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S3 (0, R) ⊂ R4 :
(
x1
)2

+
(
x2
)2

+
(
x3
)2

+
(
x4
)2

= R2


x1 = R sin

(
r
R

)
sin (ϑ) cos (ϕ)

x2 = R sin
(
r
R

)
sin (ϑ) sin (ϕ)

x3 = R sin
(
r
R

)
cos (ϑ)

x4 = R cos
(
r
R

)
r ∈ [0, πR]
ϑ ∈ [0, π]
ϕ ∈ [0, 2π[

ds2 = dr2 +R2 sin2
(
r
R

) (
dϑ2 + sin2 (ϑ) dϕ2

)
restriction of

(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

+
(
dx4
)2
to S3 (0, R)

S2 (0, R) : ϑ = π
2 , ds

2 = dr2 +R2 sin2
(
r
R

)
dϕ2

H3,2,+ (0, R) ⊂ R4 :
(
x1
)2

+
(
x2
)2

+
(
x3
)2 −

(
x4
)2

= −R2 , x4 > 0
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x1 = R sinh

(
r
R

)
sin (ϑ) cos (ϕ)

x2 = R sinh
(
r
R

)
sin (ϑ) sin (ϕ)

x3 = R sinh
(
r
R

)
cos (ϑ)

x4 = R cosh
(
r
R

)
r ∈ [0,∞]
ϑ ∈ [0, π]
ϕ ∈ [0, 2π[

ds2 = dr2 +R2 sinh2
(
r
R

) (
dϑ2 + sin2 (ϑ) dϕ2

)
restriction of

(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2 −

(
dx4
)2
to H3,2,+ (0, R)

H2,2,+ (0, R) ⊂ R3 : ϑ = π
2 , ds

2 = dr2 +R2 sinh2
(
r
R

)
dϕ2

Representing them as subset of R3:

S3(0, R): r = r[sin (ϑ) cos (ϕ) , sin (ϑ) sin (ϕ) , cos (ϑ)],

r ∈ [0, πR], all points on the sphere S2(0, πR) ⊂ R3 being identi�ed.

ds2 = Γijdr
idrj,

Γij = R2

r2 sin2 r
Rδij + 1

r2

(
1− R2

r2 sin2 r
R

)
rirj
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H3,2,+(0, R): r = r[sin (ϑ) cos (ϕ) , sin (ϑ) sin (ϕ) , cos (ϑ)],

r ∈ [0,∞[

ds2 = Γijdr
idrj,

Γij = R2

r2 sinh2 r
Rδij + 1

r2

(
1− R2

r2 sinh2 r
R

)
rirj

Kinetic energy:

T = m
2 Γij

dri

dt
drj

dt

Conjugate momenta

pi = ∂T
∂ṙi

= mΓij
drj

dt

S3 : p = mR2

r2 sin2 r
R
dr
dt + m

r2

(
1− R2

r2 sin2 r
R

) (
r drdt
)
r

H3,2,+ : p = mR2

r2 sinh2 r
R
dr
dt + m

r2

(
1− R2

r2 sinh2 r
R

) (
r drdt
)
r

Isometry groups:

S3 − SO(4,R)

H3,2,+ − SO(1, 3)
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Isotropy subgroup of the pole r = 0: SO(3,R)-usual rotations of the vector r.

Its Hamiltonian generators:

L = r × p , {Li, Lj} = εikjLk

In velocity terms:

L = mR2

r2 sin2 r
Rr ×

dr
dt in S

3

L = mR2

r2 sinh2 r
Rr ×

dr
dt in H

3,2,+

Spherically-symmetric models: invariant under the isotropy group SO(3, R)

Lagrangian: L = T − V (r)

L = r × p - constants of motion

Direction of L- constant of motion

Direction of r × dr
dt - constant of motion

This implies: plane motion

Involutive system of constants of motion:
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•

pϕ = L3 =

{
mR2 sin2 r

R
dϕ
dt S3(O,R)

mR2 sinh2 r
R
dϕ
dt H3,2,+(O,R)

