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Plan

| propose
a new method (based on “visible actions”) to

prove/find/construct
multiplicity-free representations

for finite/infinite dimensional representations.
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Multiplicity-free theorems

Multiplicity-freeness
=each building block is used no more than once

The structure of “multiplicity-free representations”
may be hidden in classical mathematical methods.

E.g. the Taylor series, the Fourier transform,
the expansion into spherical harmonics, etc.

Multiplicity-free property is ‘rare’ in general.

| How to find such a structure systematically ?
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New approach — “visible action”

Aim ...

To give a new simple principle that explains the property MF
for both finite and infinite dimensional reps

Propagation of MF property from fiber to sections
T (Progr. Math 2013)

Analysis on complex mfd with group action
having co many orbits

(Strongly) Visible Action (K—2004)
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§1 Multiplicity-free representations

Ex.1 (Eigenspace decomposition)
H: Vector sp./C, dim < oo
A € Endc(H)
s.t. | all eigenvalues are distinct. |®
= H=Ce;®---®Ce, ~C" (canonical)

D &detA #0
U
ma: Z —> GLc(H)is MF (multiplicity-free)
w w

n — A"
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G — GLc(H)

.
group

Def. (naive) (r,H)is MF
multiplicity-free
if dim Homg(t, ) < 1 (V7 irred. rep. of G).

{irreducible representations}
N
{MF representations}
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Taylor series (MF rep.)

Ex.2 (Taylor expansion, Laurent expansion)

@, z0) = Z asz|" ... 7"

Point (too obvious *¢")
4, € Cfor each a

dim Homcxy: (7, O({0}) < 1
(VT =71, irred. rep. of (CX)n)

i.e. (C*" ™~ 0({0}) is MF



http://www.ms.u-tokyo.ac.jp/~toshi/pub/83.html

Fourier series

Ex.3 (Fourier series expansion)

LZ(S 1) ~ Z®Ceinx

nez

f(x)= Z ane™

nez
e




Fourier series
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Fourier series

Ex.3 (Fourier series expansion)
LZ(S 1 ) ~ ZGBCeinx 2, einx
nez

f(x) — Z aneinx

nez
-

Translation (= rep. of the group S1)
fO B f(-c) (ceS!'~R/277Z)

| ST I2(S Y is MF (multiplicity-free) |
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Peter—Weyl (MF rep.)

Ex.4 (Peter—Weyl)
G: compact (Lie) group
L*(G) ~ Zea TRT

G

irred. rep. of G X G

| Translation f() - f(g7" - g2) |

=>| G x GV I*G)is MF |
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Spherical harmonics

M: compact Riemannian manifold

Ayr: Laplace—Beltrami operator on M
= &

My= > Ker(Ay -2

1 countable
(direct sum of eigenspaces)

Ex.5 M =S"! (unit sphere)
Aginf = Af, f#0
=
A=-Il(l+n-2)forsomeleN.




Fourier series — spherical harmonics
o) > s cRr”
Agn1: Laplacian on §"~!



Fourier series — spherical harmonics
o) > s ! cr”
Agn1: Laplacian on S

Ex.6 (Expansion into spherical harmonics)
H = {f € C(S" ) : Agur f = I+ n = 2)f}




Fourier series — spherical harmonics
o) > s ! cr”
Agn1: Laplacian on S

Ex.6 (Expansion into spherical harmonics)
H = {f € C(S" ) : Agur f = I+ n = 2)f}

2= Y A,
=0




Fourier series — spherical harmonics
o) > s ! cr”
Agn1: Laplacian on S

Ex.6 (Expansion into spherical harmonics)
H = {f € C(S" ) : Agur f = I+ n = 2)f}

2= Y A,

=0
& O(n) -JAirred.




Fourier series — spherical harmonics
o) > s ! cr”
Agn1: Laplacian on S

Ex.6 (Expansion into spherical harmonics)
H = {f € C(S" ) : Agur f = I+ n = 2)f}

2= Y A,

=0
& O(n) -JAirred.

U

o)~ LA(S" 1Y is MF |




Fourier series — spherical harmonics
o) > s ! cr”
Agn1: Laplacian on S

Ex.6 (Expansion into spherical harmonics)
H = {f € C(S" ) : Agur f = I+ n = 2)f}

2= Y A,

=0
& O(n) -JAirred.

U

o)~ LA(S" 1Y is MF |

GV LG/K) is MF (E. Cartan (29)-I. M. Gelfand ('50))
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®-product rep.

Tk
SLy(C) 7Y S¥C? (k=0,1,2,...) I
irred.

Ex.7 (Clebsch—Gordan)
T @ 71~ Ty ] D Mps 2 @ -+ - D M~y




®-product rep.

L
SLy(C) Y SKC? (k=0,1,2,...) I
irred.

T @ T~ Ty ]  Mpes 12 D+ -+ @ Wiy

Ex.7 (Clebsch—Gordan) ‘
MF




Notation (finite dimensional reps)

G = GL,(C)
Hightest weight
A=...,)€eZ", L1=zh=--21,
U
Irreducible rep.
GL, _
7'['/1 =)
Ex.8
A=(,0,...,0) o  GL,(C)"skcm

A=(1,...,1,0,...,0) & GL,(C)"~AkKC™)
N——
k
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Ex.9 (Pieri’s rule)
T, ) © TT(k0,...,0) = @ Ty et

H12A 222 Ay

2(ui—Ai)=k

i

I MF as a GL,,-module.




®-product rep. (GL,-case)

Ex.9 (Pieri’s rule)
T, ln) © T(k0,...,0) = @ T ua1seesttn)
H12A1 =22,
2(ui—Ai)=k
)

I MF as a GL,,-module.

Ex.10 (counterexample)
72,1,0) ® m2,1,0) I8 NOT MF as a GL3(C)-module.
——
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®-product for GL;

7210 = Adjoint reprsentation
(up to central character)

TT2,1,00 ® T(2,1,0)
=420 D M1, @ m22,0)
® 21301 @ M222)
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Lecture 2. Various examples of MF representations

MF = multiplicity-free

Plan of Today

o finite-dimensional examples (continued)
e infinite-dimensional examples



Notation (finite dimensional reps)

G = GL,(C)
Hightest weight
A=...,)€eZ", L1=zh=--21,
U
Irreducible rep.
GL, _
7'['/1 =)
Ex.8
A=(,0,...,0) o  GL,(C)"skcm

A=(1,...,1,0,...,0) & GL,(C)"~AkKC™)
N——
k
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When is 7, ® 7, MF?

G=GL,
/l:(/ll""s/ln)’ V:(Vls---,Vn)

(Necessary Condition)
If m;, ®m, is MF

= ?




G =GL,

A=,...

When is 7, ® 7, MF?

A, v=01,...,v)

(Necessary Condition)
If 1) ® m, is MF
then at least one of A or v is of the form
(a,...,a,b,...,b),
ARGV ARG

p n—=p

for some a > b and some p




®-product rep. (continued)

A=(a,---,a,b,--- ,b)eZ", azb p+tqg=n
N’ N’

p q

Ex.11 (Stembridge 2001)

my®m, is MF as a GL,(C)-

module

iff one of the following holds
1) min(a — b, p,q) = 1 (and v is any),

2) min(a — b, p,q) = 2 and

N vis of the form v = (x

nl

Y Y2 ) (x=2y=2)

3) min(a — b, p,q) = 3, *

&

min(x —y, y —z,ny,n2,n3) = 1.




