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Abstract

• The so-called Willmore functional assigns to each surface in the three dimen-
sional Euclidean space its total squared mean curvature. The surfaces providing
local extrema to this functional are referred to as the Willmore surfaces. The
mean and Gaussian curvatures of these surfaces obey the corresponding Euler-
Lagrange equation, which is usually called the Willmore equation.

• The present work is concerned with a particular class of axially symmetric
solutions to the Willmore equation, which are solutions of an intermediate inte-
gral arising due to the additional scaling invariance of the rotationally-invariant
solutions of the considered equation. An analytic representation of the forego-
ing class of solutions is given in terms of Jacobi elliptic functions and integrals.

Mariana, Vassil, Peter and Iväılo (BAS) ( Institute of Mechanics – Bulgarian Academy of Sciences, Institute of BiophysicsSolutions of the Willmore Equation GIQ Conference 2013 2 / 31



Overview

1 Willmore Surfaces
Willmore Functional
Willmore Equation
Related Functionals and Equations

2 Symmetry Groups of the Willmore Equation
Willmore Equation in Monge Representation
The Group of Special Conformal Transformations in R

3

Group-Invariant Solutions

3 Axisymmetric Solutions of the Willmore Equation
Reduced Equation
An Intermediate Integral of the Reduced Equation
Analytic Representation of a Class of Axiaxymmetric Willmore Surfaces

4 References
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Willmore Surfaces
Willmore Functional

• The so-called Willmore functional (energy)

W =

∫

S
H2dA (1)

assigns to each surface S in the three-dimensional Euclidean space R
3 its total

squared mean curvature W . Here, H is the local mean curvature of the surface
S, dA is the area element on the surface S.

• This functional has drawn much attention after [Willmore, 1965] where T. J.
Willmore proposed to study the surfaces providing extremum to the functional
(1), which are usually referred to as the Willmore surfaces.

• This interest is related to the so-called Willmore conjecture [Willmore, 1965]
concerning the global problem of minimizing of (1) among the class of immersed
tori: the integral of the square of the mean curvature of a torus immersed in R

3

is at least 2π2, which have been proved recently [Marques & Neves, 2012].

• The Willmore surfaces are of great importance for the conformal geometry be-
cause of the invariance of Willmore functional (energy) under the 10-parameter
group of special conformal transformations in R

3.
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Willmore Surfaces
Willmore Equation

• The Euler-Lagrange equation associated with the Willmore functional, which
is further referred to as the Willmore equation, has the form

∆H + 2(H2 − K)H = 0 (2)

Here ∆ is the Laplace-Beltrami operator on the surface S and K is the Gaussian
curvature of S.

• Actually, according to [Thomsen, 1923], Schadow was the first who derived
this equation in 1922 as the Euler-Lagrange equation for the variational problem

∫

S

(

1

R1
− 1

R2

)2

dA (3)

where 1/R1 and 1/R2 are the two principal curvatures of the surface S. (This
variational problem was studied by Thomsen in connection with the conformal
geometry). In fact, the Lagrangian densities of the functionals (1) and (3) are
proportional up to the divergence term 2K and that is why they lead to the
same Euler-Lagrange equation.
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Willmore Surfaces
Related Functionals and Equations

• Sometimes called bending energy, the Willmore energy appears naturally in
some physical contexts. For instance, it had been proposed in 1812 by Poisson
and later, in 1821, by Sophie Germain to describe elastic shells.

• In mathematical biology it appears in the Helfrich model as one of the terms
that contribute to the energy of cell membranes:

Fb =

∫

S

[

1

2
kc(2H + c0)

2 + kGK

]

dA + λ

∫

S
dA + p

∫

dV.

