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PART:1 
 
1.1 Asymetric Heavenly Equation 
 

Asymmetric heavenly equation was obtained as one of the canonical equations 

from a classification of second order partial differential equations that possess 

partner symmetries [1]. Asymmetric heavenly equation in 3+1 dimension is given 

by [2], 

    0
tx ty tt xy tz xz xx
u u u u au bu cu

, .
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u u
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where u is the unknown that depends on the four independent variables t, x, y, z  

and subscripts  denote partial derivatives u, e.g.                                     

while  a,b,c  are constant. By choosing                as the second unkown, we have  

converted the asymmetric  heavenly equation to the two-component evolution system 
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1.2 Dirac’s constraints analysis and symplectic sturcture of 
the asymmetric heavenly equation 
  

 
We start with the degenerate Lagrangian denstiy for the system (1.2): 

    
2

21
( ) ( )

2 2t xy t z x z x

v
L vu u au u bu u cu

In order to get a Hamiltonian formulation, we need to apply Dirac’s constraint [3] 

analysis. Thus, we define the canonical momenta, 


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and  using  canonical momenta, we get: 
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we treat definitions (2.3) as the second class constraints 

      0,
2u u xy z

a
vu u     0

v v

and calculate the Poisson bracket of the constraints 

  ,( , , ) , ( `, `, `)      , 1, 2
ij i j PB
K x y z x y z i j   

Organizing them in the form of a matrix, we find 

    
 

   

( )

0

y x x y z xy xy

xy

v D v D aD v u
K

u

which is an explicitly skew-symmetric symplectic operator. Here the corresponding 

symplectic two-form is a volume integral                                      of the density   V dxdydz

(2.4) 

(2.5) 

(2.6) 
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        
1 1

2 2 2xy x y y x y z

a
u du dv v du du v du du v du du

which, up to a divergence, can be directly verified to be a closed 2-form,  

that is,           .  Therefore,      is indeed a symplectic form and so  K, defined by 

(2.6), is indeed a symplectic operator.  Hence, its inverse is a Hamiltonian operator 
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    The Hamiltonian density, corresponding to       , is defined as:                                                   0
J

    
1 u t v t
H u v L



   
2 2

1

1
( )

2 xy x z x
H v u bu u cu

(2.11) 

(2.12) 
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       1

,

, , , , ,
i ij jDP PB PB PB

i j

f g f g f K g   

(2.10) 

Where                     Dirac proved that       is always invertable[11]. 1

0
.

ij
K J

  0
J

Define a matrix with entries                                 the Dirac bracket of two 

functions on phase space  f  and  g is defined as                                                      

 , ,i j PBij
K   

1

0
1

1 .
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t u
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v
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J
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 

One can obtain the flow (1.2) by applying        to variational derivatives of  

Hamiltonian density 

          

0
J

1
H

                                                         
with the result  



The Dirac bracket is a modification of Poisson bracket designed to vanish on the 

surface defined by the constraint. 

(2.14) 
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    

For second-class constraints the Lagrange multipliers are determined from the 

solution of                                 and we get                         respectively                

                                                          


A

 , 0
T A
H

PB
    and  

u v

(2.13)          
2 21

( )
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1

A

T A
H H   

 where          are  Lagrange multipliers.   

 
Total Hamiltonian density       according to Dirac is given by;  T

H



1.3 Recursion operator and Lax pair 

 

      u

v





 

 

where       is the group parameter. The symmetry condition amounts to the 

compatibility of the Lie equations and equations (1.2): 

 

0
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(3.2) 

 
 
 
 

 

we obtain the symmetry condition (3.2) in the form of a linear matrix equation               
                   

ˆ ( ) 0A  

We start with the equation determining the symetries of asymmetric heavenly 

system. We introduce two components for the symmetry charecterictics 

 



so that the first row of (3.3) yields                 . Asymetric heavenly equation (1.1) 

has the divergence  form: 

  
t

,

 
 

 
 
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  
 
      
 
 

2

1

ˆ
t
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xy xy xy xy xy xy

D
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where 

(3.3) 

