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The two extremely opposite but hidden-related
achievements of Euler: rigid body and ideal fluid.
And our unifying “go between”: Affinely rigid body

and affine invariance in physics
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Euler equations for the rigid body
without translational motion of the centre of mass.

Configuration space — orthogonal, orientation-preserving matrices:

Q = SO(3,R) =
{
ϕ ∈ GL(3,R) : ϕTϕ = I, detϕ = +1

}
.

Motion — curves in Q:
R 3 t 7→ ϕ(t) ∈ Q.

Angular velocities — non-holonomic ones:
• spatial:

Ω =
dϕ

dt
ϕ−1 = ϕΩ̂ϕ−1 = −ΩT ,

• co-moving:

Ω̂ = ϕ−1dϕ

dt
= ϕ−1Ωϕ = −Ω̂T .

In three dimensions there is an isomorphism between skew-symmetric second-order tensors and axial
vectors:

Ω =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 , Ω̂ =

 0 −Ω̂3 Ω̂2

Ω̂3 0 −Ω̂1

−Ω̂2 Ω̂1 0

 , Ωi = ϕiAΩ̂A.

Kinetic energy of rotations:

T =
3∑

A=1

IA
2

(
Ω̂A
)2

=
1

2
IABΩ̂AΩ̂B, IA, IAB − constant.
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For any U ∈ SO(3,R) the transformation of left translations: ϕ 7→ Uϕ preserves Ω̂ and T — left-invariant
kinetic energy. Right-invariant — only in the case of spherical top: I1 = I2 = I3 = I.
Non-geodetic equations of motion:

I1
dΩ̂1

dt
= (I2 − I3) Ω̂2Ω̂3 + N̂1,

I2
dΩ̂2

dt
= (I3 − I1) Ω̂3Ω̂1 + N̂2,

I3
dΩ̂3

dt
= (I1 − I2) Ω̂1Ω̂2 + N̂3,

where N̂a — co-moving component of torque (moment of forces), N̂ = ϕ−1N .
Ω̂ — autonomous in geodetic case: N̂ = 0, N = 0.
Geodetic equations — left-invariant:

ϕ 7→ Uϕ.

Co-moving and laboratory spin:

Σ̂A =
∂T

∂Ω̂A
= IAΩA = IABΩB, Σa = Σ̂B

(
ϕ−1

)B
a.

Expression of the kinetic energy:

T =
3∑

A=1

1

2IA
Σ̂2
A =

1

2
ĨABΣ̂AΣ̂B.

Poisson brackets:

{Σa,Σb} = εab
cΣc, {Σ̂A, Σ̂B} = −εABCΣ̂C , {Σa, Σ̂B} = 0.
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Euler equations in spin terms:

dΣ̂1

dt
=

(
1

I3

− 1

I2

)
Σ̂2Σ̂3 + N̂1,

dΣ̂2

dt
=

(
1

I1

− 1

I3

)
Σ̂3Σ̂1 + N̂2,

dΣ̂3

dt
=

(
1

I2

− 1

I1

)
Σ̂1Σ̂2 + N̂3.

In doubly-invariant (spherical) rigid body:

dΣ̂a

dt
= N̂a,

and in general:
dΣa

dt
= Na,

but look at the difference between the general Σa-spin balance and the balance for Σ̂a, dependent on Ia-s.
Geodetic motions of the isotropic rigid body (I1 = I2 = I3) are given by:

ϕ(t) = exp(tω)ϕ(0),

where ω — arbitrary skew-symmetric. In the general anisotropic case such solutions do exist only as
rotations about the spatially non-moving main axes of inertia. They are Lapunov-stable for rotations
about the main axes with extremal values of Ia.
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What is the relationship with the hydrodynamics
of the ideal incompressible fluid?

%
dv

dt
= %

(
∂v

∂t
+ (v · ∇) v

)
= −∇p+ %g.

Iso-entropic motion:

ds

dt
=
∂s

∂t
+ v grad s = 0,

∂ (%s)

∂t
+ div (%sv) = 0,

∂

∂t
%vi = −∂Πik

∂xk
, Πik = pgik + %vivj,

< v1, v2 >=

∫
D

v1 · v2dx − scalar product,

div v = 0 in D (incompressibility), v — tangent to the boundary ∂D (D — region occupied by fluid).
Kinetic energy:

T =
%

2
< v, v >=

%

2

∫
D

gijv
ivjdx

(dx — Riemannian volume).
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• Time instant t, configuration: gt ∈ SDiff D.

