

three hyperbolic dual angles α, β and γ, given by

cos α =
b ⊟ a

‖b ⊟ a‖
·

c ⊟ a

‖c ⊟ a‖

cos β =
a ⊟ b

‖a ⊟ b‖
·

c ⊟ b

‖c ⊟ b‖

cos γ =
a ⊟ c

‖a ⊟ c‖
·

b ⊟ c

‖b ⊟ c‖

(26)

satisfy the identity

α + β + γ = π (27)
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Gyrovector spaces

and

Riemannian Geometry

The Riemannian line element in a gyrovector

space (Rn
c ,⊕,⊗) is

ds2 = ‖(x + dx)⊖x‖2 (28)

Example I: When ⊕ = ⊕
M

, ds2 turns out to be

the Riemannian line element

ds2 = ‖(x + dx)⊖
M
x‖2

=

∑n
i=1

dx2
i

(

1 + 1

4
K

∑n
i=1

x2
i

)2

(29)

with curvature K = −4/c2. For the special case

when n = 2 this line element turns out to be the

one of the Poincaré ball model of hyperbolic

geometry.

22



Example II: When ⊕ = ⊕, ds2 turns out to be

the Riemannian line element

ds2 = ‖(x + dx)⊖
E
x‖2 =

c2

∑n
i=1

{c2 − (r2 − x2
i )}dx2

i + 2
∑n

i,j=1

i<j

xixjdxidxj

(c2 − r2)2

(30)

where r2 =
∑n

i=1
x2

i . For the special case when

n = 2 this line element turns out to be the one of

the Beltrami – Klein ball model of hyperbolic

geometry.
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Summarizing the Structure of

Einstein Addition ⊕:

(1) It gives rise to gyrations:

gyr[a, b]z = ⊖(a⊕b)⊕{a⊕(b⊕z)}

(2) It is gyrocommutative:

a ⊕ b = gyr[a, b](b ⊕ a)

(3) It is gyroassociative:

a⊕(b⊕z) = (a⊕b)⊕gyr[a, b]z

(4) It gives rise to a commutative coaddition:

a ⊞ b = a⊕gyr[a,⊖b]b

(5) It gives rise to scalar multiplication ⊗.

(6) It gives rise to hyperbolic lines and angles,

called “gyrolines” and “gyroangles”.

(7) We will now see that it gives rise to

hyperbolic vectors as well, called

“gyrovectors”.
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◮

◮

◮

MABDC

A

B

C

D

The Gyroparallelogram

Condition : D = (B ⊞ C)

MAD =
γ

A
A+γ

D
D

γ
A

+γ
D

= 1

2
(A ⊞ D)

MBC =
γ

B
B+γ

C
C

γ
B

+γ
C

= 1

2
(A ⊞ C)

MABDC =
γ

A
A+γ

B
B+γ

C
C+γ

D
D

γ
A

+γ
B

+γ
C

+γ
D

MABDC = MAD = MBC

⊖C⊕D = gyr[C,⊖B]gyr

⊖B⊕D = gyr[B,⊖C]gyr

(⊖A⊕B) ⊞ (⊖A⊕C) = ⊖A⊕D

u ⊞ v = w

u = ⊖A⊕B

v
=
⊖

A
⊕

C

w
=
⊖
A
⊕
D

Figure 5: The Einstein Gyroparallelogram Law.
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Definition: A set S of N points

S = {A1, . . . , AN} in R
n, n ≥ 2, is barycentrically

independent if the N − 1 vectors −A1 + Ak,

k = 2, . . . , N , are linearly independent.

Examples: The three vertices of a

non-degenerate triangle in R
n, n ≥ 2, are

barycentrically independent.

The four vertices of a non-degenerate tetrahedron

in R
n, n ≥ 3, are barycentrically independent.
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Definition: Let

S = {A1, . . . , AN} (31)

be a barycentrically independent set of N points

in R
n. The real numbers m1, . . . , mN , satisfying

N
∑

k=1

mk 6= 0 (32)

are barycentric coordinates of a point P ∈ R
n

with respect to the set S if

P =

∑N
k=1

mkAk
∑N

k=1
mk

(33)

Equation (33) is the unique barycentric

coordinate representation of P w.r.t the set S.

Mechanical Interpretation: P is the center of

mass (momentum) of a particle system in which

the kth particle ((k = 1, 2, ..., N)) has position

(velocity) Ak and mass mk > 0.
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Covariance of Barycentric Coordinate

Representations: Let

P =

∑N
k=1

mkAk
∑N

k=1
mk

(34)

be the barycentric coordinate representation of a

point P ∈ R
n in a Euclidean n-space R

n with

respect to a barycentrically independent set

S = {A1, . . . , AN} ⊂ R
n. The barycentric

coordinate representation (34) is covariant, that

is,

X + P =

∑N
k=1

mk(X + Ak)
∑N

k=1
mk

(35)

for all X ∈ R
n, and

RP =

∑N
k=1

mkRAk
∑N

k=1
mk

(36)

for all R ∈ SO(n).
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Thus:

Barycentric coordinate representations are

covariant w.r.t.