•

L
2

= L · L = pϑ
2 +

pϕ
2

sin2 ϑ
=


m2R4 sin4 r

R

((
dϑ
dt

)2
+ sin2 ϑ

(
dϕ
dt

)2
)

on S3(O,R)

m2R4 sinh4 r
R

((
dϑ
dt

)2
+ sin2 ϑ

(
dϕ
dt

)2
)

on H3,2,+(O,R)

•

H =


1

2m

(
pr

2 + L2

R2 sin2 r
R

)
+ V (r) on S3(O,R)

1
2m

(
pr

2 + L2

R2 sinh2 r
R

)
+ V (r) on H3,2,+(O,R)

=


m
2

((
dr
dt

)2
+ L2

m2R2 sin2 r
R

)
+ V (r) on S3(O,R)

m
2

((
dr
dt

)2
+ L2

m2R2 sinh2 r
R

)
+ V (r) on H3,2,+(O,R)

{L3, L} = 0, {L3, H} = 0, {L,H} = 0,

Plane motion, two-dimensional reduction: ϑ = π/2 (motion in the x,y-plane)
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(
dr
dt

)2
+R2

(
dϕ
dt

)2 sin2

sinh2

(
r
R

)
= 2

m (E − V (r))

mR2
(
dϕ
dt

)2 sin2

sinh2

(
r
R

)
= M

From here: 
dr
dt = ±

√√√√ 2
m (E − V (r))− M2

m2R2

sin−2

sinh−2

(
r
R

)
dϕ
dt = M

mR2

sin−2

sinh−2

(
r
R

)
The resulting quadratures: 

dt
dr = ±

(
2
m (E − Veff)

)− 1
2

dϕ
dt = M

mR2

sin−2

sinh−2

(
r
R

)
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where Veff = V + M2

2mR2

sin−2

sinh−2

(
r
R

)
The orbit itself:

dϕ

dr
= ± M

mR2

sin−2

sinh−2

( r
R

)( 2

m
(E − Veff)

)− 1
2

New variables:

S3(0, R)
y = 1

R cot r
R

y-runs over [+∞,−∞]
when r runs [0, πR]

H3,2,+(0, R)
y = 1

R coth r
R

y-runs over [+∞, 1
R ]

when r runs [0,∞]

Then:
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S3(O,R) : ϕ(r) = ϕ[y] = ±L
m

ˆ
dy√

− L2

m2y2 + 2
m (Es − V )

H3,2,+(O,R) : ϕ(r) = ϕ[y] = ±L
m

ˆ
dy√

− L2

m2y2 + 2
m (Eh − V )

where:

Es = E − L2

2mR2 , Eh = E + L2

2mR2

Euclidean case: Γij = δij, R =∞, y = 1
r :

R3 : ϕ(r) = ϕ[y] = ± L
m

´
dy√

− L2

m2 y
2+ 2

m (E−V )

Formally and locally: the same formula, but Es, Eh instead E in the R3-case.

When V = 0: The y-variable establishes the projective mapping acting between manifolds

R3, S3, H3,2,+. It maps locally geodetic arcs onto geodetic arcs, but, without preserving the
a�ne parameter.
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Automatically, one obtains the following Bertrand potentials:

• Euclidean space R3 (Rn, as a matter of fact R2).

Vosc =
k

2
r2 =

k

2

1

y2
, VCo = −α

r
= −αy

• Sphere S3(O,R) (Sn(O,R), as a matter of fact S2(O,R)).

Vosc =
kR2

2
tan2 r

R
=
k

2

1

y2
, VCo = −α

R
cot

r

R
= −αy

• Pseudo-sphere H3,2,+(O,R) (Hn,2,+(O,R), as a matter of fact H2,2,+(O,R)).