• Time instant t+ τ , configuration: exp (vτ) gt (τ — small).

Velocity field v obtained from ġ tangent at g to the group SDiff D under the right action.
Attention! SDiff D is not a Lie group!

Our idea: To admit deformations, but
finite-dimensional. Affine philosophy
of Thales of Miletus. GAff-invariance.

Introduction: systems on Lie groups in general.
G — a Lie group, usually linear, e.g.,
G ⊂ GL(N,R), G ⊂ GL(N,C) (but real, e.g., U(n))
G′ ⊂ L(n,R) = TeGL(n,R) or G′ ⊂ L(n,C) = TeGL(n,C) — Lie algebra,

q
(
t1, . . . , tk

)
= exp

(
tkEk

)
, [Ek, Ej] = Cm

kjEm

G′∗ — Lie co-algebra.
Typically:

G′∗ ' G′, < f, x >= Tr(fx).

Motion:
R 3 t 7→ q(t) ∈ G.
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Lie-algebraic velocities:

Ω(t) = q̇(t)q(t)−1, Ω̂ = q(t)−1q̇(t),

Ω(t) = Adq(t)Ω̂(t), Adq(x) = qxq−1.

In terms of dual bases {. . . , Ea, . . .}, {. . . , Ea, . . .} in G′ and G′∗:

Ω = Ωa(t)Ea, Ω̂ = Ω̂a(t)Ea, Ωa(t) =
(
Adq(t)

)a
bΩ̂

b(t).

Quasi-velocities Ωa, Ω̂a — non-holonomic if G — non-Abelian.
γ ∈ G′∗ ⊗G′∗ — (pseudo-)Euclidean metric in G′:
Left-invariant kinetic energies on G:

T =
1

2
γabΩ̂

aΩ̂b =
1

2
γ
(

Ω̂, Ω̂
)
.

Tangent and cotangent bundles are trivial,

TG = G×G′, T ∗G = G×G′∗.

Cotangent language — phase spaces,

Σ = ΣaE
a, Σ̂ = Σ̂aE

a.

Trivialization:
Σa = Σa

i(q)pi, Σ̂a = Σ̂a
i(q)pi,

ΣaΩ
a = Σ̂aΩ̂

a = piq̇
i.
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Transformation properties under group translations:

• left:
Lg : x 7→ gx,

Ω 7→ gΩg−1 = AdgΩ, Ω̂ 7→ Ω̂,

Σ 7→ gΣg−1 = Ad∗−1
g Σ, Σ̂ 7→ Σ̂,

• right:
Rg : x 7→ xg,

Ω 7→ Ω, Ω̂ 7→ g−1Ω̂g = Ad−1
g Ω̂,

Σ 7→ Σ, Σ̂ 7→ g−1Σ̂g = Ad∗gΣ̂.

Poisson brackets:

{Σi,Σj} = Ck
ijΣk, {Σ̂i, Σ̂j} = −Ck

ijΣ̂k, {Σi, Σ̂j} = 0,

{Σa, f(q)} = −Σa
i(q)

∂f

∂qi
, {Σ̂a, f(q)} = −Σ̂a

i(q)
∂f

∂qi
.

The others do vanish.
Geometrically:

• Σi — Hamiltonian generator of left regular translations (momentum mappings of LG),

• Σ̂i — Hamiltonian generator of right regular translations (momentum mappings of RG).
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Non-holonomic representation of Legendre transformation:

Σa =
∂T

∂Ωa
, Σ̂a =

∂T

∂Ω̂a
.

Left-invariant kinetic energy:

T =
1

2
γ̃abΣ̂aΣ̂b.

Right-invariant kinetic energy:

T =
1

2
γ̃abΣaΣb,

where
γ̃acγcb = δab.

Poisson bracket form of equations of motion:

df

dt
= {f,H}, e.g., H = T + V(q).