Here kc and kG are real constants representing the bending and Gaussian rigidity
of the membrane, c0 is the spontaneous curvature, λ is the tensile stress, p is the
pressure, V is the enclosed volume. The corresponding Euler-Lagrange equation
reads

∆H + (2H + c0)
(

H2 − c0

2
H − K

)

− λ

kc
H = − p

2kc
· (4)

• In 2D string theory and 2D gravity based on the Polyakov integral over sur-
faces [Polyakov, 1981], the Willmore functional (1) is known as the Polyakov’s
extrinsic action.
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Symmetry Groups of the Willmore Equation
Willmore Equation in Monge Representations

• Let (x1, x2, x3) be a fixed right-handed rectangular Cartesian coordinate sys-
tem in the 3-dimensional Euclidean space R

3 in which a surface S is immersed,
and let this surface be given in Monge representations, i.e. by the equation

S : x3 = w(x1, x2), (x1, x2) ∈ Ω ⊂ R
2 (5)

where w : R
2 → R is a single-valued and smooth function possessing as many

derivatives as may be required on the domain Ω. Let us take x1, x2 to serve as
Gaussian coordinates on the surface S.

• Then the components of the first gαβ , second bαβ fundamental tensor, and
the alternating tensor εαβ of S are given by the expressions

gαβ = δαβ + wαwβ , bαβ = g−1/2wαβ , εαβ = g−1/2eαβ (6)

g = det(gαβ) = 1 + (w1)
2 + (w2)

2 (7)

δαβ is the Kronecker delta symbol, eαβ is the alternating symbol and wα1...αk

(k = 1, 2, ...) denote the k-th order partial derivatives of the function w with
respect to the variables x1 and x2.
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Symmetry Groups of the Willmore Equation
Willmore Equation in Monge Representations

• The mean H and Gaussian K curvatures of the surface S are given as follows

H =
1

2
gαβbαβ =

1

2
g−3/2

(

δαβwαβ + eαµeβνwαβwµwν

)

(8)

K =
1

2
εαµεβνbαβbµν =

1

2
g−2eαµeβνwαβwµν (9)

where
gαβ = g−1

(

δαβ + eαµeβνwµwν

)

(10)

are the contravariant components of the first fundamental tensor.

• The Willmore functional (1) reads

W =

∫ ∫

Ω

L dx1dx2, L =
1

4
g−5/2

(

δαβwαβ + eαµeβνwαβwµwν

)2
(11)

• Here and in what follows, Greek indices have the range 1, 2, and the usual
summation convention over a repeated index is employed.
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Symmetry Groups of the Willmore Equation
Willmore Equation in Monge Representations

• The application of the Euler operator

E =
∂

∂ w
− Dµ

∂

∂ wµ
+ DµDν

∂

∂ wµν
− · · · (12)

Dα =
∂

∂ xα
+ wα

∂

∂ w
+ wαµ

∂

∂ wµ
+ wαµν

∂

∂ wµν
+ wαµνσ

∂

∂ wµνσ
+ · · ·

on the Lagrangian density L of the Willmore functional leads, after taking into
account

∆ = gαβ ∂2

∂xα∂xβ
+ g−1/2 ∂

∂xα

(

g1/2gαβ
) ∂

∂xβ

to the Willmore equation (2), which takes the form

E ≡ (1/2)g−1/2gαβgµνwαβµν + Φ (x1, x2, w, w1, . . . , w222) = 0 (13)

where Φ (x1, x2, w, w1, . . . , w222) is a differential function of the independent and
dependent variables and the derivatives of the dependent variable up to third
order.
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Symmetry Groups of the Willmore Equation
The Group of Special Conformal Transformations in R