Vosc =
kR2

2
tanh2 r

R
=
k

2

1

y2
, VCo = −α

R
coth

r

R
= −αy

Remark: description of the conformal �atness

• S3(O,R) : ξ = a tan r
2R , ξ = a tan r

2R
r
r , ξ ∈ [0,∞]

ds2 =
4R2a2

(a2 + ξ2)2

(
dξ2 + ξ2

(
dϑ2 + sin2 (ϑ) dϕ2

))
10



If a = R, ξ become stereographic projection variables

ds2 =
4(

1 + ξ
R2

2
)2

(
dξ2 + ξ2

(
dϑ2 + sin2 (ϑ) dϕ2

))
• H3,2,+(O,R) : ξ = a tanh r

2R , ξ = a tanh r
2R

r
r , ξ ∈ [0, a]. If a = R, ξ become stereographic

projection variables

ds2 =
4(

1− ξ
R2

2
)2

(
dξ2 + ξ2

(
dϑ2 + sin2 (ϑ) dϕ2

))
Let us observe that in the spherical case the proviso "all bounded orbits" would be super�uous
because due to the compactness of the con�guration space all orbits are bounded. It is no longer
true for the pseudosphere, where not only for the Coulomb problem but, surprisingly enough
also for the degenerate oscillator, the potential energy has a �nite upper bound. Therefore,
there exists an ionization threshold and the continuum of nonbounded orbits above it. On the
quantum level this means that there exists a continuous spectrum of energy placed above the
potential supremum. Let us stress some pecularities of the Coulomb and oscillator problems on
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S3(0, R). As mentioned, the Coulomb potential has the form

V (r) = −α
R

cot
r

R
.

Due to the compactness of the con�guration space there is no need to assume α > 0. The
above potential is a fundamental solution, the Green function of the Laplace equation for the
g-metric tensor-Laplace-Beltrami operator on S3(0, R), i.e, it provides a spherically symmetric
solution of the equation

∆V = 0, r 6= 0,

where ∆ denotes the Laplace-Beltrami operator based on the metric tensor of S3(0, R). The
point is, however, that when α > 0, the "northern" pole r = 0 is an attractive singularity,
whereas the' "southern" one, r = πR is the repulsive pole, and conversely if we put α < 0.
If α > 0 there exist circular orbits with r < πR

2 , but no circular orbits with r > πR
2 . And

quite conversely, if α < 0 then the "southern" pole becomes attractive, and the "nothern"
one-repulsive. In this way, an elementary electrostatic entity in S3(0, R) is a gigantic dipole
consisting of two antipodally located point charges of the opposite signs. This agrees beautifully
with the theorem proved, e.g. in the Landau and Lifshitz book that in a closed Universe the total
electric charge must vanish. The diagram of V as a function of r has the vertical asymptote
at r = 0 and the vertical asymptote with the reversed sign at r = πR. It intersects the r-axis

12



at r = πR
2 ,. V is de�ned in ]0, πR[.

Figure 1

The degenerate oscillator potential in S3(0, R) splits the con�guration space into two disjoint
regions separated by the inpenetrable potential barrier placed at r = πR

2 . This potential is
invariant under the antipodal identi�cation, thus the problem is reduced to the so-called elliptic
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space or Riemannian space, i.e, the quotient of sphere under the antipodal equivalence of
points. Let us stress in this connection that the Coulomb problem does not project correctly
from S3(0, R) to the elliptic space. The diagram of degenerate oscillator is qualitatively pictured
below:

Figure 2
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The diagram of the pseudospherical Coulomb potential has the (negative) vertical asymptote
at r = 0 and the horizontal asymptote given by the value −α

R .

Figure 3

The diagram for the degenerate oscillator behaves parabolically at r = 0 and has the horizontal
15



asymptote given by the value kR2

2 .

Figure 4

Obviously. in .both cases it would be rather natural to modify the potentials by additive
16



constants so as to make them vanishing at in�nity. Therefore, the "Coulomb" potential would
have to be given by

V (r) = −α
R

cot
r

R
+
α

R
.

whereas the oscillatory one by
kR2

2
tanh2 r

R
− kR2

2
.