Euler equations for left-invariant models:

dΣ̂a

dt
= −γ̃cdCb

acΣ̂dΣ̂b + N̂a,

e.g.,

N̂a = Σ̂a
i(q)

∂V
∂qi

.
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In Ω̂-terms:

γab
dΩ̂b

dt
= −γbdCb

acΩ̂
cΩ̂d + N̂a

or in mixed terms:
dΣ̂a

dt
= −Cb

acΩ̂
cΣ̂b + N̂a.

In geodetic case, N̂a = 0, equations are autonomously solvable with respect to Σ̂ or Ω̂.
Then the evolution t 7→ q(t) may be found by solving the non-autonomous system:

dq

dt
= q(t)Ω̂.

In geodetic models Σa are constants of motion:

dΣa

dt
= 0,

but in non-geodetic case:
dΣa

dt
= Na = {Σa, V } = Σa

i∂V

∂qi
.

For the right-invariant models of

T =
1

2
γabΩ

aΩb

equations of motion have the form:

dΣa

dt
= γ̃cdCb

acΣdΣb +Na.
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Doubly-invariant models of T :
γab = Ck

laC
l
kb

— Killing metric tensor on G′.
C is then totally γ-skew-symmetric

Cijk = Ci
abγ̃

aj γ̃bk = −Cjik = −Ckji = −Cikj.

In the geodetic case the general solution is then exponential:

q(t) = exp(Ωt)q(0) = q(0) exp(Ω̂t),

Ω̂ = q(0)−1Ωq(0) = Ad−1
q(0)Ω,

Ω, Ω̂ — arbitrary.
In the case of one-side symmetry such solutions, so-called stationary ones do exist only for some special
values of Ω, Ω̂.
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We are somewhere between — deformations, but
finite dimensions. Affinely-rigid body,
homogeneously deformable gyroscope.

G = GL(3,R), more convenient to use GL(n,R) and later on to specify n = 3, 2.
Better — homogeneous space. (N,U,→, η) — material space. (M,V,→, g) — physical space.

Q = M × LI(U, V ),

↑ ↑
translational/internal motion

where LI(U, V ) are linear isomorphisms of U onto V .
If M = N = U = V = Rn,

Q = GL(n,R)×s Rn, Φ ∈ Q : Φ(t, a)i = ϕiK(t)aK + xi(t)

Inertial objects: µ — mass distribution measure in N , it is positive and constant,

m =

∫
N

dµ(a) − total mass,

JK =

∫
N

aKdµ(a) = 0 − aK vanish at the material centre of mass,

JKL =

∫
N

aKaLdµ(a) − inertial tensor, constant

(Lagrangian) mass quadrupole.
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Kinetic energy obtained in a usual way (summation over material points):

T = Ttr + Tint =
m

2
gij
dxi

dt

dxj

dt
+

1

2
gij
dϕiA
dt

dϕjB
dt

JAB

Legendre transformation:

pi = mgij
dxj

dt
, pAi = gij

dϕjB
dt

JBA

Kinetic part of the Hamiltonian:

T =
1

2m
gijpipj +

1

2
gijpAip

B
jJ̃AB,

where J̃ACJCB = δA
B.

Cauchy deformation tensor:

Cij = ηAB
(
ϕ−1

)A
i

(
ϕ−1

)B
j, Cij = ϕiAϕ

j
Bη

AB.

Green deformation tensor:

GAB = gijϕ
i
Aϕ

j
B, GAB =

(
ϕ−1

)A
i

(
ϕ−1

)B
jg
ij.
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Non-doubtful range of applications of models.

L = T − V (ϕ), H = T + V (ϕ)

• macroscopic elasticity when the length of excited waves is comparable with the linear size of the
body,

• micromorphic continua with internal degrees of freedom ruled by linear group [Eringen],

• molecular vibrations, molecular crystals,

• nuclear dynamics (collective droplet model of the atomic nuclei),

• astrophysical objects, vibrating stars, shape of Earth,

• integrable one-dimensional lattices and n-dimensional affinely-rigid body.

Drawbacks:

1. Geodetic models (without potentials — nonphysical, nonphysical - no vibrations, non-limited expan-
sion and contraction)

2. No dynamical affine invariance — only kinematical one. Advantages of the group structure lost.
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What would be affine models?
Do exist formally? Are realistic?