Using the notation                    and using                 , the recursion relation takes the 

matrix form                        and the recursion operator  R obtained as 

t ty t x tt y z

x xy t tx y z

u c u b

u u a

    

  

    

    

  
t

    0
ty t x tt y z xy t tx y zx t
u c u b u u a              



For the commutator of the recursion operator R and the operator      of the 

symmetry condition (3.3), computed without using the equation of motion, we 

obtain  

Â

 


 
  

 
    
 
 
    
 
     
 

1 1
( ) ( )

1
[ ( ) ( )

ˆ[ , ]

( ) ( )

( ) ( ) ] ( )

v Qx t x y x t xy

t xx t xy
xy

t xz y t x

x y z y t yt t

D D D u v

c u v Q u v
uR A

b u v v v Q

v v Q a v Q D v Q

and  as a consequence, the operator R and      form a Lax pair of Olver-Ibragimov-

Shabat type for the asymmetric heavenly system (1.2), so that R and       commute 

on solutions of this system. 

Â

Â

(3.5) 
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1.4 Second Hamiltonian structure and Hamiltonian function 
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where         is an explicitly skew-symmetric form is defined as 22
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(4.1) 
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Using the theorem of Magri [9] , one can generate the second Hamiltonian operator 

by acting with the recursion operator  (3.4) on the Hamiltonian operator (2.9):  

 



The flow (1.2) can be generated by the Hamiltonian operator        from the 

Hamiltonian density  
1

J

 
0 0

( ) ,
  xy

H c y vu

where       is a constant, so that the asymmetric heavenly equation in the two-

component form (1.2) admits two Hamiltonian represantation  

0
c

                     

01

0 1
01

t uu

t vv

u HH
J J

v HH

and thus it is a bi-Hamiltonian system. By repeated applications of the recursion 

operator to the first Hamiltonian operator        according to Magri’s theorem we could 

generate an infinite sequence of Hamiltonian operators 

0
J

 
0
,           1, 2, 3, ...

n

n
J R J n

which proves that asymmetric heavenly equation considered in a two-component form 

is a multi-Hamiltonian system in the above sense. 

(4.2) 

(4.3) 

(4.4) 
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1.5 Jacobi Identity 
 
In this section, we give a proof of Jacobi identity for Hamiltonian operators        and 

    

0
J

1.J

Definition 1. A linear operator                       is called Hamiltonian if its Poission 

bracket                                         satisfies the skew-symmetry property   

: q qJ A A

    ,Q Q,P ,P

    ,Q .P P J Qdxdydz

 and the Jacobi identity 

          ,Q , ,P , , , 0P R R Q Q R P

 for all functionals P,Q and R. 

However, using this direct verification of Jacobi identity (5.2), even for simplest skew-

adjoint operators, appears a hopelessly complicated computational task. For this 

reason we will use Olver’s criterion(theorem 7.8 in this book[11]) which reads as 

follows. 

(5.1) 

(5.2) 
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Let      be a skew-adjoint qxq matrix differential operator and                                     

the corresponding functional bi-vector. Then,       is the Hamiltonian if and only if  

     
1

( )
2

dxdydz


  PrV

 where               is defined by [11] as 


PrV



  
   

 
 
,

Pr ,j

J ij i
i J j J

V D  1, , , , , , ...J x y z xx xy xz

where              and                   More precisely, the system is called bi-Hamiltonian if 

it has the form (4.4), where       and        form a Hamiltonian pair, that is, if every 

linear combination                       where                  arbitrary constants, satisfies the 

Jacobi identity. If we verify directly the Jacobi identity for                                 then 

we guaranteed that both                    also satisfy the Jacobi identity (with the choices 

,                                                          ) and that                     form a Hamiltonian 

pair.                                                                                     

0
J

1
J

1 u  2 v 

 and            

 and  

0 1
,J J    

0 1
 and J J

0 1
J J  

0 1
 and J J



(5.3) 

(5.4) 
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Thus, we only have to prove that the linear combination                              satisfies 

the Jacobi identity. Therefore, we start with                                                                                                                  
0 1