®-product rep. (continued)

A=(a,---,a,b,--- ,b)eZ", azb p+tqg=n
N’ N’

p q

Ex.11 (Stembridge 2001)

2) min(a — b, p,q) = 2 and

my®m, is MF as a GL,(C)-
iff one of the following holds
1) min(a — b, p,q) = 1 (and v is any),

module

N vis of the form v = (x

nl

Y Y2 ) (x=2y=2)

3) min(a — b, p,q) = 3, *

&

min(x —y, y —z,ny,n2,n3) = 1.

Geometric interpretation (K—, 2004)
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®-product rep. (continued)

A=(a,---,a,b,--- ,b)eZ", azb p+tqg=n
N’ N’

p q

Ex.11 (Stembridge 2001)
my®m, is MF as a GL,(C)-module
iff one of the following holds
1) min(a — b, p,q) = 1 (and v is any),
2) min(a — b, p,q) = 2 and

N wsoftheformv—(x y D) (x=2y=2)

nl

3) min(a— b, p,q) =3, x &
min(x -y, y —z,n1,nz,n3) = 1.

Geometric interpretation (K=, 2004) - - - visible action
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Restriction (GL, | G,, X GL,, X GL,,)

Ex.12 (GL, | (GL, XGLy)) n=p+gq
GLn | is MF
Xy ey XYy ey VoZs oo, DIGLpXGLy 1S MIT
n ny n3
if min(p,q) <2 or
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(Kostant n3 = 0; Krattenthaler 1998)




Restriction (GL, | G,, X GL,, X GL,,)

Ex.12 (GL, | (GL, XGLy)) n=p+gq
GLn | is MF
Xy ey XYy ey VoZs oo, DIGLpXGLy 1S MIT
n ny n3
if min(p,q) <2 or
if min(ny,n2,n3,x-y,y—-2) <1
(Kostant n3 = 0; Krattenthaler 1998)

Ex.13 (GL, | (GL,, x GL,, X GL,,)) ([5])
n=ny+ny+n3

GL, )
d is MF
@,...,ab,..., b)lGLn]XGanxGLn3

—— ——

P q
if min(nq,n2,n3) <1 or

if min(p, g,a—b) <2
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MF results for
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“Triunity”

MF results for

Ex11 moen,
Ex12 GL, | GL,xGL, (p+q=n)
Ex13 GL, | GL,, X GL,, X GL,, (n1 + ny + n3 = n)

can be proved by combinatorial methods (e.g. Littlewood—
Richardson rule) but
will be explained by “triunity” of visible actions on flag varieties:

G (GxG)/(LxH) (diagonal action)
L"~G/H
H™G/L

forHc G > L.



Restriction (GL, | GL,_)

Finite dimensional rep.
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GL, o GL,—
et GLi1 = @ Tttt soptn)
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Restriction (GL, | GL,_)

Finite dimensional rep.

Ex.14 (GL, | GL,_)
GL, o GL,—
et GLi1 = @ Tttt soptn)

A 2H1 Z“'Z,unflz/ln

= restrictions is m as a GL,_1(C)-module

GL, D GL,., D GL,, > ... > GL4
A () () A
MF MF MF  MF
— Gelfand—Tsetlin basis
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Finite dimensional rep.

Ex.14 (GL, | GL,)

GL, N @ GLy
T aplGLi = Tty optn )

/11 2p Z“'Z,unflz/ln

= restrictions is m as a GL,_1(C)-module

Infinite dimensional version



Restriction (GL, | GL,_)

Finite dimensional rep.

Ex.14 (GL, | GL,)

GL, N @ GL,
T aplGLi = Tty optn )

A 21 2“'Z,urtflz/ln

= restrictions is m as a GL,_1(C)-module

Infinite dimensional version

Ex15**" (U(p,q) L U(p - 1,9))
Y7 irred. unitary rep. of U(p, ¢) with higest weight
= restriction nly(,-1,9) is MF as a U(p — 1, g)-module
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GL-GL duality

N =mn

Ex.16 (GL-GL duality a la R. Howe)
= GL,, X GL, "~ S (CN) =~ S (M(m, n; C))
This rep. is MF

J generalization 1
Hidden symmetry < Broken symmetry

Ex.17 (Progress in Math. 2008)
Branching law of holomorphic discrete
series rep. with respect to symmectric pair

Hua—Kostant—Schmid, K-
finite dim oo dim
compact subgp non-compact subgp

Uim,n) | Uim) x U(n)
U(m,n) | U@my,ny) X U(my, ny)
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GL-GL duality

N =mn

Ex.16 (GL-GL duality a la R. Howe)
= GL,, X GL, "~ S (CN) =~ S (M(m, n; C))
This rep. is MF

J generalization 2

MF space: G ¥ X = G O(X)
function on X



GL-GL duality

N =mn

Ex.16 (GL-GL duality a la R. Howe)
= GL,, X GL, "~ S (CN) =~ S (M(m, n; C))
This rep. is MF

J generalization 2
MF space: G ¥ X = G O(X)

Ex.18 (Kac’s MF space ’80)
S(CN)is still MF as a GL,,—; x GL, module




GL~GL duality

N =mn

Ex.16 (GL-GL duality a la R. Howe)
= GL,, X GL, "~ S (CN) =~ S (M(m, n; C))
This rep. is MF

J generalization 2
MF space: G ¥ X = G O(X)

Ex.18 (Kac’s MF space ’80)
S(CN)is still MF as a GL,,—; x GL, module

Ex.19 (counterexample)
S(CV) is no more m as a GL,,—1 X GL,_; module
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MF for unitary rep (definition)

Observation
n <1 & End(C") is commutative.

(mr, H): unitary rep. of G || (Schur’s lemma)

Def.
(m,H) is % if Endg(H) is commutative.

Def. Endc(H)={T : H — H continuous linear maps}
U
Endg(H) :={T € Endc(H) : Ton(g) =n(g)o T, "g € G}




MF for unitary rep (definition)

Observation
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(r, H): unitary rep. of G || (Schur’s lemma)

Recall:

Def.
(mr, H) is MF if Endg(H) is commutative.

Def. (naive) (r,H)is MF
multiplicity-free
if dim Homg(t,7) < 1 (V7 irred. rep. of G).




MF for unitary rep (definition)

Observation
n <1 & End(C") is commutative.

(r, H): unitary rep. of G || (Schur’s lemma)

Def.
(mr, H) is MF if Endg(H) is commutative.

U

Prop. The irreducible decomp. of x is unique, and
my(t) < 1 for almost every T with respect to du.

In particular, multiplicity for any discrete spectrum < 1

T j;m,,(r) Tdu(t) (direct integral)
G



MF for unitary rep (definition)

Observation
n <1 & End(C") is commutative.