Canonical objects, transformations, generators

pi, p
A
i conjugate to xi, ϕiA

Legendre:

pi =
∂T

∂vi
= mgijv

j, pAi =
∂T

∂ϕ̇iA
= gijϕ̇

j
BJ

BA

Lie-algebraic objects:
Ω = ϕ̇ϕ−1, Ωi

j = ϕ̇iAϕ
−1A

j,

Ω̂ = ϕ−1ϕ̇, Ω̂A
B = ϕ−1A

iϕ̇
i
B.

Affine velocities. Eringen’s "gyration".
Their g- and η-skew-symmetric parts — angular velocity. They are always skew-symmetric in rigid motion:

ωij = Ωi
j − Ωj

i, ω̂AB = Ω̂A
B − Ω̂B

A

Their conjugate affine spins — Hamiltonian generators of

ϕ 7→ Aϕ ϕ 7→ ϕB

A ∈ GL(V ) B ∈ GL(U)

Σ = ϕπ Σ̂ = πϕ
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Spin and vorticity:
Sij = Σi

j − Σj
i, V A

B = Σ̂A
B − Σ̂B

A

(generators of spatial and material rotations).
Transformation rules:

A : Σ 7→ AΣA−1, Σ̂ 7→ Σ̂

B : Σ 7→ Σ, Σ̂ 7→ B−1Σ̂B

A : Ω 7→ AΩA−1, Ω̂ 7→ Ω̂

B : Ω 7→ Ω, Ω̂ 7→ B−1Ω̂B

Co-moving translational objects:
v̂A = ϕ−1A

iv
i, p̂A = piϕ

i
A

Poisson brackets:

{Σi
j,Σ

k
l} = δilΣ

k
j − δkjΣi

l,

{Σ̂A
B, Σ̂

C
D} = δCBΣ̂A

D − δADΣ̂C
B,

{Σi
j, Σ̂

A
B} = 0,

{Σ̂A
B, p̂C} = δAC p̂B,

{I ij, pk} = {Λi
j, pk} = δikpj,

where
I(O)ij := Λ(O)ij + Σi

j, Λ(O)ij := xipj

and xi are Cartesian coordinates of the O-radius vector of the current position of the centre of mass in
M .
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If F is any function depending only on the configurations variables, then, obviously,

{F,Σi
j} = ϕiA

∂F

∂ϕjA
,

{F,Λi
j} = xi

∂F

∂xj
,

{F, Σ̂A
B} = ϕiB

∂F

∂ϕiA
.

Canonical affine spin:

Kij =

∫ (
yi − xi

) (
ẏj − ẋj

)
dµϕ(y) =

∫ (
yi − xi

)
ϕ̇jKa

Kdµ(a)

= ϕiA
dϕjB
dt

JAB

Dipole of distribution of linear momentum.
Affine moment of forces:

N ij =

∫ (
yi − xi

)
F j (y) dµ(y),

where F j is the force distribution.
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Equations of motion:

m
d2xi

dt2
= F i = −gij dV

dxj
,

(total force) (potential case)

ϕiA
d2ϕjB
dt2

JAB = N ij = −ϕiA
∂V

∂ϕkA
gkj.

Balance form:

dki

dt
= F i,

dKij

dt
=

dϕiA
dt

dϕjB
dt

JAB +N ij,

where ki = gijpj and ki = ϕiAk̂
A.

By the way: Why it is so essential this form of equations of motion?
The point is that the expression for the power of forces has the form:

P = Ptr + Pint = Fi v
i +N ijΩji.

The same concerns, of course, reaction forces.
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Therefore, in the case of rigid motion, when Ωi
j is g-antisymmetric, the effective system of rigid-body

equations of motion is a g-antisymmetric part of equations of motion of affinely-rigid body,

dSij

dt
=

d

dt

(
Kij −Kji

)
= N ij −N ji = N ij,

i.e.,

ϕiA
d2ϕjB
dt2

− ϕjA
d2ϕiB
dt2

= N ij −N ji = N ij.