However, we will not do this gauging and retain the analytical form given by the above theorem.

The detailed analysis shows that for the Coulomb problem on the sphere S3(0, R) the values
of constants of motion E, L are constrained by the following weak inequality .

E ≥ −mα
2

2L2
+

L2

2mR2
.

The equality case corresponds. to circular orbits. The corresponding function L → E(L) is
increasing, has the negative vertical asymptote at L = 0, tends to in�nity when L → ∞
intersecting the L-axis at some point L0. It is easy to see that L0 =

√
mαR; this expression,

as expected, tends to in�nity together with the "radius of the Universe".
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Figure 5
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Similarly, for the pseudo sphere with pseudoradius R, we obtain

E ≥ −mα
2

2L2
− L2

2mR2
,

the equality case corresponding again to circular orbits. The extremal point of the dependence
L→ E(L) corresponds to the value L0 =

√
mαR and again tends to in�nity together with the

"cosmological" pseudoradius R. The resulting extremal value of E equals, obviously, −α
R and

just coincides with the threshold of classical unbounded orbits or quantum continuous spectrum.
The diagram of the function L→ E(L) for circular orbits has the negative vertical asymptote
at L = 0, increases to −α

R at L0 and then decreases to minus in�nity when L→∞.
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Figure 6

Let us quote also the corresponding relationships for the degenerate oscillator. In the spherical
space S3(0, R) we have

E ≥ Lω0 +
L2

2mR2
, ω0 =

√
k

m
,

the equality case again corresponding to circular orbits.
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Figure 7

On the pseudosphereH3,2,+(0, R) the situation is more complicated because of the "saturation"
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property of the degenerate oscillator potential. Namely. we obtain then

E ≥ Lω0 −
L2

2mR2
, ω0 =

√
k

m
,

but above the threshold E = kR2

2 there is a continuum of unbounded classical orbits and the
quantum continuous spectrum.

Figure 8
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Hamilton-Jacobi equation and action-angle variables(
∂S
∂r

)2
+ 1

R2

(
sin
sinh

)−2 (
r
R

) (
∂S
∂ϑ

)2
+ 1

R2

(
sin
sinh

)−2 (
r
R

)
sin−2 (ϑ)

(
∂S
∂ϕ

)2

= 2m (E − V )

S(r, ϑ, ϕ) = Sr(r) + Sϑ(ϑ) + Sϕ(ϕ)

dS
dϕ = αϕ = M(
dS
dϑ

)2
+ sin−2 (ϑ)

(
∂S
∂ϕ

)2

= αϑ
2 = L2(

dS
dr

)2 − 2m (E − V ) = − αϑ
2

R2

 sin

sinh


2

( r
R)

Jϕ =


pϕdϕ =


Mdϕ = 2πM = 2παϕ

Jϑ =


pϑdϑ =


±

√
αϑ2 −

αϕ2

sin2 (ϑ)
dϑ = 2π (αϑ − αϕ) = 2π (L−M)

Jϑ + Jϕ = 2πL = 2παϑ
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Jr =
ı
prdr =

ı
±
√√√√√2m (E − V (r))− (Jϑ+Jϕ)

2

4π2R2

 sin
sinh

2

( r
R)

dr

One-fold degeneracy: Jϑ, Jϕ enter through (Jϑ + Jϕ). Characteristic feature of all spherically-
symmetric models.

Bertrand potentials:

• S3 (O,R) :

� Isotropic degenarate oscilator: V = kR2

2 tan2
(
r
R

)
(singular on the �equator� r = 1

2πR)

E =
1

2π
ω0 (2Jr + Jϑ + Jϕ) +

(2Jr + Jϑ + Jϕ)2

8π2mR2

where ω0 =
√

k
m , ν0 = 1

2πω0 = 1
2π

√
k
m . Total degenacy- E expressed through the

integer-coe�cients combination Jr, Jϑ, Jϕ. After the apprioate change of action-angle
variables, J1 = J = 2Jr + Jϑ + Jϕ

E = ν0J +
J2

8π2mR2
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Fundamental frequency:

ν =
dE

dJ
= ν0 +

J

4π2mR2
,

i.e.,

ν (E) =

√
ν0

2 +
E

2π2mR2
, ω (E) =

√
ω0

2 +
2E

mR2
.