(mr, H): unitary rep. of G || (Schur’s lemma)

Def.
(mr, H) is MF if Endg(H) is commutative.

(mr, U): continuous rep.

Def. We say (r, U) is (unitarily) MF

if, for any unitary rep. (@, H) s.t.

there exists an injective continuous G-map H — U,
(w, H) is MF.




Fourier transform (MF rep.)

Ex.21 (Fourier transform)

L*(R) =~ ﬁ Ce'*d¢

(direct integral of Hilbert spaces)

fx)= f F(Oe“ dL
<R

| Regular rep. of R on L*(R) by f(x) - f(x—¢) |




Fourier transform (MF rep.)
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fx)= f F(Oe“ dL
<R

| Regular rep. of R on L*(R) by f(x) - f(x—¢) |

Endg(L*(R)) =~ L®(R) (ring of multiplier operators)

— | unitary rep. RV L2(R) is MF
continuous spectrum




Fourier transform (MF rep.)

Ex.21 (Fourier transform)
D
L2(R) ~ f Ce'**d¢
R

(direct integral of Hilbert spaces)

fo) = f FOEdC
R

| Regular rep. of R on L*(R) by f(x) = f(x—c) |

Endg(L*(R)) =~ L*(R) (ring of multiplier operators)

I continuous rep. R~ S’(R) is also MF
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Varna Lectures on visible actions and MF representations

I. EXAMPLES OF MULTIPLICITY-FREE REPRESENTATIONS
[I. INFINITE DIMENSIONAL EXAMPLES

Ill. PROPAGATION THEOREM OF MULTIPLICITY-FREE
REPRESENTATIONS

V. VISIBLE ACTIONS ON COMPLEX MANIFOLDS

V. APPLICATIONS OF VISIBLE ACTIONS TO
MULTIPLICITY-FREE REPRESENTATIONS



MF = multiplicity-free (definition)

: G > GLe(H)
group

T

Def. (naive) (x,H)is MF
multiplicity-free
if dim Homg (7, ) < 1 (V7: irred. rep. of G).




MF for unitary rep (definition)

Observation
n < 1 & End(C") is commutative.

(r, H): unitary rep. of G || (Schur’s lemma)

Def.
(m,H) is % if Endg(H) is commutative.

Def. Endc(H) = {T : H — H continuous linear maps}
U
Endg(H):={T € Endc(H) : Ton(g) =n(g)o T, "g € G}




Fourier transform (MF rep.)

Ex.21 (Fourier transform)
D
L*(R) =~ f Ce'*dr
R

(direct integral of Hilbert spaces)

fx)= f F(Oe“ dL
<R

| Regular rep. of R on L*(R) by f(x) - f(x—¢) |

Endg(L*(R)) =~ L®(R) (ring of multiplier operators)

— | unitary rep. RV L2(R) is MF
continuous spectrum




Plancherel formula for Riemannian symm. space G/K

Ex.22 (Harish-Chandra, Helgason) G/K = SL(n,R)/SO(n)

L*(G/K) = H, da
24=0, iz-24 cont. spec.

MF
H,: co-dim, irred. rep. of G

= The regular representation of G on L*(G/K)is MF



Plancherel formula for Riemannian symm. space G/K

Ex.22 (Harish-Chandra, Helgason) G/K = SL(n,R)/SO(n)

L*(G/K) =~ f@ Ha dd
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MF
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Plancherel formula for Riemannian symm. space G/K

Ex.22 (Harish-Chandra, Helgason) G/K = SL(n,R)/SO(n)

L*(G/K) = f@ H, da
L4=0. Liz2d:  cont. spec.

MF
H,: co-dim, irred. rep. of G

= The regular representation of G on L*(G/K)is MF

m still holds for vector bundle case of ‘small’ fibers,
V=G xx AN(C") > G/K (0 <k<n),

associated to the SO(n)-representation on the exterior power
AX(C™), but no other cases (Deitmar, K= 2005)


http://www.ms.u-tokyo.ac.jp/~toshi/pub/83.html

Plancherel formula for Riemannian symm. space G/K

Ex.22 (Harish-Chandra, Helgason) G/K = SL(n,R)/SO(n)

L*(G/K) = Hy da
L4=0. Liz2d:  cont. spec.

MF
H,: co-dim, irred. rep. of G

= The regular representation of G on L>(G/K) is MF
MF still holds under certain deformation of G-regular
representation of L*(G/K)

deformation coming from hidden symmetry.
E.g. Gelfand—Vershik’s canonical rep of SL(R).




Plancherel formula for Riemannian symm. space G/K

Ex.22 (Harish-Chandra, Helgason) G/K = SL(n,R)/SO(n)

L*(G/K) = ﬁ H, da
24=0, iz-24  cont. spec.

MF
H,: co-dim, irred. rep. of G

= The regular representation of G on L*(G/K) is w

Other real forms of SL(n, C)/SO(n, C):

Ex.23 (T. Oshima, Delorme) G/H = SL(n,R)/SO(p,n — p)
Multiplicity of most cont. spec. in LA(G/H)
!
>1if0<p<n.

- pl(n-p)!
= NOT MF
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Broken symmetry and hidden symmetry

Hidden symmetry

anl i
GcG i GLc(H)
\_“ unitary rep

Broken symmetry

Branching law
= description of broken symmetry
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n /
~i
G

Prop For any classical reductive G, there exist
G (2 G) and an irreducible unitary repTof G s.t. g = &
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n /
~i
G

Prop For any classical reductive G, there exist
G (2 G) and an irreducible unitary repTof G s.t. g = &

E.g. G=GLn,R) = G =Sp(n,R)

7 lies in a continuous family {r,} of irred unitary reps of G
= 7, := m)lg is a continuous family of (non-irreducible)
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—> deformation of G L*(G/K)



Deformation of G~ L2(G/K)

G " I*G/K)

n /
~i
G

Prop For any classical reductive G, there exist
G (2 G) and an irreducible unitary repTof G s.t. g = &

E.g. G=GLn,R) = G =Sp(n,R)

7 lies in a continuous family {r,} of irred unitary reps of G
= 7, := m)lg is a continuous family of (non-irreducible)
representations of G
= deformation of G LA(G/K) (still MF)
Sometimes discrete spectrum may appear!



Known methods

Various techniques have been used in proving
various MF results, in particular, for finite dim’l reps

For example, one may

M w N

look for an open orbit of a Borel subgroup.
apply Littlewood—Richardson rules and variants.
use computational combinatorics.

employ the Gelfand trick (the commutativity of the Hecke
algebra).

apply Schur—Weyl duality and Howe duality.
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Plan:

To give a new simple principle that explains the property MF
for both finite and infinite dimensional reps
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New approach

Plan:

To give a new simple principle that explains the property MF
for both finite and infinite dimensional reps

Propagation of MF property from fiber to sections

i

Analysis on complex mfd with group action
having co many orbits

Theory of visible actions on complex manifolds
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Propagation Theorem

H ™V,

\J
{x}

c |V
l
c |D

N>

H™OD,V)

H-equivariant holomorphic vector bundle

H.={heH:h-x=x}




Propagation Theorem

H ™V,
!
{x}

C

C

Vv

L

H™O(D,V)

D

H-equivariant holomorphic vector bundle

Properties of
H '™V,

neasyu

Propagation ?