J J    

   
       

    
 

1

.
0 1

D
xJ J

AD BD cD F
x y z

 where  

   
1

( ),
y

xy

A c v
u    

1
( ),

x
xy

B v Q
u

  
1

(a ),
x

xy

C v b
u

     
1

(Au Bu Cu v ),F
xxy xyy xyz xyu

xy

 

 

v
y

u
xy

(5.5) 

(5.6) 
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The components of the bi-vector       can be defined as                                     and    

the wedge products                                                                                                 

Then,formula (5.7) becomes       


1 2

 and      

 yield  and .
i

                

 where Q in B was defined in (1.2). Using theorem above, we set the bi-vector as 

follows:   

     
1

( ) ,      i,j=1,2
2

j i

ij
dxdydz

1
(2 ) .

2
x y z

C dxdydz                

We note that        in (5.8) does not contain any nonlocal terms since the input of the 

only nonlocal term in         vanishes because of the identity                                     .   

Therefore, we can apply Olver’s criterion without any modification. Substituting (5.8) 

into the equation  


  PrV




     1

x
D

(5.7) 

(5.8) 

(5.9) 
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We obtain, 

 

  

   

  
        
 

 
   

             
 

    
          





2 2

2

1
Pr Pr Pr

2

Pr Pr Pr

Pr Pr Pr Pr

y xy
xy xy

y
y y xy x

xy xy xy

x
y x x

xy xyxy xy

V V v u V
u u

v
c V V v v u V

u u u

v
V v V v V Q v Q V

u uu u

  


 



               
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2 2
Pr Pr Pr

y

y xy z
xyxy xy
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V v a u V b V dxdydz

uu u

(5.10) 
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Using (5.4) with                                 ,  we calculate 
1 2

 and u v   











           

        

     

     

    

     

2

2 3

Pr ( C F ),

Pr ( C F ),

1 1
Pr ( ),

1 2
Pr ( ),

1
Pr ) (cD bD QD )( )

1
(v D v D aD )(

x x x y z

y y x y z

y x x
xy xy

y x x

xy xy

x z y x x
xy

y x x y z
xy

V v D

V v D

V D
u u

V D
u u

V Q
u

u
     C F )

x y z

(5.11) 
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 at the last step, we substitute (5.11) in (5.10). Then, we reconstruct all the terms 

carefully and set all the total divergence to zero.  

                                 



1.6 Symmetries and conservation laws 
 

Using the software packages LIEPDE and CRACK by Wolf [13], run under REDUCE 3.8, 

we have calculated all point symmetries of the asymmetric heavenly system (1.2). The 

basis generators of one-parameter subgroups of the complete Lie group of point 

symmetries for the asymmetric heavenly system(1.2) have the form 

  

 

1

'

2 2

2 2 2 2 2

2

,

(s) '(s)

1 1 1
      

2 2 2

      (b t abx)d

(bt ax)f

y u v

t x y

d yz yy t y x z y y z

yy zz z u

yz zz z v

f y t z u

X y u v

akx
X kt aF bF ky

b

X bt ax d vd cd bd bd

d v a x abtx b t d actd

bd v acd

X f

     

 
        
 

         

  
        

  

     

    

(y,z)

z v

g u

bf

X g

 

 

(6.1) 
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The two component symmetry characteristics for the symmetries given above, 

and         are given by,  

̂u
i

̂v
i

1
,ˆu y

u yu   1
,ˆv y

v yv  

2
2

2

1
(acq(s) a cyF(s) 2ackty bku)ˆ

   ( kt aF'(s))v bF'(s)u

u

x y

b

akx
kyu

b

    

    

(6.2) 

     Geometry, Integrability and Quantization                                                     Varna,  June  7-12  2013

       

                                                                                                              

We are interested in the integrals of motion generating all this point symetris. The 

relation between symmetries and integrals is given by the Hamiltonian form of 

Noether’s theorem          

       

0

ˆ

ˆ

u
u ii

v
v ii

H
J

H

             