1. translations; and

2. rotations.

Indeed, translations and rotations of R
n are

known:

1. In geometry (n ≥ 2), as the Euclidean

motions; and

2. In mechanics (n = 3), as the rigid motions.
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Definition: Let

S = {A1, . . . , AN} (37)

be a barycentrically independent set of N points

in the ball R
n
s . The real numbers m1, . . . , mN ,

satisfying
N

∑

k=1

mkγAk
> 0 (38)

are gyrobarycentric coordinates of a point

P ∈ R
n
s with respect to the set S if

P =

∑N
k=1

mkγAk
Ak

∑N
k=1

mkγAk

(39)

Relativistic Mechanical Interpretation: P is

the center of momentum of a particle system in

which the kth particle (k = 1, 2, ..., N) has

velocity Ak and relativistic mass mkγAk
,

(mk > 0). Note that in Relativistic

Mechanics mass is velocity dependent.
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Covariance of Gyrobarycentric Coordinate

Representations:

Let

P =

∑N
k=1

mkγAk
Ak

∑N
k=1

mkγAk

(40)

be a gyrobarycentric coordinate representation of

a point P ∈ R
n
s in an Einstein gyrovector space

(Rn
s ,⊕,⊗) with respect to a barycentrically

independent set S = {A1, . . . , AN} ⊂ R
n
s .

Then

X⊕P =

∑N
k=1

mkγX⊕Ak
(X⊕Ak)

∑N
k=1

mkγX⊕Ak

(41)

and

RP =

∑N
k=1

mkγRAk
RAk

∑N
k=1

mkγRAk

(42)
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Thus:

Gyrobarycentric coordinate representations are

covariant w.r.t.

1. left gyrotranslations; and

2. rotations.

Indeed, left gyrotranslations and rotations of the

ball R
n
c about its origin are known:

1. In geometry (n ≥ 2), as the motions of

hyperbolic geometry; and

2. In relativistic mechanics (n = 3), as the rigid

motions of relativistically admissible

velocities.
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The notion of Euclidean barycentric coordinates

dates back to Möbius, 1827, when he published

his book Der Barycentrische Calcul (The

Barycentric Calculus). The word barycentric is

derived from the Greek word barys (heavy), and

refers to center of gravity. Barycentric calculus is

a method of treating geometry by considering a

point as the center of gravity of certain other

points to which weights are ascribed. Hence, in

particular, barycentric calculus provides excellent

insight into triangle and tetrahedron centers.

In full analogy, gyrobarycentric calculus provides

excellent insight into gyrotriangle and

gyrotetrahedron centers.
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A1

A2

A3

E1

E2

E3

Ge

T01T02

T03

T11

T12

T13

T21

T22

T23

T31

T32

T33

Figure 6: Gergonne Gyropoint
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A1

A2

A3

E1

E2

E3

Na

T01

T02

T03

T11

T12

T13

T21

T22

T23

T31

T32

T33

Figure 7: Nagel Gyropoint
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A1

A2

A3

E1

E2

E3

Pu

T01T02

T03

T11

T12

T13

T21

T22

T23

T31

T32

T33

Figure 8: Pu Gyropoint
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0.1

0
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0.1
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123
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134
134

234
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123

A1

A2

A3

A4

Figure 9: A gyrotetrahedron and its ingyrosphere

and two of its seven exgyrospheres in an Einstein

gyrovector space.
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Euclidean barycentric coordinates

are useful in the

geometry of Quantum states

where

barycentric coordinates are

interpreted as

probabilities

as shown in the book:

Geometry of Quantum States

by I. Bengtsson and K. Zyczkowski

Cambridge (2006).

However,

Euclidean barycentric coordinates

are insensitive to the

Geometric Phases

in Quantum Mechanics.
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Conjecture:

Relativistic barycentric coordinates

are useful in the

geometry of relativistic Quantum states

where

relativistic barycentric coordinates are

interpreted as

relativistically corrected probabilities

just as

Euclidean barycentric coordinates

are useful in the

geometry of non-relativistic Quantum states

where

Euclidean barycentric coordinates are

interpreted as

probabilities

39



Indeed,

Péter Lévay has shown that the notion of

mixed state geometric phase

in quantum mechanics

coincides with the notion of

gyration (= Thomas rotation = Thomas

precession)

in relativistic hyperbolic geometry;

see

Péter Lévay, Thomas rotation and the mixed

state geometric phase. J. Phys. A. 37(16),

4593-4605, 2004.
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