Properties of
H™O0(D,V)

“difficult”



Propagation Theorem

H V.| c |v
1 Ll w|H™OWMD,V)
{x} c |D
H-equivariant holomorphic vector bundle

Properties of Properties of

Propagation ?
H,/ ™V, H™O(D,V)

fiber ﬂ sections

Geometry of
the base space D




Propagation Theorem

H V.| c |v
1 Ll w|H™OWMD,V)
{x} c |D
H-equivariant holomorphic vector bundle

Theorem

Irredu0|b|lltx Propagation Irredu0|bllltx

H, " "V, = | H "OD,V)

fiber ﬂ sections

H acts transitivelx on

the base space D




Propagation Theorem

H ™V, c |V

l Ll w»|H™oMD,V)

{x} c |D
H-equivariant holomorphic vector bundle

Theorem (Progress in Mathematics, 2013)

m '~ Propagation ﬁ\v
H," "V, H" "OD,V)
fiber ﬂ sections

H acts strong visiblx on

the base space D



http://uk.arxiv.org/abs/math.DG/0607004

Automorphism of group action



Automorphism of group action

H "~ D
Lie group  manifold

Def o € Aut(H; D)
oc™vH automorphism of Lie group
=D diffeomorphism
o(g-x)=0(g)-0x) (geH "xeD)




Automorphism of group action

H ™ D
Lie group  manifold

Def o € Aut(H; D)
o vH automorphism of Lie group
—=c"VD diffeomorphism
o(g-x)=0(g- -0 (‘geH 'xeD)

= o preserves every H-orbit



Automorphism of group action

H ™~ D
Lie group  manifold

Def o € Aut(H; D)
o vH automorphism of Lie group
= c"VD diffeomorphism
o(g-x=0(g- o (‘geH 'xeD)

= o preserveseveryH-orbit

permutes H-orbits



Automorphism of group action

H ™~ D
Lie group  manifold

Def o € Aut(H; D)
o vH automorphism of Lie group
= c"VD diffeomorphism
o(g-x=0(g- o (‘geH 'xeD)

= o preserveseveryH-orbit

permutes H-orbits

Write simply oo D instead of o € Aut(H; D)
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Assumptions of MF theorem

V — D: H-equivariant

Assumption 1 7o~ D anti-holomorphic s.t.

o preserves every H-orbit.

Vv o vV, = YWWg...ogy™
! ! MF as an H, module
D > «x

Assumption 2 ¢ lifts to an anti-holomorphic
bundle map of V — D s.t.

(VD) = VD iy if o(x) = x

Note: o permutes V", ..., V™ if o(x) = x.



Assumptions of MF theorem

V — D: H-equivariant

N
3O'

Assumption 1 D anti-holomorphic s.t.
o preserves every H-orbit.

Vv o5 vV, = YWWg...gy™
! ! MF as an H, module
D > «x

Assumption 2 ¢ lifts to an anti-holomorphic
bundle map of V — D s.t.

(V) = VD Viyif o(x) = x

Note: Assumption 2 is automatic for line bundles



Propagation of MF property

Progr. Math (2013)
H: Lie group

H-equiv. holo. vector b'dle:
VD

U
H™™O(D,V) = {holo. sections}

Theorem (Propagation theorem)
H."YV, MF (¥x € D)
— H"YO0D,V) MF

if assumptions 1 & 2 hold.



http://uk.arxiv.org/abs/math.DG/0607004
http://uk.arxiv.org/abs/math.DG/0607004

Observations of MF theorem

Points: H has infinitely many orbits on D

e propagation of MF property
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e propagation of MF property

~V
Y
H,\ | = H"70WD,V)
D
fiber MF sections MF



Observations of MF theorem

Points: H has infinitely many orbits on D

e propagation of MF property

~V
Y
H,\ | = H"7O0WD,V)
D
fiber MF sections MF

)

geometry of base space
... "'(strongly) visible action’




Examples of MF theorem

Ex.20 H=U(m)x U(n)
D = M(m,n;C) ~C™
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Examples of MF theorem

Ex.20 H=Um)xUm)
D = M(m,n;C) ~C™

0():=2 = Assumption1 O.K.
V=DxC = Assumption2 O.K.




Examples of MF theorem

Ex.20 H=U@m)xU(n)
D = M(@m,n;C) ~=C™

o) =72 = Assumption1 O.K.
V=DxC = Assumption2 O.K.

U Propagation theorem

H" Y Pol(D) MF |

GL,, X GL, " Pol(M(m, n; C))
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Totally real submanifold
(D, J) complex manifold

Jo:TD - T,D, J*=-id. (x € D)

Definition A real submanifold S of D
is totally real if
T,.S NJ(T:S)=1{0} foranyxeD,
or equivalently, if
T,S does not contain any complex subspace.

Example Letk<n
C" > Rk totally real
cr o ck not totally real

Rem We do not request S to be of
maximal dimension (e.g. § = R" in C".)



§3 Visible actions

(D, J) complex mfd, connected

Def. A real submanifold S of D is totally real if 7,.S does not
contain any complex subspace.



§3 Visible actions

holomorphic
H v (D,J)complex mfd, connected

Def.(2003) A holomorphic action of H is visible w.r.t. a slice S if

ipr < D,
open

Def. A real submanifold S of D is totally real if 7,.S does not
contain any complex subspace.


http://dx.doi.org/10.1023/B:ACAP.0000024198.46928.0c

§3 Visible actions

holomorphic
H v (D,J)complex mfd, connected

Def.(2003) A holomorphic action of H is visible w.r.t. a slice S if
D" c D,
open
s cp st
totally real
{S meets every H-orbit

J(T,S)YCTy(H-x)(x€f8)

Def. A real submanifold S of D is totally real if 7,.S does not
contain any complex subspace.


http://dx.doi.org/10.1023/B:ACAP.0000024198.46928.0c

Example of visible actions
H=T:={aeC:la=1} (=8
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Example of visible actions
H=T:={aeC:la =1 (=8hH

Ex21 T Y CoHOR

Q €

I az

R meets every T-orbit

a\.
=

J(T:S)C To(H-x), "xeR\{0}=:S



Example of visible actions
H=T:={a€C:la =1} (=S

Ex21 T’ CoHOR
w

a P az

R meets every T-orbit

.
=

| — T-action on C is visible




Strongly visible actions

holomorphic
H "D  complex mfd, connected



Strongly visible actions

holomorphic
H "D  complex mfd, connected

Def. *™® A holomorphic action is strongly visible
if
3 ' H as Lie group auto

"} D as anti-holomorphic diffeo
in a compatible way

s.t. H - D7 contains a non-empty open set of D.
(generic H-orbits meets the fixed point set D)



http://dx.doi.org/10.2977/prims/1145475221

Strongly visible actions

holomorphic
H "D  complex mfd, connected

Def. *™" A holomorphic action is strongly visible
if
3 ' H as Lie group auto
"X D as anti-holomorphic diffeo
in a compatible way
i.e. o(g-x)=0(g) - o(x)
s.t. H - D7 contains a non-empty open set of D.
(generic H-orbits meets the fixed point set D)



http://dx.doi.org/10.2977/prims/1145475221

Strongly visible actions

holomorphic
H "D  complex mfd, connected

Def. *™" A holomorphic action is strongly visible
if
3 ' H as Lie group auto
"X D as anti-holomorphic diffeo
in a compatible way
i.e. o(g-x)=0(g) - o(x)
s.t. H - D7 contains a non-empty open set of D.
(generic H-orbits meets the fixed point set D)