Similarly, in the case of incompressible affine motion, equations of motion have the form of the trace-less
part of original equations of motion:

ϕiA
d2ϕjB
dt2

JAB − 1

n
gab ϕ

a
A
d2ϕbB
dt2

JABgij = N ij − 1

n
gabN

ab gij.

And finally, in the case of spatially rotation-less motion we must take:

ϕiA
d2ϕjB
dt2

JAB + ϕjA
d2ϕiB
dt2

JAB = N ij +N ji.

Those are NON-HOLONOMIC CONSTRAINTS:

Ωi
j − Ωj

i = Ωi
j − gjk gil Ωk

l = 0.

No really Euler form — the non-dynamical term does not vanish ever — affine symmetry of degrees of
freedom broken to the orthogonal one:

dϕiA
dt

dϕjB
dt

JAB = 2
∂Tint

∂gij
,

dKij

dt
= 2

∂Tint

∂gij
+N ij.
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Similarly:

dk̂A

dt
= −k̂BJ̃BCK̂CA + F̂A,

dK̂AB

dt
= −K̂AC J̃CDK̂

DB + N̂AB,

or, using non-holonomic velocities,

m
dv̂A

dt
= −mΩ̂A

B v̂
B + F̂A,

JAC
dΩ̂B

C

dt
= −Ω̂B

DΩ̂D
CJ

CA + N̂AB.

What would be affine models?
• Left affinely invariant:

Tint =
1

2
LBADCΩ̂A

BΩ̂C
D,

dΣi
j

dt
= N i

j

• Right affinely invariant:

Tint =
1

2
Rj

i
l
kΩ

i
jΩ

k
l,

dΣ̂A
B

dt
= N̂A

B

• Doubly affinely invariant:

Tint =
A

2
Tr
(
Ω2
)

+
B

2
(Tr Ω)2 =

A

2
Tr
(

Ω̂2
)

+
B

2

(
Tr Ω̂

)2
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Comment to d’Alembert:
Tint =

1

2
AKiLj

dϕiK
dt

dϕjL
dt

,

where
AKiLj = gijJ

KL.

Translational motion is described in both cases by the following kinetic energies:

Ttr =
m

2
Cij

dxi

dt

dxj

dt
=
m

2
ηAB v̂

Av̂B

or
Ttr =

m

2
gij
dxi

dt

dxj

dt
=
m

2
GAB v̂

Av̂B

Equations of motion:

• L-affine invariant:
dpi
dt

= Qi,
dΣi

j

dt
= − 1

m
C̃ikpkpj +Qi

j,

where
Qi = −∂V

∂xi
, Qi

j = −ϕiA
∂V

∂ϕjA
,

or in the other form:
dpi
dt

= Qi,
dI(O)ij
dt

= Qtot(O)ij,

where

I(O)ij = Λ(O)ij + Σi
j = xipj + Σi

j,

Qtot(O)ij = Qtr(O)ij +Qi
j = xiQj +Qi

j.
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• R-affine invariant:
dpi
dt

= Qi,
dΣ̂A

B

dt
= Q̂A

B,

where
Q̂A

B = − ∂V

∂ϕiA
ϕiB =

(
ϕ−1

)A
iQ

i
jϕ

j
B,

• Left affine, right metrical:

Tint =
I

2
ηKLΩ̂K

M Ω̂L
Nη

MN +
A

2
Ω̂K

LΩ̂L
K +

B

2
Ω̂K

KΩ̂L
L

(drunk missile, effective mass), because

pi = Cij(ϕ)
dxj

dt
6= gij

dxj

dt
.

• Right affine, left metrical:

Tint =
I

2
gikΩ

i
jΩ

k
lg
jl +

A

2
Ωi

jΩ
j
i +

B

2
Ωi

iΩ
j
j

(Arnold discretized?).
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For the doubly (left- and right-) affinely invariant models of internal dynamics the general solution is
given by the matrix exponent:

ϕ(t) = exp (Et)ϕ0 = ϕ0 exp
(
Êt
)
.

Here ϕ0 is an arbitrary initial configuration and E, Ê are arbitrary values of affine velocity respectively
in the spatial and co-moving representation.
Situation becomes a little more complicated when there is only one-side affine invariance and one-side me-
trical invariance. Namely, just like in the case of metrically-rigid body there appear then some stationarity
conditions.
So, let us assume geodetic left-affinely invariant and right-metrically invariant kinetic energy and look for
solutions

ϕ(t) = ϕ0 exp(Ft).

