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Geometric description of the affinely-rigid body

We are given two Euclidean spaces (N,U, η) and (M,V, g), respectively the material and physical spaces. Here N and
M are the basic point spaces, U and V are their linear translation spaces, and η ∈ U∗ ⊗ U∗, g ∈ V ∗ ⊗ V ∗ are their metric
tensors. The space N is used for labelling the material points, and elements of M are geometric spatial points.

The configuration space of the affinely-rigid body

Q := AfI(N,M)

consists of affine isomorphisms of N onto M . The material labels a ∈ N are parametrized by Cartesian coordinates aK

(Lagrange variables). Cartesian coordinates in M will be denoted by yi and the corresponding geometric points by y. The
configuration Φ ∈ Q is to be understood in such a way that the material point a ∈ N occupies the spatial position y = Φ(a).

Let µ denote the co-moving (Lagrangian) mass distribution in N ; obviously, it is constant in time. Lagrange coordinates
aK in N will be always chosen in such a way that their origin aK = 0 coincides with the centre of mass C:∫

aKdµ(a) = 0.

The configuration space may be identified then with M × LI(U, V ),

Q = AfI(N,M) 'M × LI(U, V ) = M ×Qint,

where LI(U, V ) denotes the manifold of all linear isomorphisms of U onto V . The Cartesian product factors refer respectively
to the translational motion (M) and the internal or relative motion (LI(U, V )).
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The motion is described as a continuum of instantaneous configurations:

Φ(t, a)i = φiK(t)aK + xi(t), (1)

where x(t) is the centre of mass position and φ(t) tells us how constituents of the body are placed with respect to the centre
of mass. The quantities

(
xi, φiK

)
are our generalized coordinates.

Obviously, if we put U = V = Rn, then Qint reduces to GL(n,R) and Q becomes the semi-direct product Rn×sGL(n,R);
Rn is then interpreted as an Abelian group with addition of vectors as a group operation.

Inertia of affinely-constrained systems of material points is described by two constant quantities:

m =
∫
dµ(a), JKL =

∫
aKaLdµ(a),

i.e. the total mass m and the co-moving second-order moment J ∈ U ⊗U . More precisely, it is so in the usual theory based
on the d’Alembert principle, when the kinetic energy is obtained by summation (integration) of usual (based on the metric
g) kinetic energies of constituents,

T =
1
2
gij

∫
∂Φi

∂t

∂Φj

∂t
dµ(a).

Substituting to this general formula the above affine constraints (1) we obtain:

T = Ttr + Tint =
m

2
gij
dxi

dt

dxj

dt
+

1
2
gij
dφiA
dt

dφiB
dt

JAB .

Obviously, if we analytically identify U and V with Rn and LI(U, V ) with GL(n,R), then

Tint =
1
2

Tr
(
φ̇T φ̇J

)
.
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Some two-dimensional problems

Now, let us discuss the two-dimensional affinely-rigid body. Considered is a discrete or continuous system of material
points subject to constraints according to which during any admissible motion all affine relations between constituents of the
body are invariant (the material straight lines remain straight lines, their parallelism is conserved, and all mutual ratios of
segments placed on the same straight lines are constant). The conception of the affinely-rigid body is a generalization of the
usual metrically-rigid body, in which during any admissible motion all distances (metric relations) between its constituents
are constant. We do not take into account the motion of the centre of mass. When translational motion is neglected, the
configuration space Q may be analytically identified with the linear group GL(2,R), i.e., the group of non-singular real 2×2
matrices. The most adequate description of degrees of freedom is that based on the two-polar decomposition of matrices:

φ = ODRT , (2)

where

O =
[

cosϕ − sinϕ
sinϕ cosϕ

]
, D =

[
D1 0
0 D2

]
, R =

[
cosψ − sinψ
sinψ cosψ

]
.