3

translations
v1 =

∂

∂x1
, v2 =

∂

∂x2
, v3 =

∂

∂w

rotations

v4 = x1 ∂

∂x2
− x2 ∂

∂x1
, v5 = x1 ∂

∂w
− w

∂

∂x1
, v6 = x2 ∂

∂w
− w

∂

∂x2

dilatation
v7 = x1 ∂

∂x1
+ x2 ∂

∂x2
+ w

∂

∂w

inversions

v8 =
[

(x1)2 − (x2)2 − w2
] ∂

∂x1
+ 2x1x2 ∂

∂x2
+ 2x1w

∂

∂w

v9 = 2x2x1 ∂

∂x1
+

[

(x2)2 − (x1)2 − w2
] ∂

∂x2
+ 2x2w

∂

∂w

v10 = 2x1w
∂

∂x1
+ 2x2w

∂

∂x2
+

[

w2 − (x2)2 − (x1)2
] ∂

∂w
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Symmetry Groups of the Willmore Equation
The Group of Special Conformal Transformations in R

3

• The following Propositions clarify the invariance properties of the Willmore
equation relative to one-parameter Lie groups of point transformations of R

3.
The coordinates (x1, x2, w) on R

3 represent the involved independent and de-
pendent variables x1, x2 and w, respectively. The results are obtained using Lie
infinitesimal technique.

Proposition 1. The 10-parameter Lie group GSCT of special conformal trans-
formations in R

3 (whose basic generators are vj , j = 1 . . . 10) is the largest
group of point (geometric) transformations of the involved independent and
dependent variables that a generic equation of form (13) could admit.

Proposition 2. In Monge representation, the Willmore equation admits all
the transformations of the group GSCT .

Remark. All vector fields vj , j = 1, . . . , 10 are variational symmetries of the
Willmore equation, i.e., infinitesimal divergence symmetries of the Willmore
functional. Hence, Noether’s theorem implies the existence of ten linearly inde-
pendent conservation laws that hold on the smooth solutions of the Willmore
equation.
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Symmetry Groups of the Willmore Equation
Group-Invariant Solutions

• Once a group G is found to be a symmetry group of a given differential
equation, it is possible to look for the so-called group-invariant (G-invariant)
solutions of this equation – the solutions, which are invariant under the trans-
formations of the symmetry group G.

• The main advantage that one can gain when looking for this kind of particular
solutions of the given differential equation consists in the fact that each group-
invariant solution is determined by a reduced equation obtained by a symmetry
reduction of the original one and involving less independent variables than the
latter.

• Let G (v) be a one parameter group generated by a vector field v belonging
to the Lie algebra LSCT , that is v is a linear combination of the vector fields
vj , j = 1 . . . 10,

v =
10
∑

j=1

cjvj (14)

where cj, j = 1 . . . 10, are real numbers – the components of the vector field v

with respect to the basic vector fields vj .
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Symmetry Groups of the Willmore Equation
Group-Invariant Solutions

• Then, G (v) is a symmetry group of the Willmore equation and so one can
look for the G (v)-invariant solutions of this equation. For that purpose, first
one should find a complete set of functionally independent invariants of the
group G (v). In the present case this is a set of two functionally independent
functions Iα

(

x1, x2, w
)

such that

vIα = 0

the vector field v being regarded here as an operator acting on the functions
ζ : R

3 → R. Then, if the necessary condition for the existence of group invariant
solutions is satisfied, which in the present case reads

rank

(

∂Iα

∂w

)

= 1 (15)

assuming that ∂I1/∂w 6= 0, one can seek the G (v)-invariant solutions in the
form

U = U (s) , U = I1, s = I2. (16)
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Axisymmetric Solutions of the Willmore Equation
Reduced Equation

• The G (v4)-invariant solutions of the Willmore equation are sought in the
form

w = w(r), r =
√

(x1)2 + (x2)2.