It turns out that it is a solution for arbitrary ϕ0 but only for the η-normal F ,[
F, F η T

]
= FF η T − F η TF = 0,

where (
F η T

)A
B = ηBD F

D
C η

CA.

This holds in particular when, e.g.,

F η T = −F, F η T = F.
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And conversely, let us assume geodetic left-metrically and right-affinely invariant model of the kinetic
energy. Then there are stationary solutions of the form:

ϕ(t) = exp(Et)ϕ0.

Here again ϕ0 is arbitrary and E is g-normal,[
E,EgT

]
= EEgT − EgTE = 0,

where (
EgT

)i
j = gjlE

l
k g

ki.

This holds, e.g. when
F gT = −F, F gT = F.

Obviously, the exponential solutions do exist only in geodetic case, however, this case is essentially
important and geometrically distinguished.

Coordinates, analytical description.

G[ϕ] ∈ U∗ ⊗ U∗, C[ϕ] ∈ V ∗ ⊗ V ∗.
Two “metric-like” tensors in analogy to

η ∈ U∗ ⊗ U∗, g ∈ V ∗ ⊗ V ∗.
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Raising their first indices, one obtains the mixed tensors:

Ĝ[ϕ] ∈ U ⊗ U∗, Ĉ[ϕ] ∈ V ⊗ V ∗,

analytically:
Ĝ[ϕ]AB = ηAC G[ϕ]CB, Ĉ[ϕ]ij = gik C[ϕ]kj.

Any ϕ ∈ LI(U, V ) may be represented by:

λa ∈ R, Ra ∈ U, La ∈ V, a = 1, . . . , n,

where

ĜRa = λaRa = exp (2qa)Ra,

ĈLa = λ−1
a La = exp (−2qa)La.

The bases
L = (. . . , La, . . .) , R = (. . . , Ra, . . .)

may be identified with
L : Rn → V, R : Rn → U,

and their duals (. . . , La, . . .), (. . . , Ra, . . .) may be identified with linear mappings:

L : V → Rn, R : U → Rn.
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Identifying the diagonal matrix Diag
(
. . . , eq

a
, . . .

)
with the linear mapping

D : Rn → Rn,

we can write the two-polar decomposition:

ϕ = LDR−1.

In matrix terms: L, R are orthogonal and D is diagonal. Therefore, ϕ is represented as a pair of rigid
(materially) bodies in Rn and with the n-tuple of one-dimensional coordinates (. . . , qa, . . .) — logarithmic
deformation invariants.

Two-polar decomposition in the matrix form.

ϕ = LDR−1,

where L,R ∈ SO(n,R) are orthogonal (isometric) and D is diagonal.

q =
1

n

(
q1 + . . .+ qn

)
are centre of deformation invariants, p — its conjugate momentum.
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Angular velocities and canonical momenta:

χ̂ab = Lai
dLib
dt

, its conjugate is ρ̂

ϑ̂ab = Ra
K
dRK

b

dt
its conjugate is τ̂

M := −ρ̂− τ̂ , N := ρ̂− τ̂
and then the second-order Casimir invariant has the form

C(2) = Tr
(
Σ2
)

= Tr
(

Σ̂2
)
,

therefore,

C(2) =
∑
a

p2
a +

1

16

∑
a,b

(Ma
b)

2

sh2 qa−qb
2

− 1

16

∑
a,b

(Na
b)

2

ch2 qa−qb
2

,

where the symbols are used: Qa = Daa, qa = lnQa.

Lattice structure when I = 0, B = 0:

Tlatt =
1

2α

∑
a

p2
a +

1

32α

∑
a,b

(Ma
b)

2

sh2 qa−qb
2

− 1

32α

∑
a,b

(Na
b)

2

ch2 qa−qb
2
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• Hyperbolic Sutherland-like lattices:

T aff
int =

1

4An

∑
a,b

(pa − pb)2 +
1

32A

∑
a,b

(Ma
b)

2

sh2 qa−qb
2

− 1

32A

∑
a,b

(Na
b)

2

ch2 qa−qb
2

+
1

2n(A+ nB)
p2,

T aff−metr
int = T aff

int [A→ I + A] +
I

2(I2 − A2)
‖V ‖2,

T metr−aff
int = T aff

int [A→ I + A] +
I

2(I2 − A2)
‖S‖2.