2 2 2 2 2
1 1 1

( a x abtx b t )dˆ
2 2 2

     - (bt ax)d ,

u
d yy zz z

yz y x z y y z

d v actd

v cd u bd u bd u

     

   

2(b t abx)dˆ

   - (bt ax)d ,

 

v
d yz zz z

yz yy y x z y y z

bd v acd

vd Q cd v bd v bd v

     

      

(bt ax)f ,ˆuf z y
vf    f Q,ˆvf z y

b f  

(y,z),ˆug g  0ˆvg 
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2 2

2
( kt aF'(s))Q bF'(s)vˆv x y

acky akx
kyv

b b
      



Where                                         is an integral of the motion along flow (1.2), with 

conserved density H. We determine conserved densities H, corresponding to known 

symmetry characteristics              by inverting relation (6.3) in the form of the 

inverse Noether’s theorem 

 

H dxdydz




 

ˆ ˆ, u v

(v uˆ ˆ

-u 0ˆ ˆ

u u
y x x y z xy xyu i i i

v v
v i xyi i

D v D aD vH
K

H

                                

(6.3) 
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where a, b, c, k are arbitrary constants, d(y,z), f(y,z), g(y,z), q(s), F(s) are arbitrary 

functions with s=bx-cz and F’ denotes the derivative of F with respect to s. 

Hamiltonian operators provide the natural link between commuting symmetries in 

evolutionary form [11] and conservation laws (integral of motion) in involution with 

respect to Poisson brackets. 

0

ˆ

ˆ

u
u ii

v
v ii

H
J

H

             



where the symplectic operator                   is defined (2.7). From above equation, we 

obtain  

(v v a v )ˆ ˆ ˆ ˆu u u u
u i y ix x iy iz xy i
H         

ˆuv i xy i
H u   

1
0

K J

Therefore ,                         are Hamiltonian (variational or Noether) symmetries, 

whereas                and           are not Hamiltonian symmetries of the flow (1.2)     

 

 and X
f g
X

( ) ( ) ( )
2 2

y x
f xy z y z z y y x zz

vf u
H v u bt ax f bf u bf u cf u au bt ax f

 
         

 

( )g(y,z).g z xy
H u vu 

Using (6.5), one can find Hamiltonians only for symmetries                   from the list 

(6.1) and corresponding conserved densities are  

 and  X
f g
X

1 2
,X X d

X

(6.4) 
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PART:2  
 

2.1 Symmetry reduction of an asymmetric heavenly equation 
 
 
 
We use one of the point symmetries given in (6.1 ) for reduction of the  
asymmetric heavenly equation 
 

For a particular choice of  d=y, we obtain 

   
y x z
X c b

The invariants of         are determined  by a characteristic  system as 

, , , ,X bx c z Y y T t U u V v     

y
X

The symmetry reduction implies the ansatz:  

    , , , , ,u U X Y T v V X Y T

  

 

2 2 2 2 2

2

1 1 1
      

2 2 2

      (b t abx)d

d yz yy t y x z y y z

yy zz z u

yz zz z v

X bt ax d vd cd bd bd

d v a x abtx b t d actd

bd v acd

         

  
        

  

     

(7.1) 

(7.2) 

(7.3) 

(7.4) 
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Substituting this into the original system (1.2) and    

, , ,U u V v Y y T t   

we obtain the new 2+1-dimensional reduced system 




 
    

 

, 0

t

x
t y

xy

u v

v ac
v v Q b

u b

   , ,
x x y y z x
D bD D D D cD

(7.5) 

(7.6) 
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2.2 Hamiltonian structure of the reduced system 
  
We start with the denerate Lagrangian denstiy for the system  (7.6): 

21
( ) b ( )
2 2red t xy t x

ac
L v vu u u u 

In order to get a Hamiltonian formulation, we need to apply Dirac’s constraint [3] 

analysis. Thus, we define the canonical momenta 

,
red

ii
t

L

u


 



and  using  canonical momenta, we get: 

                                                                                                              

 

 

         

  

        

,
2

red

u xy x
t

L ac
vu u

u



   


0

red

v
t

L

v


  



(8.1) 

(8.2) 