Note that r and w are two functionally independent invariants of the operator
v4 generating the one-parameter group of rotations admitted by the equation
considered. After such a symmetry reduction, the Willmore equation (2) takes
the form

R ≡ (2 r3 + 4 r3 w2
r + 2 r3 w4

r)wrrrr

+(4 r2 + 8 r2 w2
r + 4 r2 w4

r − 20 r3 wrwrr − 20 r3 w3
rwrr)wrrr

−5r2 (3 wr + 3 w3
r + r wrr − 6 r w2

rwrr)w
2
rr

+(r w6
r − 2 r − 3 r w2

r)wrr + 2 wr + 7w3
r + 9 w5

r + 5 w7
r + w9

r = 0

where

wr =
dw

dr
, wrr =

d2w

dr2
, wrrr =

d3w

dr3
, wrrrr =

d4w

dr4
·
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Axisymmetric Solutions of the Willmore Equation
An Intermediate Integral of the Reduced Equation

Consider the following normal system of two ordinary differential equations

dw

dr
= v

dv

dr
= ±1

r

(

v2 + 1
)

√

v2 + 2 ω
√

v2 + 1 (17)

which is equivalent to the single second-order equation

d2w

dr2
= ±1

r

[

(

dw

dr

)2

+ 1

]

√

√

√

√

(

dw

dr

)2

+ 2 ω

√

(

dw

dr

)2

+ 1 . (18)

Substituting (18) into the expression R one obtains R = 0 and thus shows
that each solution of system (17) or equation (18) is a solution of the reduced
Willmore equation R = 0. In this way, we have obtained a special class of
axisymmetric solutions to the Willmore equation, i.e., a special class of axially
symmetric Willmore surfaces.
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Axisymmetric Solutions of the Willmore Equation
Analytic Representation of a Class of Axiaxymmetric Willmore Surfaces

Substitutions
u =

√

v2 + 1, ρ = ln r

transform system (17) to the following one

dw

dρ
= eρ

√

u2 − 1 (19)

(

du

dρ

)2

= u2
(

u2 + 2ωu − 1
) (

u2 − 1
)

. (20)

In terms of a new variable t, relation (20) may be written in the form

(

du

dt

)2

= P (u) , P (u) =
(

u2 + 2ωu − 1
) (

u2 − 1
)

(21)

(

dρ

dt

)2

=
1

u2
(22)
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Axisymmetric Solutions of the Willmore Equation
Analytic Representation of a Class of Axiaxymmetric Willmore Surfaces

Using the standard procedure [Whittaker and Watson, 1922], one can express
the solution u(t) of equation (21) in the form

u (t) =
sn2 (λt, k)

(√
ω2 + 1 − ω + 1

)

− 2
√

ω2 + 1

sn2 (λt, k)
(√

ω2 + 1 + ω + 1
)

− 2
√

ω2 + 1
(23)

where

λ =
4
√

ω2 + 1, k =
1√
2

√

1 +
1√

ω2 + 1
·

Consequently, using expressions (22) and (23), one can write down the solution
ρ (t) of equation (22) in the form

ρ (t) = λ
(

√

ω2 + 1 − ω
)

t +
2ωΠ

(

ω+
√

ω2+1+1
2
√

ω2+1
, am(λt, k) , k

)

√
ω2 + 1 + ω + 1

· (24)
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Axisymmetric Solutions of the Willmore Equation
Analytic Representation of a Class of Axiaxymmetric Willmore Surfaces

Finally, rewriting Eq. (19) in the form

dw

dt
= eρ(t)

√

u (t)
2 − 1

u (t)

we obtain

w (t) =

∫

eρ(t)

u (t)

√

u (t)
2 − 1dt + c (25)

where c is a constant.
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Axisymmetric Equilidrium Shapes
Sketch of a Surface of Revolution

 

Sketch of a surface of revolution obtained by revolving around the z-axis a
plane curve Γ laying in the xOz-plane, which is defined by the graph (x, z(x))
of a function z = z(x). Here, ϕ is the (tangent) slope angel.
Suppose that a part of an axisymmetrically deformed SWCNT admits graph
parametrization. This means that it may be thought of as a surface of
revolution obtained by revolving around the z-axis a plane curve Γ laying in
the xOz-plane, which is determined by the graph (x, z(x)) of a function
z = z(x).
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Axisymmetric Equilidrium Shapes
Shape Equation