• Calogero-Moser-like lattices:

Tint =
1

2I

∑
a

P 2
a +

1

8I

∑
a,b

(Ma
b)

2

(Qa −Qb)2
+

1

8I

∑
a,b

(Na
b)

2

(Qa +Qb)2
.

• Usual Sutherland-like lattices:

Tint =
1

2A

∑
a

p2
a −

B

2A(A+ nB)
p2

+
1

32A

∑
a,b

(Ma
b)

2

sin2 qa−qb
2

+
1

32A

∑
a,b

(Na
b)

2

cos2 qa−qb
2

.
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Q ∈ GL(2,R):

Heff
M,N =

1

2m

(
p2

1 + p2
2

)
+ U eff

M,N + V
(
q1, q2

)
,

where
U eff
M,N =

M2

16m sh2 q1−q2
2

− N2

16m ch2 q1−q2
2

Let us put again:

x := q2 − q1, q =
1

2

(
q1 + q2

)
,

M := M1
2, N := N1

2,

px :=
1

2
(p2 − p1) , p = p1 + p2.

Then

T aff
int =

p2
x

A
+

M2

16Ash2 x
2

− N2

16Ach2 x
2

+
p2

4(A+ 2B)
,

T aff
int [x] =

p2
x

A
+ Veff

M,N(x),

Veff
M,N =

M2

16Ash2 x
2

− N2

16Ach2 x
2

,

H =
p2
x

A
+ Veff

M,N(x) + U(x) +
p2

4(A+ 2B)
+W (q).
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As mentioned, the most convenient way of discussing and solving equations of motion is that based on
Poisson brackets,

dF

dt
= {F,H},

where F runs over some maximal system of (functionally) independent functions on the phase space.
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The most convenient and geometrically distinguished choice is qa, pa, Ma
b, Na

b, L, R or, more precisely,
some coordinates on SO(n,R) parameterizing L and R. In d’Alembert models Qa, Pa are more convenient
than qa, pa.
An important point is that qa, pa, Ma

b, Na
b generate some Poisson subalgebra, because their Poisson

brackets may be expressed by them alone without any use of L, R-variables. And Hamiltonians also
depend only on qa, pa, Ma

b, Na
b, whereas L, R are non-holonomically cyclic variables. This enables one

to perform a partial reduction of the problem. In fact, the following subsystem of equations is closed:

dqa

dt
= {qa, H} =

∂H

∂pa
,

dMa
b

dt
= {Ma

b, H} = {Ma
b,M

c
d}

∂H

∂M c
d

+ {Ma
b, N

c
d}

∂H

∂N c
d

,

dpa
dt

= {pa, H} = −∂H
∂qa

,

dNa
b

dt
= {Na

b, H} = {Na
b,M

c
d}

∂H

∂M c
d

+ {Na
b, N

c
d}

∂H

∂N c
d

.

Obviously,
{qa, pb} = δab, {qa,M c

d} = {pa,M c
d} = {qa, N c

d} = {pa, N c
d} = 0.
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Poisson brackets of M , N -quantities follow directly from those for ρ̂, τ̂ , and the latter ones correspond
exactly to the structure constants of SO(n,R), thus,

{ρ̂ab, ρ̂cd} = ρ̂adδcb − ρ̂cbδad + ρ̂dbδac − ρ̂acδdb,

{τ̂ab, τ̂cd} = τ̂adδcb − τ̂cbδad + τ̂dbδac − τ̂acδdb, {ρ̂ab, τ̂cd} = 0,

where the raising and lowering of indices are meant in the Kronecker-delta sense. From these Poisson
brackets we obtain the following ones:

{Mab,Mcd} = {Nab, Ncd} = Mcbδad −Madδcb +Mdbδac −Macδdb,

{Mab, Ncd} = Ncbδad −Nadδcb −Nacδdb +Ndbδac.