DY :={xeD:ox)=x}


http://dx.doi.org/10.2977/prims/1145475221

Strongly visible actions

holomorphic
H "D  complex mfd, connected

Def. *™" A holomorphic action is strongly visible
if
3 ' H as Lie group auto
"X D as anti-holomorphic diffeo
in a compatible way
i.e. o(g-x)=0(g) - o(x)
s.t. H - D7 contains a non-empty open set of D.
(generic H-orbits meets the fixed point set D)

DY :={xeD:ox)=x}

Remark. Not necessarily o2 = id


http://dx.doi.org/10.2977/prims/1145475221
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Example of strongly visible actions
H=T={aeC:la=1} (=S

Ex21 T’ CoHR
w

a I az

R meets every T-orbit

A\
=

o(a) :=a, o(z) :=z anti-holomorphic.
Then o(a - z) = o(a) - o(z) (compatibility), and oz = id.



Example of strongly visible actions
H=T={aeC:la=1} (=S}

Ex21 T’ CoHOR
w

a P az

R meets every T-orbit

A\
=

= T-action on C is strongly visible |




Strongly visible actions with slice S
holomorphic

H "D  complex mfd, connected



Strongly visible actions with slice S
holomorphic

H "D  complex mfd, connected

Def. *®" A holomorphic action is strongly visible w.r.t. a slice S
if
3 ' H
g
2 p anti-holomorphic

in a compatible way
s.t.

ols =1id
H - S contains a non-empty open set of D.

Remark. § is automatically totally real.

| Point Try to find a smallest possible S c D“.



http://dx.doi.org/10.2977/prims/1145475221

Strongly visible actions

Proposition  Strongly visible = Visible |



http://dx.doi.org/10.2977/prims/1145475221

Strongly visible actions

Proposition  Strongly visible = Visible |

To be more precise,

stronglz visible w.r.t. a slice S

— visible w.r.t. S’ for some S’ - S.
open dense

R meets every T-orbit

.
=



http://dx.doi.org/10.2977/prims/1145475221

G/K Hermitian symm. space

Ex.22 G =SL(2,R)
K =50Q2)
H= (ga‘}l):a>0}
N={(}7): xR}
G/K =2{zeC:|7 < 1}
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H = (8a91):a>0}
N={(}1):xer]
G/K ~{zeC: < 1}
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G/K Hermitian symm. space

Ex.22 G =SL(2,R)
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G/K Hermitian symm. space

Ex.22 G =SL(2,R)
K =S0(2)
H = (8a91):a>0}
N={(}1):xer]
G/K ~{z€C:lz < 1}

K™Y G/Kvisible  H"YG/Kvisible N"YG/K
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G/K Hermitian symm. space

Ex.22 G =SL(2,R)
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G/K ~{zeC: < 1}
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G/K Hermitian symm. space

Ex.22 G =SL(2,R)
K =502)
H= (8a91):a>0}
N={(}1):xer]
G/K ~{zeC: < 1}

K™Y G/Kvisible  H"YG/Kvisible  N"G/K visible

SAC

K-orbits H-orbits N-orbits



Visible actions on symmetric spaces

Theorem (Transf. Groups (2007))
G/K  Hermitian symm. sp.

Assume i )
(G,H) symmetric pair

= H " G/K is (strongly) visible



http://dx.doi.org/10.1007/s00031-007-0057-4

§4 Compex / Riemannian / symplectic geometry
holomorphic

H “Y(D,J) complex mfd, connected

Def. Action is visible if

s C i’ ¢ Dsut.
totally real open

S meets every H-orbit in D’
J(TS)CTy(H-x)(x€8§)




§4 Compex / Riemannian / symplectic geometry
holomorphic

H “Y(D,J) complex mfd, connected

Def. Action is visible if

s C i’ ¢ Dsut.
totally real open

S meets every H-orbit in D’
J(TS)CTy(H-x)(x€8§)

S meets every T-orbit




H

isometric
~

Complex / Riemannian / symplectic

(D, g) Riemannian mfd

Def. Action is polar if ER

S meets every H-orbit

C
closed submfd

T.S LT,(H-x) (x€8)

D s.i.




Complex / Riemannian / symplectic

isometric
H “ (D,g) Riemannian mfd

Def. Action is polar if 5S D s.t.

C
closed submfd
S meets every H-orbit

T.S LT,(H-x) (x€8)

symplectic

H " (D,w) symplectic mfd

Def. (Guillemin—Sternberg, Huckleberry—Wurzbacher)
Action is coisotropic (or multiplicity-free)
if T.(H - x)*“ c T(H - x) for principal orbits H - x in D
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Three geometries

Complex geometry Symplectic geometry
Visible action Coisotropic action
K=(2004) Guillemin-Sternberg ('84)

Huckleberry—Wurzbacher ('90)

Riemannian geometry

Polar action

Bott—Samelson ('58), Conlon, Hermann, Palais, Terng, Dadok,
Eschenburg, Heintze, Podesta—Thorbergsson ('03), Kollross ('07), ...


http://www.ms.u-tokyo.ac.jp/~toshi/pub/78.html

Three geometries

Complex geometry Symplectic geometry
Visible action Coisotropic action
K=(2004) Guillemin-Sternberg ('84)

Huckleberry—Wurzbacher ('90)
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Visible action Coisotropic action
K=(2004) Guillemin-Sternberg ('84)

Huckleberry—Wurzbacher ('90)

, Compact Podesta—
K=(05) Kahler Thorbergsson ('02)

Riemannian geometry

Polar action

Bott—Samelson ('58), Conlon, Hermann, Palais, Terng, Dadok,
Eschenburg, Heintze, Podesta—Thorbergsson ('03), Kollross ('07), ...
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Visible action O Coisotropic action
K—(2004) Guillemin—Sternberg ('84)

Huckleberry—Wurzbacher ('90)

K=(07)
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K= (05) O « Hermltlan symsp —
\ acton of sy oube Thorbergsson ('02)

Riemannian geometry

Polar action

Bott—Samelson ('58), Conlon, Hermann, Palais, Terng, Dadok,
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http://www.ms.u-tokyo.ac.jp/~toshi/pub/78.html
http://www.ms.u-tokyo.ac.jp/~toshi/pub/83.html
http://www.ms.u-tokyo.ac.jp/~toshi/pub/83.html
http://dx.doi.org/10.1007/s00031-007-0057-4

