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. ECTURE 1: INTRODUCTION TO LS CATEGORY

What is Lusternik-Schnirelmann Category?

Goal of Algebraic Topology and Differential
Geometry:

Define invariants (algebraic, topological,
geometric) which describe the complexity of a
space.

LS category Is such an invariant originally
defined in terms of open (or closed) covers
of a space.



Motivations of Lusternik and Schnirelmann:

* Relate open covers and LS category to the
existence of critical points for smooth functions on
manifolds. This is a kind of “Morse Theory” in the
degenerate case,

* Prove that the 2-sphere (with any metric) has at
least 3 closed geodesics.

LS category has developed into an invariant that
IS useful not only in critical point theory, but in
topology, differential and symplectic geometry
and, most recently, robotics.



e The LS category of a space X, denoted cat(X), is
the least integer n so that X may be covered by open sets
U1,...,Up41 having the property that each Uj; is con-
tractible to a point in X.

Example: The sphere is the union of two n-cells.




Theorem. LS category is a homotopy invariant.

Two maps f, g. X — Y are homotopic, denoted f ~ g,
if thereisamap H: X X I — Y with

H(z,0) = f(z) and H(z,1) = g(x).

Maps(X,Y)/~ ¥ [x,v].

Two spaces X and Y are homotopy equivalent, denoted

X ~ Y, ifthereare maps f: X - Y andg: Y — X
with

fog:idy anngfﬁidX.

So, X ~Y = cat(X) = cat(Y) .



(Algebraic) Homotopy Invariants:

e Homotopy Groups: 71 (X) = [S¥, X], the set of (based)
homotopy classes of maps Sk — X. A space X is n-
connected if m,(X) =0fork=1,...,n.

o 11 (X) is called the fundamental group and it is the only

possibly non-abelian homotopy group.

Example: 7;(S™) = 0 for j < n and mp(S™) = Z.
(m;(S™), j > nis the subject of a future lecture by someone
who is not me!)

Example: The n-torus 7" = S1 x ... x St (n-times)
has w1 (T") = ®YZ and 7;(T") = O for j > 1.



e The Cohomology Algebra H*( X ;F).

Example: H*(S™;7Z) = A(x), an exterior algebra on

one generator in degree n.

Example: H*(T";Z) = N(x1,...,Zn), an exterior al-

gebra on n generators all in degree one.
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Example: H*(RP";Z>) = (anF1y a truncated poly
nomial algebra on a degree one generator.
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Example: H*(CP";Z) =

a truncated polyno-
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mial algebra on a degree 2 generator.



The Basic Estimate for LS category Is given by
dim(M)
mn

where, In the second inequality, M is (n-1)-
connected (i.e. m;(M) = 0 forall j <n — 1).

cup(M) < cat(M) <

Proof of First Inequality.
Recall that cup(X) = k if there are z; € H*(X;R),

r=1,...,kwithxy w20« --- v 2. =0 and k is
the largest such integer.
Also recall that cup product has the property:

H*(X,A) x H*(X,B) > H*(X, AU B)

for any coefficients.



Now suppose cat(X) = n with categorical cover
Ui,...,Upy1 and, for each ¢« = 1,...,n 4+ 1,
consider the long exact relative cohomology
sequence

.= HNU) —» H3(X,U;) — H(X) — H5(U;)) — ... .

Since U; contracts to a point in X, the maps
H*(X) — H*(U;) are all zero. Therefore, for
each z; € H*(X), there exists a pre-image z; €
H*(X,U;).



Take any (n+1) classes z1,...,z,41 in H*(X)
with corresponding z; € H*(X,U;).

Then, taking cup products, we get

~

mlv...v:’ﬁn+1l—>$1v...v$n+l.

ButZy v - - v Z,41 € H*(X,U;U;) = H (X, X) =
0, so we also get

x1~ -~ xpy1 =0,

Since this is true for all x; € H*(X), we have

cup(X) <n = cat(X). [ ]



Examples:
(0.) cat(S™) =1 (1 < cat(S™) <n/n=1)

(1.) Let 7" = St x --- x S1 (n-times) be the n-torus.
Then cat(T™) = n, since H*(T"™; Z) = N(x1,...,Zn).

% (2.) cat(RP™) = n, since H*(RP™; Zo) = éi[ﬁ])_
ny — - * n. _ Z[372]
(3.) cat(CP™) = n, since H*(CP";7Z) = (et 1)

Let’s actually prove a theorem.



Proposition. The following are equivalent:

(1.) If S™is covered by closed (or open) sets C'1, ..., C}, 4-1,
then at least one C’; contains antipodal points.

(2.) Every continuous map f: S™ — R"™ takes some pair
of antipodal points to the same value. This is the famous

Borsuk-Ulam Theorem.

Theorem. If S™ is covered by closed (or open) sets C'q, ..., Cp4 1,

then at least one C; contains antipodal points.

Proof. Assume no C’; contains antipodal points. Take
S™ C B"T1and let A; € B™T1 be the closed set defined
by connecting radial segments from the origin to each point
of C;. Note that A; contracts to the origin.



RP*T1 = Bntl/ o where ~ identifies
points on the boundary S™ with their
antipodes. Note that A; — Rpnt1

by the hypothesis.

Also, A; contracts to a point in RP"T1 a5 well since there

are no identifications on A;.

Since RP™ 11 is covered by A1, ... , Ap41, then

cat(RP"T1) < n.
This is a contradiction since cat(RP*T1) =n + 1.



The Lusternik-Schnirelmann Critical Point Theorem

Theorem. Let M be a smooth compact manifold and let
Crit(M ) denote the minimum number of critical points for

any smooth function on M. Then

1+ cat(M) < Crit(M).
Theorem. (F. Takens)

Crit(M) <14 dim(M).
Basic Critical Point Estimate.

14 cat(M) < Crit(M) <1+ dim(M).



Example. 52

The height function on the sphere is a function
with 2 critical points, so we have

2 =1+ cat(S?) = Crit(S?) < 1 4 dim(S?) = 3.
Theorem. If Crit(M™) = 2, then M =} ,me0 S™.

This looks simple, but BEWARE!
Corollary. The validity of the equality

Crit(S) = cat(S) + 1

for homotopy spheres S is equivalent to the Poincaré conjec-

ture.



Next time we will look at the critical point
theorem in the context of symplectic geometry
and a conjecture of V. Arnold.