The subsystem for (qa, pa,M
a
b, N

a
b) may be in principle autonomously solvable. When the time de-

pendence of ρ̂ = (N − M)/2 and τ̂ = −(N + M)/2 is known, then performing the inverse Legendre
transformation we can obtain the time dependence of angular velocities χ̂, ϑ̂:

χ̂ab =
∂H

∂ρ̂ba
, ϑ̂ab =

∂H

∂τ̂ ba

(some care must be taken when differentiating with respect to skew-symmetric matrices). And finally the
evolution of L, R is given by the following time-dependent systems:

dL

dt
= Lχ̂,

dR

dt
= Rϑ̂.



Home Page

Title Page

Contents

JJ II

J I

Page 34 of 36

Go Back

Full Screen

Close

Quit

Let us now consider the geodetic models on SL(n,R). The number of degrees of freedom equals (n2−1) =
dim SL(n,R). We are interested in models describing elastic, bounded vibrations. The fundamental
question is the following:

• Does a 2(n2 − 1)-dimensional family of bounded solutions exist? (below- dissociation-threshold
situations)

• Does a 2(n2 − 1)-dimensional family of non-bounded, escaping solutions exist? (above-dissociation-
threshold situations)

The answer is affirmative. Let us present an outline of the reasoning supporting the statement that there
is an open family of bounded and an open family of escaping solutions within the general solution of the
doubly-invariant geodetic problem on SL(n,R).
Let α ∈ sl(n) (Trα = 0) be similar to an antisymmetric matrix λ = −λT ∈ so(n), α = χλχ−1 for some
χ ∈ SL(n,R). Then every motion

Ψ(t) = eαtΨ0 = χeλtχ−1Ψ0

is bounded. The structure constants (simplicity of SL(n,R)) imply that the set of such α-s is (n2 − 1)-
dimensional, although dim SO(n,R) = n(n − 1)/2. Nevertheless, it is not so that these n2 − 1 velocity
parameters combine additively with n2−1 parameters of Ψ0 so as to result in 2(n2−1) parameters (initial
conditions) in the phase space. The reason is that appropriate correlations between Ψ0 and λ may repeat
the same orbits. In dimensions n = 2, 3 the above solutions are always periodic. In higher dimensions
they may be so but need not. Take for example n = 4, represent R4 as R2 × R2 and assume that λ is
a block matrix consisting of two 2 × 2 skew-symmetric blocks. Any of these blocks has essentially one
parameter. If the ratio of these angular velocity parameters is an irrational number, then the resulting
motion is non-periodic, its orbit is not closed and because of this it is not a Lie subgroup in the usual
sense, although it is an algebraic subgroup.
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The closures of such orbits are two-dimensional submanifolds. But one can also show that there are
bounded non-periodic solutions in two and three dimensions as well. The point is that the mentioned
matrices λ may be slightly perturbed by small symmetric matrices κ and we can take the solutions

Ψ(t) = χe(λ+κ)tχ−1Ψ0.

The afore-mentioned periodic orbits (corresponding to κ = 0) are stable in the sense that for some open
range of κ = κT ∈ sl(n), i.e., for some open range of α = λ + κ ∈ sl(n) the resulting motion is still
bounded although no longer periodic. And there is sufficiently much of the above matrices α so as not
to interfere with the arbitrariness of Ψ0. Thus, the corresponding family of solutions contains an open
subset (in the sense of initial conditions) of the general solution.
Quite similarly, if we took symmetric λ = λT ∈ sl(n), then the corresponding solutions Ψ(t) = χeλtχ−1Ψ0 =

eχλχ
−1tΨ0 would be non-bounded (escaping). And it will be so if we slightly perturb λ by “smalląntisym-

metric matrices ε = −ε ∈ so(n) from some open neighbourhood of the null element. And again we
conclude that the general solution contains an open subset of unbounded (escaping) trajectories.
The quantum counterpart is obvious: In quantized geodetic models there exists a discrete energy spec-
trum of physically bounded situations, and above it —- the continuous spectrum corresponding to the
dissociated body. There is an obvious analogy with the E < 0 and E > 0 situations for the Coulomb
problem.
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***

Thank you for your attention!

***