Three geometries

Complex geometry K= (05) Symplectic geometry
Visible action 5 Coisotropic action
K= (2004) Guillemin-Sternberg ('84)

T Huclfleberry—Wurzbacher ('90)

Podesta—

\ /
, \ Sasaki ('09 4
K= (05) \\X — — X, /' Thorbergsson (02)

for linear actions

\ ¥
Riemannian geometry

Polar action

Bott—Samelson ('58), Conlon, Hermann, Palais, Terng, Dadok,
Eschenburg, Heintze, Podesta—Thorbergsson ('03), Kollross ('07), ...
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§5 Making examples of visible actions

Ex20 H=U(@m)x U(n)
D = M(m,n;C)
=  Every H-orbit is preserved by z — z

Proof Letm < n. Set

al 0
S = ol:ai,....ap€eR} C M(m,n;R)

0 am

= Every H-orbit meets S,i.e. H-S =D
= Any H-orbit is of the form H - x Gx € §)

H-x = H-X = H-x
compatibility  x € M(m,n;R)



§5 Making examples of visible actions

Ex. H=UmxUn
D = M(m,n;C)
= Every H-orbit is preserved by z -

In general,

Strongly visible
(i.e. 1o anti-holo s.t. (H - D?)° # @)
= Assumption 1 of Theorem
(i.e. o anti-holo s.t. o preserves generic H-orbits)
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Analysis on co-many orbits

VX H-equiv. holo vector bundle.
YV, — {x}: Fiber

Theorem (Propagation thm of MF property)
Sections

= H™0X, V)
multiplicity-free

oo many orbits
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Analysis on co-many orbits

VX H-equiv. holo vector bundle.
YV, — {x}: Fiber

Theorem (Propagation thm of MF property)
Fiber Sections

me(vx == HNO(Xa(V)
multiplicity-free multiplicity-free

oo many orbits
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Analysis on co-many orbits

VX H-equiv. holo vector bundle.
YV, — {x}: Fiber

Theorem (Propagation thm of MF property)

Fiber Sections
H, ™V, = H™O0X,V)
multiplicity-free ﬂ multiplicity-free
H X

(strongly) visible
Base sp.

oo many orbits
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Classification theory of visible actions

Methods to find visible action
Want to find visible actions systematically

e Structure theory

» geometry of three involutions
e generalized Cartan decomposition

e Make new from old

e make ‘large’ from ‘small’
e make ‘three’ from ‘one’ (triunity)
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Geometry of three involutions

G¢ complex semi-simple Lie gp
o € Aut(Ge) involution & o2 = id

One involution «— Gg . C Gc
real simple Lie group

«— Riemannian symmetric space
classified: Killing—Cartan (1914)
Two involutions «— semisimple symmetric space
classified: M. Berger (1957)



Geometry of three involutions

G¢ complex semi-simple Lie gp
o € Aut(Ge) involution & o2 = id

One involution «—

—>
Two involutions «—

Three involutions  «—
(special case)

Gr C Gc

real simple Lie group
Riemannian symmetric space
classified: Killing—Cartan (1914)
semisimple symmetric space
classified: M. Berger (1957)

visible action  (2004-)
(special case)



G/K Hermitian symm. space

Ex.22 G =SL(2,R)
K =50Q2)
H= (ga‘}l):a>0}
N={(}7): xR}
G/K =2{zeC:|7 < 1}
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Ex.22 G =SL(22,R)
K =S0Q)
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N={(}1):xer]
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G/K Hermitian symm. space

Ex.22 G =SL(2,R)
K =50(?)
H = (8a91):a>0}
N={(}1):xer]
G/K ~{zeC: < 1}

K" G/Kvisible H"YG/K

K-orbits H-orbits



G/K Hermitian symm. space

Ex.22 G =SL(2,R)
K =S0(2)
H= (8a91):a>0}
N={(}1):xer]
G/K ~{zeC: < 1}
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G/K Hermitian symm. space

Ex.22 G =SL(2,R)
K =S0(2)
H = (8a91):a>0}
N={(}1):xer]
G/K ~{z€C:lz < 1}

K™Y G/Kvisible  H"YG/Kvisible N"YG/K

S C

K-orbits H-orbits
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Ex.22 G =SL(2,R)
K =502)
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G/K ~{zeC: < 1}
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G/K Hermitian symm. space

Ex.22 G =SL(2,R)
K =502)
H= (8a91):a>0}
N={(}1):xer]
G/K ~{zeC: < 1}

K™Y G/Kvisible  H"YG/Kvisible  N"G/K visible

SAC

K-orbits H-orbits N-orbits



Visible actions on symmetric spaces

Theorem (Transf. Groups (2007))
G/K  Hermitian symm. sp.

Assume i )
(G,H) symmetric pair

= H " G/K is (strongly) visible
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Visible actions on symmetric spaces

Theorem (Transf. Groups (2007))

G/K  Hermitian symm. sp.
(G,H) symmetric pair

= H" ¥ G/K is (strongly) visible

Assume {

U Propagation theorem

Ex.19 my, 7, highest wt. modules of scalar type
= m, e, is %
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Visible actions on symmetric spaces

Theorem (Transf. Groups (2007))

G/K  Hermitian symm. sp.
(G,H) symmetric pair

= H" ¥ G/K is (strongly) visible

Assume {

J Propagation theorem

Ex.19 my, 7, highest wt. modules of scalar type
= m, e, is %

Ex.20 T highest wt. module of scalar type
(G,H) symmetric pair
= mly is %



http://dx.doi.org/10.1007/s00031-007-0057-4

Visible actions on symmetric spaces

Theorem ( geometry of three involutions ’'07)
G/K  Hermitian symm. sp.

Assume } )
(G,H) any symmetric pair

= H" Y G/K is (strongly) visible



http://www.ms.u-tokyo.ac.jp/~toshi/pub/100.html

Visible actions on symmetric spaces

Theorem ( geometry of three involutions ’'07)
G/K  Hermitian symm. sp.

Assume } )
(G,H) any symmetric pair

= H" Y G/K is (strongly) visible

U Propagation theorem

Thm V, = U(g) ®u) Ca (4 generic) is an algebraic
MF direct sum of irreducible g’-modules if

e nilradical of pg is abelian

e G -oisclosed in Gg/Pr

e (Gg, Gy) is symmetric pair.
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Visible actions on symmetric spaces

Theorem ( geometry of three involutions ’'07)
G/K  Hermitian symm. sp.

Assume } )
(G,H) any symmetric pair

= H" Y G/K is (strongly) visible

U Propagation theorem

Thm V, = U(g) ®u) Ca (4 generic) is an algebraic
MF direct sum of irreducible g’-modules if

e nilradical of pg is abelian

e G -oisclosed in Gg/Pr

e (Gg, Gy) is symmetric pair.