(8.3) 
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we treat definitions (8.3) as the second class constraints 

0,
2u u xy x

ac
bvu u     0

v v
   

and calculate the Poisson bracket of the constraints 

 ( , ), ( `, `)  ,         , 1, 2
ij i k
K x y x y i j

PB
   

Organizing them in the form of a matrix, we find 

((b ) )

0

y x x y xy xy

red
xy

v ac D v D v u
K

u

     
   

which is an explicitly skew-symmetric  symplectic operator. Here the correcponding 

symplectic two-form is a volume integral                                of the density V dxdydz  

(8.4) 

(8.5) 

(8.6) 
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1
 

2
j

i ij
du K du  

which gives 

2 2 2xy x y y x y x

b b ac
bu du dv v du du v du du v du du       

which, up to a divergence, can be directly verified to be a closed 2-form, that 

 is,                . Therefore,        is indeed a symplectic form and so K, defined by (8.6), 

is indeed a symplectic operator. Hence, its inverse is a Hamiltonian operator 

0d  

1

0 22
0

0 1/b

1/b

xyred

red
xy

u
J K

u J


 
 

   
 

where 

 

   

22
(2 2 2 20

2 3 3 2 3

1
( ) )

y x

x y
xy xy xy

xy xxy xyy xxy

y x
xy xy xy xy

v vac
J D D

b u bu bu

v u u uac
v v

bu bu bu b u

(8.7) 

(8.8) 

(8.9) 

(8.10) 
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    The first Hamiltonian density, becomes                                                  
0

J

2

1 2
red

xy

b
v uH   (8.11) 
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 One can obtain the flow (7.6) by applying       to variational derivatives of Hamiltonian 

density  

          

0
J

red

1
H

1
0

1
( )

red
redt

xred
yt

xy

u

v

v
u H

vJ ac
vv H

u b

 
    
               

 








 
    

 

, 0

t

x
t y

xy

u v

v ac
v v Q b

u b

(8.12) 



2.3 Recursion operator and Lax pair for the reduced system 

1

ˆ
t

y xred
x y t x y x

xy xy xy xy

D

vA vQ ac
D D D D D D

u u u bu


 
 
 
  
 
 
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1 1
( ) ( )

ac
v D Dx x y x x xyb

red
y y

D D u
R

QD v

 


 
 

  
  

If we impose the reduction prosudure to         and  R  recpectively.   Â



For the commutator of the recursion operator R and the operator        of the symmetry 

condition (9.3), computed without using the equation of motion, we obtain  

Â

1 1
( )

2

2

( )

1
[ ( ) ( )

ˆ[ , ]

c( ) ( )

( ) ( ) ] ( )

v Qx t x y x t xy

t xx t xy
xy

red

t xx y t x

x y x y t yt t

D D D u v

cb u v Qb u v
uR A

b u v bv v Q

bv v Q ac v Q D v Q

 


 
  

 
    
 

  
   
 
     
 

and  as a consequence, the operator         and          form a Lax pair of the Olver-

Ibragimov-Shabat type for the mixed heavenly system (7.6), so that          and       

commute  on solutions of this system. 

ˆ
red

A
ˆ

red
A
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red
R

red
R



2.4 Second Hamiltonian structure and Hamiltonian function 
for reduced system. 
 

Using the theorem of Magri , one can generate the second Hamiltonian operator    

by acting with the reduced recursion operator  on the new Hamiltonian operator 

(8.9):  

1

1 0
22
1

1
/b

/b

red red x y xy

red

y xy

D v u
bJ R J

v u J


 
 
  
 
 

where            is an explicitly skew-symmetric form defined as 
22

11
J

2
22

2 2 2 21
( ) D ( ) D

y y x y

x y
xyxy xy xy

v v v vac Q
J

bub u bu bu
     

2

2 2 3 3 2 3

xyy xy y xxy y xyy x y xxy y

xy xy xy xy xy

u v v u v u v v u vQ ac

b u bu bu bu b u
    

(10.1) 
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The flow (7.6) can be generated by the Hamiltonian operator           from the 