For each such surface the general shape equation (4) reduces to the following
nonlinear third-order ordinary differential equation

cos3 ϕ
d3ϕ

dx3
= 4 sinϕ cos2 ϕ

d2ϕ

dx2

dϕ

dx
− cosϕ

(

sin2 ϕ − 1

2
cos2 ϕ

) (

dϕ

dx

)3

+
7 sinϕ cos2 ϕ

2x

(

dϕ

dx

)2

− 2 cos3 ϕ

x

d2ϕ

dx2
(26)

+

(

λ

kc
+

c2
0

2
− 2c0 sin ϕ

x
− sin2 ϕ − 2 cos2 ϕ

2x2

)

cosϕ
dϕ

dx

+

(

λ

kc
+

c2
0

2
− sin2 ϕ + 2 cos2 ϕ

2x2

)

sin ϕ

x
− p

kc

(derived in [Hu & Ou-Yang, 1993]) where ϕ is the angle between the x-axis
and the tangent vector to the profile curve Γ, i.e., the tangent (slope) angel,
considered as a function of the variable x.
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Axisymmetric Equilidrium Shapes
Exact Solutions of the Shape Equation

[Naito at al., 1995] discovered that the shape equation (26) has the following
class of exact solutions

sin ϕ = ax + b + dx−1, (27)

provided that a, b and d are real constants, which meet the conditions

p

kc
− 2a2c0 − 2a

(

c2
0

2
+

λ

kc

)

= 0, (28)

b

(

2ac0 +
c2
0

2
+

λ

kc

)

= 0, (29)

b
(

b2 − 4ad − 4c0d − 2
)

= 0, (30)

and
d

(

b2 − 4ad − 2c0d
)

= 0. (31)
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Exact Solutions of the Shape Equation

Six types of solutions of form (27) to Eq. (26) can be distinguished on the
ground of conditions (28) – (31) depending on the values of c0, λ and p.
Case A. If c0 = 0, λ = 0, p = 0, then the solutions to Eq. (26) of the form (27)
are sinϕ = ax, sin ϕ = ax ±

√
2 and sinϕ = dx−1, the respective surfaces

being spheres, Clifford tori and catenoids.
Case B. If c0 = 0, λ 6= 0, p = 0, then the solutions of the considered type
reduces to sin ϕ = dx−1 (catenoids).
Case C. If c0 = 0, λ 6= 0, p 6= 0 and p = 2aλ, then only one branch of the
regarded solutions remains, namely sinϕ = ax (spheres).
Case D. If c0 6= 0, λ = 0, p = 0, then one arrives at the whole family of
Delaunay surfaces corresponding to the solutions of the form

sinϕ = −1

2
c0x +

d

x
· (32)

Case E. If c0 6= 0, λ 6= 0, p = 0 and

λ

kc
= −1

2
c0 (2a + c0) ,

one gets only solutions of the form sinϕ = ax (spheres).
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Exact Solutions of the Shape Equation

Case F. If c0 6= 0, λ 6= 0, p 6= 0, then four different types of solutions of form
(27) to Eq. (26) are encountered: (a) sinϕ = ax (spheres) if

p

kc
= 2a

(

λ

kc
+ ac0 +

c2
0

2

)

; (33)

(b) sinϕ = ax ±
√

2 (Clifford tori) if

p

kc
= −2a2c0,

λ

kc
= −1

2
c0 (4a + c0) ; (34)

(c) solutions of the form (32) (Delaunay surfaces) if

p + c0λ = 0; (35)

(d) solutions of the form

sin ϕ = −1

4
c0

(

b2 + 2
)

x + b − 1

c0x
, (36)

which take place provided that

p

kc
= −1

8
c3
0

(

b2 + 2
)2

,
λ

kc
=

1

2
c2
0

(

b2 + 1
)

. (37)
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Parametric Equations of the Unduloid-Like Surfaces