G]’R C Gr D Pr
subgp real reductive real parabolic



http://www.ms.u-tokyo.ac.jp/~toshi/pub/100.html

Finite dimensional case

Also, for finite dimensional case

J Propagation theorem

Eg.23 (Okada, '98, rectangular shaped rep)
gc = gl(n,C)
A=(a, -+ ,a,b,---,b)eZ", a>b
e e

p n-p
71 Iy is MF if




Finite dimensional case

Also, for finite dimensional case

| Propagation theorem

Eg.23 (Okada, '98, rectangular shaped rep)
gc = gl(n,C)
A=(a, -+ ,a,b,---,b)eZ", a>b
—— —
p n-p
) ne is MF if
gl(k,C) +gl(n —k,C) (1 <k<n)
bc = { o(n,C)
sp(5,0) (n : even)




G/K Hermitian symm. space

Ex.22 G =SL(2,R)
K =502)
H= (8a91):a>0}
N={(}1):xer]
G/K ~{zeC: < 1}

K™Y G/Kvisible  H"YG/Kvisible  N"G/K visible

&S ©

K-orbits H-orbits N-orbits



Non-reductive example

Theorem NcG>K

G/K Hermitian symm. of non-cpt. type
Assume )
N max. unipotent subgp.

= NV G/K (strongly) visible

U Propagation theorem

Ex.24 r,: highest wt. module of scalar type
— 7T/1|N is MF
S




Classification theory of visible actions

Methods to find visible action
Want to find visible actions systematically

e Structure theory

e geometry of three involutions (symmetric case)
e generalized Cartan decomposition (non-symmetric case)

e Make new from old

e make ‘large’ from ‘small’
e make ‘three’ from ‘one’ (triunity)



Classification theory of visible actions

Methods to find visible action
Want to find visible actions systematically

e Structure theory

e geometry of three involutions (symmetric case)
* generalized Cartan decomposition (non-symmetric case)

e Make new from old

e make ‘large’ from ‘small’
e make ‘three’ from ‘one’ (triunity)



(Generalized) Cartan involutions

Observation
D=G/K

Suppose we have a decomposition
G=HAK

SetS:=A-0cCcD
H-orbits

&)

= § is a candidate of ‘slice’ for (strongly) visible action



Classification theory of visible actions

Grassmannian U(n)/(U(p) X U(q)) = Gr,(C") (n=p+q)

Ex.(symmetriccase) ni+m=p+qg=n
= U(ny) X U(np) acts on Gr,(C")
in a strongly visible fashion




Classification theory of visible actions

Grassmannian U(n)/(U(p) X U(q)) = Gr,(C") (n=p+q)

Ex.(symmetriccase) ni+m=p+qg=n
= U(ny) X U(np) acts on Gr,(C")
in a strongly visible fashion

Ex.34 (JMSJ 2007)
nm+nt+ny=p+g=n
U(ny) x U(ny) x U(nz) acts on Gr,(C")
in a strongly visible fashion
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Classification theory of visible actions

Grassmannian U(n)/(U(p) X U(q)) = Gr,(C") (n=p+q)

Ex.(symmetriccase) ni+m=p+qg=n
= U(ny) X U(np) acts on Gr,(C")
in a strongly visible fashion

Ex.34 (JMSJ 2007)
nm+nt+ny=p+g=n
U(ny) x U(ny) x U(nz) acts on Gr,(C")
in a strongly visible fashion
— min(n; + L,y + 1,n3+1,p,q) <2

For type B, C, D and exceptional groups (Y. Tanaka, Tohoku J.
(2013), J. Math. Soc. Japan (2013), B. Austrian Math Soc. (2013),
J. Algebra (2014))


http://www.ms.u-tokyo.ac.jp/~toshi/pub/101.html

|| Propagation theorem

MF property of the following
e GL, X GL,”>S(C™) Ex.16
e GL,_; X GL," ¥ S(C™) Ex.18 (Kac)
e the Stembridge listof 7, ® 1, Ex.11
e GL, | (GL,xGL,) Ex.12
e GL, | (GL,, XxGL,, xGL,,) Ex.13
e co-dimensional versions
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Classification theory of visible actions

Methods to find visible action
Want to find visible actions systematically

e Structure theory

e geometry of three involutions
e generalized Cartan decomposition

e Make new from old

» make ‘large’ from ‘small’
e make ‘three’ from ‘one’ (triunity)
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Make ‘large’ from ‘small’

Idea: induced action preserving visibility |
—

HcG

H"YY visible w.rt. §
¢ < certain assumption
G VX :=GxpY visiblew.rt. § = [{e},S]

Ex. H=U(p)xU(g, Y=Mp,q:C)(p=q)
G=U(p+q), X = T*(G/H) = T*(Gr,(CP*4))




Make ‘large’ from ‘small’

Idea: induced action preserving visibility |
—

HcG

H"YY visible w.rt. S
¢ < certain assumption
G VX :=GxpY visiblew.rt. § = [{e},S]

Ex. H=U(p)xU(g), Y=Mp.g:C)(p=q)
G=Up+aq), X = T*(G/H) = T*(Gry(CP*))

~ nilpotent orbit for GL(p + ¢,C)
momentum map ¢, partition (29, 179) is spherical (Panyushev)
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Methods to find visible action
Want to find visible actions systematically
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e generalized Cartan decomposition

e Make new from old

e make ‘large’ from ‘small’
e make ‘three’ from ‘one’ (triunity)
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Examples of (strongly) visible actions

Ex.22 T’ ¥C o Ris visible. |

U

Ex.23 T" “C">R"is visible. |

U

Ex.24 T""“P"!C>P"'Ris visible. |

Ex25 U()xUm- 1)”8,1 (full flag variety) is visible. I

| Ex.26 U(n)”“P"!Cx B, is visible.
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Triunity of visible actions

L " U()x U(n - 1)
2 SHIND)
G = U(n)
U Y _
G” O(n) o(g) =g
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S SIS
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Geometry
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Il I Il
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Triunity of visible actions

H L ™ Ul)yxUmn-1)
SR SR
G = U(n)
U U
G” O(n) o(g =g
ngmetry []P"“R meets every T"-orbit on ]P”“C}
(visible actions) m I I
le7icrnt H G/L
Group G=HGL)= H " G/L
)

Group z L™~G/H



Triunity of visible actions

H L ™ Ul)yxUmn-1)
SPRe SR
G = Un)
U U
G O(n) o(g) =2
ngmetry [P”“R meets every T"-orbit on P”“C}
(visible actions) m I I
le7icrnt H G/L
Group G=HGL)= H " G/L
)
oo (GZI6H) = L7 G
)

Group ((G x G) = diag(G)(G” x G")(H x L)) = diag.




Examples of visible actions

Ex.22 T’ ¥C o Ris visible. |

U

Ex.23 T" “C">R"is visible. |

U

Ex.24 T""“P"!C>P"'Ris visible. |

Ex25 U()xUm- 1)”8,1 (full flag variety) is visible. I

| Ex.26 U(n)”“P"!Cx B, is visible.




|l Propagation theorem
Three kinds of MF results:
e (Taylor series) T"™~O(C") Ex.2
e (GL, | GL,_) Restriction n|g;,, , Ex.14
e (Pieri) r® SK(C") Ex.9



®-product rep.