Hamiltonian density  
1

red
J

0 0
( )

  
red

xy
H b c y vu 

where       is a constant, so that the asymmetric heavenly equation in the two-

component form (7.6) admits two Hamiltonian representation  

0
c

01

0 1

1 0

redred

red redt

red redt

uu

v v

HH
u

J J
v

H H

  
    
          

   



 

and thus it is a bi-Hamiltonian system. By repeated applications of the recursion 

operator to the first Hamiltonian operator           according to Magri’s theorem we 

could generate an infinite sequence of Hamiltonian operators 
0

red
J

0 0
,           1, 2, 3, ...

red n red

red
J R J n 

which proves that asymmetric heavenly equation considered in a two-component form 

is a multi-Hamiltonian system in the above sense. 

(10.2) 

(10.3) 

(10.4) 

     Geometry, Integrability and Quantization                                                     Varna,  June  7-12  2013

       

                                                                                                              



2.5 Symmetries and Integrals of motion for reduced system 

Point symmetries genarator of  (7.6)  

 
1

( )
x

X f x

 

 

        

          

2

2

(y)
v v v v t y

v v v v u v

X tg tvh uh w th e

tvg tv h uvh vw tg uh w g

where,                                                                     arbitrary functions these 

point symmetries are generated by some integrals of motion, that is, they are 

variational symmetries. The relation between symmetries and integrals is given by 

the Hamiltonian form of Noether’s theorem. 

( ), ( , ), ( , ), ( , , ) and e(y)f x g y v h y v w x y v

(11.1) 
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0

ˆ

ˆ

u
red u ii

v
v ii

H
J

H

             

(11.2) 



where                    is an integral of motion along the flow (7.6) with conserved 

density      which generates the symmetry with the two component 

characteristic  





 H dxdy



 , .ˆ ˆu v

We chose here the Poisson structure determined by our first Hamiltonian operator 

since we know its inverse K given by (8.9) which is used in the inverse Noether’s 

theorem 

( )

0

ˆ ˆ

ˆ ˆ

u i

v i

u u

v v

xyy x x y z xy

xy

uv D v D aD v

u

H

H
K





 

 

 
 
 
 
 
 

   



    
     

     

For symmetry,           

( ), (x)ˆ ˆu x v x
u f x v f    

(11.3) 

(11.4) 
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1
:X



Using equation  we obtain   

 
  
 

1 2 ( )
2

x xy x

ac
H bvu u u f x

For         only for particular choice of arbitrary functions we can find an integral of  

motion. For example if we choose                                            we obtain  

2
X

   0, 1h w g b and e

     
2 y u v
X bt b

and characteristic 

    ,ˆ ˆu y v y
bt u b v

Equation (11.3) gives  

    2 21
( )

2
xy y xy

H bvu u bt b ac uu

It is possible to find different integrals of motion for different choices of arbitrary 

functions. 

(11.5) 

(11.6) 

(11.7) 

(11.8) 
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CONCLUSION 

We have shown that a certain symmetry reduction of the 3+1–dimensional 

asymmetric heavenly equation, taken in a two-component form yields a two 

component 2 + 1–dimensional multi-Hamiltonian integrable system. For this system, 

we have presented explicitly two Hamiltonian operators, a recursion operator for 

symmetries, a complete set of point symmetries and corresponding integrals of the 

motion. The first impression of the major part of this work could be that it is an easy 

and even trivial task to obtain a three-dimensional multi-Hamiltonian system by a 

symmetry reduction of the original four-dimensional second heavenly system. All the 

main objects                                        could be obtained by the symmetry 

reduction. However, a slight change in a symmetry chosen for the reduction, ruins all 

these properties and creates a difficulty in discovering bi-Hamiltonian structure of the 

reduced system. If we choose more general symmetries for the reduction, for 

example from the optimal system of one-dimensional sub algebras from [3], then we 

shall be unable to discover even a single Hamiltonian structure of reduced systems. 

The problem of conservation of multi-Hamiltonian structure under symmetry 

reductions seems to be an important and interesting subject for a future research. 
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