Below, we derive the parametric equations of the surfaces corresponding to the
solutions of form (36) to Eq. (26).
First, it is clear that the variable x must be strictly positive or negative,
otherwise the right-hand side of Eq. (27) is both undefined and its absolute
value is greater than one, which is in contradiction with the sin-function
appearing in the left-hand side of this relation.
Next, according to the meaning of the tangent angle

dz

dx
= tanϕ (38)

which for the foregoing class of solutions (36) implies

(

dz

dx

)2

=

[

b − 1
c0x − 1

4 c0

(

b2 + 2
)

x
]2

1 −
[

b − 1
c0x − 1

4c0 (b2 + 2)x
]2 · (39)
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Parametric Equations of the Unduloid-Like Surfaces

In terms of an appropriate new variable t, relation (39) may be written in the
form

(

dx

dt

)2

= − 1

u2
Q1(x)Q2(x) (40)

(

dz

dt

)2

=
1

4u2
(Q1(x) + Q2(x))2 (41)

where

u = − 4

c0 (2 + b2)3/4

Q1(x) = x2 − 4 (b + 1)

c0 (b2 + 2)
x +

4

c2
0 (b2 + 2)

(42)

Q2(x) = x2 − 4 (b − 1)

c0 (b2 + 2)
x +

4

c2
0 (b2 + 2)

· (43)

Mariana, Vassil, Peter and Iväılo (BAS) ( Institute of Mechanics – Bulgarian Academy of Sciences, Institute of BiophysicsSolutions of the Willmore Equation GIQ Conference 2013 25 / 31



Parametric Equations of the Unduloid-Like Surfaces

It should be noticed that the roots of the polynomial Q(x) = Q1(x)Q2(x) read

α =
2 sign (b)

c0

√
b2 + 2

h − 1

h + 1
, β =

2 sign (b)

c0

√
b2 + 2

h + 1

h − 1
(44)

γ =
4b

c0 (b2 + 2)
− α + β

2
+ i

2
√

2|b|+ 1

c0 (b2 + 2)

δ =
4b

c0 (b2 + 2)
− α + β

2
− i

2
√

2|b| + 1

c0 (ε2 + 2)

where

h =

√

1 + |b| +
√

2 + b2

1 + |b| −
√

2 + b2
· (45)

Hence, Eq. (40) has real-valued solutions if and only if at least tow of these
roots are real and different. Evidently, the roots γ and δ can not be real, but
α and β are real provided that |b| > 1/2 as follows be relations (44) and (45).
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Parametric Equations of the Unduloid-Like Surfaces

Now, using the standard procedure for handling elliptic integrals (see
[Whittaker and Watson, 1922, 22.7]), one can express the solution x(t) of
equation (40) in the form

x(t) =
2 sign (b)

c0

√
b2 + 2

(

1 − 2h

h + cn(t, k)

)

(46)

where

k =

√

1

2
− 3

4
√

2 + b2
·

Consequently, using expressions (42) and (43), one can write down the
solution z(t) of equation (41) in the form

z (t) =
1

u

∫
[

x2(t) − 4 b x(t)

c0 (b2 + 2)
+

4

c2
0 (b2 + 2)

]

dt. (47)
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Parametric Equations of the Unduloid-Like Surfaces

Finally, performing the integration in the right-hand-side of Eq. (47), one
obtains

z(t) = u

[

E(am(t, k), k) − sn(t, k) dn(t, k)

h + cn(t, k)
− t

2

]

· (48)

Thus, for each couple of values of the parameters c0 and b, (46) and (48) are
the sought parametric equations of the contour of an axially symmetric
unduloid-like surface corresponding to the respective solution of the membrane
shape equation (26) of form (36).
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Examples

(a) (b)
Unduloid-like surfaces obtained using the parametric equations (46) and (48)
for: (a) p/kc = 1.75, (b) p/kc = 12.1.
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