No isochronism. ω depends on initial conditions, but only through the energy parameter
E. Coe�cient 2 at Jr in E-two radial turning points for r per one period in the ϕ-
variable.

� Coulomb problem, V = −α
R cot

(
r
R

)
Two conjugate antipodally placed singular poles-one attractive and one repulsive

E = −2π2mα2

J2
+

J2

8π2mR2

J = Jr + Jϑ + Jϕ
Equal coe�cients-one radial turning point for r per one period in the ϕ-variable.
Very interesting: linear superposition of the usual formula for the Kepler problem in R3

and free geodetic motion in S3(O,R).

• H3,2,+(O,R)
25



� isotropic degenerate oscilator V = kR2

2 tanh2
(
r
R

)
Remark: it is bounded (!), supV = kR2

2 . There exists dissociation threshold

E = ν0J −
J2

8π2mR2
, J = 2Jr + Jϑ + Jϕ

where ω0 =
√

k
m , ν0 = 1

2πω0 = 1
2π

√
k
m .

ν (E) =

√
ν0

2 − E

2π2mR2
, ω (E) =

√
ω0

2 − 2E

mR2
.

Valid below the dissociation threshold supV = kR2

2 .

� Coulomb problem, V = −α
R coth

(
r
R

)

E = −2π2mα2

J2
− J2

8π2mR2

J = Jr + Jϑ + Jϕ Valid below the dissociation threshold supV = −α
R .

• Bohr-Sommerfeld quantum conditions: J = nh
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� S3 (O,R)

∗ degenerate isotropic oscilator:

En = nν0h+
n2h2

8π2mR2
= nω0~ +

n2~2

2mR2

n = 0, 1, 2, . . .

∗ Coulomb:

En = −2π2mα2

n2h2
+

n2h2

8π2mR2
= − mα2

2n2~2
+

n2~2

2mR2
,

n = 1, 2, 3, . . . Valid for both sings of En! Purely discrete spectrum-compact
con�guration space.

� H3,2,+(O,R)

∗ degenerate isotropic oscillator:

En = nν0h−
n2h2

8π2mR2
= nω0~−

n2~2

2mR2

Valid for such values of n that

· En ≥ 0
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· En < supV = kR2

2 = mω0
2R2

2 - satis�ed automatically
Finite number of discrete energy levels for bounded states:

n ≤ 2
R2

~
√
km

∗ attractive Coulomb problem

En = −2π2mα2

n2h2
− n2h2

8π2mR2
= − mα2

2n2~2
− n2~2

2mR2
.

Valid for such values of n that En < −α
R - satis�ed automatically

� Free geodetic motion in S3(O,R) :
Special case of Coulomb with α = 0, but not of that oscilator with k = 0

E =
J

8π2mR2
=

(Jr + Jϑ + Jϕ)2

8π2mR2

Bohr-Sommerfeld spectrum:

En =
n2h2

8π2mR2
=

n2~2

2mR2
, n = 0, 1, 2, 3 . . .

= Ek =
2k2~2

mR2
, k = 0,

1

2
, 1, . . .
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� Free geodetic motion in the Riemann elliptic space S3(O,R)/antipodal identi�cation

E =
J

2π2mR2
=

(Jr + Jϑ + Jϕ)2

2π2mR2

Bohr-Sommerfeld spectrum:

En =
(2Jn)

2

8π2mR2
=

(2n)2h2

8π2mR2
=

(2n)2~2

2mR2
, n = 0, 1, 2, 3 . . .

= Ek =
2k2~2

mR2
, k = 0, 1, 2 . . .