A=(a,---,a,b,--- ,b)eZ", a=b
———— e
14 q

Ex.11 (Stembridge 2001, K—2002)
TR, is m as a GL,(C)-module if
1) min(a — b, p,q) = 1 (and v is any),
or
2) min(a — b, p,q) = 2 and
vlsoftheformv—(x yz D) (x2y>2)

n

*

or
3) min(a — b, p,q) >3, * &
min(x -y, y —z,n1,n2,n3) = 1.



http://www.ms.u-tokyo.ac.jp/~toshi/pub/78.html

Restriction (GL, | G,, X GL,, X GL,,)

Ex.12 (GL, | (GL, XGLy)) n=p+gq
GLn | is MF
Xy ey XYy ey VoZs oo, DIGLpXGLy 1S MIT
n ny n3
if min(p,q) <2 or
if min(ny,n2,n3,x-y,y—-2) <1
(Kostant n3 = 0; Krattenthaler 1998)

Ex.13 (GL, | (GLy, X GLy, X GLy,)) ([3])
n=ny+n+nj

GL, )
d is MF
@,...,ab,..., b)lGLn]XGanxGLn3

—— ——

P q
if min(nq,n2,n3) <1 or

if min(p, g,a—b) <2
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Analysis on co-many orbits

VX H-equiv. holo vector bundle.
V.- {x}: Fiber

Theorem (Propagation thm of MF property)
Sections

= H™0X, V)
multiplicity-free

oo many orbits
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Analysis on co-many orbits

VX H-equiv. holo vector bundle.
V.- {x}: Fiber

Theorem (Propagation thm of MF property)
Fiber Sections

H YV, = H™O0X,V)
multiplicity-free multiplicity-free

oo many orbits



http://www.ms.u-tokyo.ac.jp/~toshi/pub/99.html

VX

Analysis on co-many orbits

H-equiv. holo vector bundle.

V.- {x}: Fiber

Theorem (Propagation thm of MF property)

Fiber Sections
me(vx == HNO(Xa(V)
multiplicity-free ﬂ multiplicity-free
HX

(strongly) visible

Base sp.
oo many orbits
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Heuristic idea of Theorem

Setting V — D: G-equiv. holomorphic vector bundle

~ Ry :=Endg (Vy) C Endc(Vy)
' subring

R =] R c  End(V)
xeD

Assumption G~ D strongly visible w.r.t. S (C D) |

G™YoMD,V) o
Hilbert sp.

Optimistic Statement I'(S,Rls) » Endg(H) |

Ex. S ={pt}, G," >V, irred. = G VH irred.
Ex. G."~V, MF =GVH MF
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Reproducing kernel

Prototype (Scalar valued) holomorphic functions

ct D D  complex domain
H c OW)
Hilbert space {holomorphic functions on D}

Definition (reproducing kernel)
Let {¢;} be an orthonormal basis of H.

Ku(z,w) = ) eu@eiw)
l

is independent of the choice of the basis.
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Example 1 (weighted Bergman space)
D:={zeC:|7 <1}

Fix 4 > 1.
H:={f€OD): |lfllx < oo}

Al == (f [f(x+ i1 = x* - yz)ﬂ‘zdxa’y)2

D
Lo AT -1)
== 5
(, 7" I“(/l+l)l
o A+
Ky(z,w) = ; AT 1)zw
A-1

=—-zm™"
T
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Examples of reproducing kernels
{ej} c H < OD)

orthonormal basis Hilbert space

Ku(z,w) = " @i@piw)
I

Example 2 (Fock space)
D=C
F:={f€0©) :|lfllF < oo}

£l o= ( fc fCx+ iy>|2e—x2—y2dxdy)2

@, 2" = nl! S

o) l_l

Krzw =) =

nl!
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Properties of reproducing kernel
O(D)

b Kz = Z]] P (W)

Hilbert space
e Kg/(z, w) is holomorphic in z; anti-holomorphic in w

e Kg/(z,w) recovers the Hilbert space H
(i.e. subspace of O(D) & inner product on H)

Corollary Suppose a group G acts on D
as biholomorphic transformations.
Then G acts on H as a unitary representation
if and only if
Kqi(gz, gw) = Kgr(z, W) vg €G,"z,"weD.

(%)

(x) & Kn(gz,87) = Kx(z,2) 'g€G,'zeD
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H c O(D)

Hilbert space

Assume that for each x € D,
ev,: H — C iscontinuous.
w

w

fo= f
evy : C — H adjoint
Kg((z,w) = ev,, o ev;

= i)W
J
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Operator-valued reproducing kernel

YV — D : holomorphic vector bundle
—  O(D,V)

Hilbert space
Assume that for each x € D,

ev,: H — <V, iscontinuous
w

w
o= W

evy: Vi — H adjoint

Ky((x,y) := evy o evy € Home(Vy, Vy)
operator-valued reproducing kernel
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Operator-valued reproducing kernel

v:]_[fvx—m
xeD

Hom(V*,V) = Hom(V:,V,) — DX D
by y
xy

H O(D,(V)I

Hilbert space

§ onetoone

positive definite operator-valued reproducing kernel

K¢ € O(D x D, Hom(V*,V)) |

H: unitarity, irreducibility, MF, ... <= Properties on K¢
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Thm (K="08) n|y is multiplicity-free if
m: highest wt. rep. of scalar type Fact (E. Cartan 29, I. M. Gelfand '50) I

(G, H): semisimple symmetric pair L*(G/K) is multiplicity-free
(Hua, Kostant, Schmid, K- : explicit formula)

Multiplicity-free space Stembridge’s list (2001) of
Kac '80, Benson—Ratcliff 91 multiplicity-free ® product of
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. visible action .
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‘Visible’ approach to multiplicity-free theorems

Thm (K="08) n|y is multiplicity-free if

m: highest wt. rep. of scalar type Fact (E. Cartan 29, I. M. Gelfand '50)
(G, H): semisimple symmetric pair L*(G/K) is multiplicity-free
(Hua, Kostant, Schmid, K- : explicit formula)
Hermitian symm sp. (K="07) \ /" Crown domain
Vector sp. (Sasaki '09) ./ N\, Grassmann mfd. (K="07)
Multiplicity-free space Stembridge’s list (2001) of
Kac '80, Benson—Ratcliff 91 multiplicity-free ® product of
Leahy '98 finite dim’l reps (GL,,)

. visible action .
filber ———  sections


http://dx.doi.org/10.1007/978-0-8176-4646-2_3
http://dx.doi.org/10.1007/s00031-007-0057-4
http://uk.arxiv.org/abs/math.DG/0607004
http://dx.doi.org/10.1093/imrn/rnp060
http://dx.doi.org/10.2969/jmsj/05930669

‘Visible’ approach

To give a simple principle that explains the property MF
for both finite and infinite dimensional reps

MF (multiplicity-free) theorem

Propagation of MF property
from fiber to sections

| Visible actions on complex mfds

Analysis of group action with infinitely many orbits
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Thank you !!

(Short story by Soseki, 1908)
“He uses the hammer and chisel without any forethought, and he can make
the eyebrows and nose as live.”
“Ah, they are not made by hammer and chisel. The eyebrows and nose are
buried inside the tree. It is exactly the same as digging a rock out of the earth —
there is no way to mistake.”