Schrödinger quantization:

A complete system of commuting operators:

• Ĥ = − ~2
2m∆ + V (r)-Hamiltonian

∆Ψ =
∑
i,j

1√
|g|

∂
∂qi

(√
|g|gij ∂Ψ

∂qj

)
-Laplace-Beltrami, i.e., ∆ = gij∇i∇j, ∇- Levi-Civita dif-

ferentiation

• L̂
2

=
3∑
i=1

(
L̂i

)2

, eigenvalues ~2l(l + 1), l = 0, 1, 2, . . . L̂a = ~
ı εabcr

b ∂
∂rc
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• L̂3, eigenvalues m~, m = −l,−l + 1, . . . 0, . . . l − 1, l,

Therefore, the standard separation of variables:

Ψnlm (r, ϑ, ϕ) = fnl(r)Ylm(ϑ, ϕ)

Scalar product:

〈Ψ1|Ψ2〉 =

ˆ
Ψ1 (r, ϑ, ϕ) Ψ2 (r, ϑ, ϕ) dµ (r, ϑ, ϕ)

dµ =
√
|g|drdϑdϕ

L2(µ)- Hilbert space of wave functions

• S3(O,R) :
√
|g|drdϑdϕ = R2 sin2 r

R sinϑdrdϑdϕ

• H3,2,+(O,R) :
√
|g|drdϑdϕ = R2 sinh2 r

R sinϑdrdϑdϕ

Radial equations obtained from ĤΨ = EΨ

• S3(O,R) :

d2fnl
dr2

+
2

R
cot

r

R

dfnl
dr
− l(l + 1)

R2 sin2 r
R

fnl −
2mV

~2
fnl +

2mE

~2
fnl = 0
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• H3,2,+(O,R) :

d2fnl
dr2

+
2

R
coth

r

R

dfnl
dr
− l(l + 1)

R2 sinh2 r
R

fnl −
2mV

~2
fnl +

2mE

~2
fnl = 0

The obvious degeneracy with respect to m.

For Bertrand models- additional degeneracy with respect to l-just like in the Euclidean space

The quantum counterpart of classical degeneracy:

E = E (Jr + Jϑ + Jϕ) Kepler

E = E (2Jr + Jϑ + Jϕ) oscillator

Spectra on S3(O,R)

• Free motion:

Ej =
2~2

mR2
j(j + 1) j = 0,

1

2
, 1, . . .

Totat l-degeneracy
In the Riemann elliptic space S3(O,R)/antipodes the same formula with integer j's
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• Degenerate oscilator:

Ej =

(
(2j − 1) +

3

2

)
~ω̃ +

2j(j + 1)~2

mR2
,

j = 1
2 , 1, . . . ω̃ = ~

8m

(√
1 + 64m2ω0

2~−2 − 1
)

Total l-degeneracy
New speci�cally quantum features:

�

3
2 appears - expected

� j2 → j(j + 1)- expected

� ω → ω̃- non-expected

• Coulomb problem:

Ej = − mα2

2 (2j + 1)2 ~2
+

2j (j + 1) ~2

mR2

j = 1
2 , 1,

3
2 . . . l = 0, 1, 2 . . . 2j

Expected quantum modi�cations.
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Modi�ed numbering of energy levels

• Free motion

En =
n (n+ 2) ~2

2mR2
, n = 0, 1, 2, . . .

or

En =
(n− 1) (n+ 1) ~2

2mR2
, n = 1, 2, 3, . . .

• Degenerate oscillator

En =

(
n+

3

2

)
~Ω +

(n+ 1) (n+ 3) ~2

2mR2

Ω =
~

2mR2

(√
1 + 4m2R4ω2

0~−2 − 1

)
n = 0, 1, 2, . . .

• Coulomb problem

En = − mα2

2n2~2
+

(n− 1) (n+ 1) ~2

2mR2

l = 0, 1, 2, . . . (n− 1) n = 1, 2, 3, . . .
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