This decomposition is connected with the algebraic Gram-Schmid orthogonalization. It is also know in literature as the
”singular value decomposition”. The matrices O,R ∈ SO(2,R) are orthogonal (OTO = RTR = Id, detO = detR = 1), D
is diagonal and positive. The orthogonal group SO(2,R) is a commutative group of plane rotations. Spatial rotations are
described by the action of SO(2,R) on GL(2,R) through the left regular translations, material rotations are represented
by the action of the rotation subgroup through the right multiplication. In the non-degenerate case (D1 6= D2), the
decomposition is unique up to the permutation of the diagonal elements of D accompanied by the simultaneous multiplying
of O and R on the right-side by the appropriate special orthogonal matrices (ones having in each row and column zeros but
once ±1 as elements). This implies that the potential energy of doubly isotropic models depends only on D and is invariant
with respect to the permutations of its nonvanishing matrix elements. The deformation invariants D1, D2 are important
mechanical quantities. They are scalar measures of deformation, i.e. tell us how strongly the body is deformed, but do not
contain any information concerning the orientation of deformation in the physical or material space. The orthogonal matrices
O and R describe the space and body orientations of the strain. Incidentally, let us mention that the complexification of
GL(2,R) to GL(2,C) and then the restriction to the other, completely opposite (because compact), real form U(2) sheds
some light on our model and establishes also certain kinship with the three-dimensional rigid body.
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We shall consider only highly symmetric model, where J is isotropic, i.e., its matrix has the form µI, µ denoting a
positive constant, and I is the 2× 2 identity matrix. The isotropic kinetic energy is as follows:

T =
µ

2

[(
D1

2 +D2
2
)((dϕ

dt

)2

+
(
dψ

dt

)2
)
− 4D1D2

dϕ

dt

dψ

dt

+
(
dD1

dt

)2

+
(
dD2

dt

)2
]
. (3)

The matrices O and R do not enter into this equation, hence the angles ϕ, ψ are cyclic variables. In these coordinates the
Hamilton-Jacobi equation is non-separable even in the interaction-free case. However, the separability becomes possible
in new variables, obtained by the π/4-rotation in the plane of the deformation invariants D1, D2 and by an appropriate
modification of the angular variables. Thus, we introduce the following new coordinates:

α =
1√
2

(D1 +D2) , β =
1√
2

(D1 −D2) , η = ϕ− ψ, γ = ϕ+ ψ.

The kinetic energy becomes then

T =
µ

2

[
α2

(
dη

dt

)2

+ β2

(
dγ

dt

)2

+
(
dα

dt

)2

+
(
dβ

dt

)2
]
. (4)

This form is both diagonal and separable.
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The classical Stäckel theorem leads to the following general form of separable potentials:

V (ϕ,ψ, α, β) =
Vη (ϕ− ψ)

α2
+
Vγ (ϕ+ ψ)

β2
+ Vα(α) + Vβ(β). (5)

In this formula Vη, Vγ , Vα, Vβ are arbitrary (but regular enough) functions of a single variable (indicated as an argument).
We consider doubly-isotropic models in which the potential energy does not depend on variables ϕ, ψ (equivalently η, γ),
i.e. Vη = 0 and Vγ = 0. Performing the Legendre transformation we obtain the corresponding Hamiltonian H = Hα +Hβ

in the form:

H =
1

2µ

(
(pϕ − pψ)2

4α2
+ pα

2

)
+

1
2µ

(
(pϕ + pψ)2

4β2
+ pβ

2

)
+ Vα(α) + Vβ(β), (6)

where pϕ, pψ, pα, pβ are the canonical momenta conjugate to ϕ, ψ, α, β, respectively, and

Hα =
1

2µ

(
(pϕ − pψ)2

4α2
+ pα

2

)
+ Vα(α),

Hβ =
1

2µ

(
(pϕ + pψ)2

4β2
+ pβ

2

)
+ Vβ(β). (7)

The quantities Hα, Hβ , pϕ, pψ form a Poisson-involutive system of constants of motion.
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The stationary Hamilton-Jacobi equation has the following form:(
1

4α2
+

1
4β2

)((
∂S

∂ϕ

)2

+
(
∂S

∂ψ

)2
)

+
(

1
2β2
− 1

2α2

)
∂2S

∂ϕ∂ψ
(8)

+
(
∂S

∂α

)2

+
(
∂S

∂β

)2

= 2µ (E − (Vα(α) + Vβ(β))) ,

where E is a fixed value of the energy. Due to the fact that the variables ϕ, ψ have the cyclic character, we may write:

S = Sϕ(ϕ) + Sψ(ψ) + Sα(α) + Sβ(β) = aϕ+ bψ + Sα(α) + Sβ(β)

and the action variables are as follows:

Jϕ =
∮
pϕdϕ = 2πa, Jα = ±

∮ √
2µ (Eα − Vα(α))− (Jϕ − Jψ)2

16π2α2
dα, (9)

Jψ =
∮
pψdψ = 2πb, Jβ = ±

∮ √
2µ (Eβ − Vβ(β))− (Jϕ + Jψ)2

16π2β2
dβ, (10)

where Eα, Eβ , a, b are separation constants.
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Remark. Let us observe that the isotropic kinetic energy

T =
µ

2
Tr
(
φ̇T φ̇

)
(11)

may be simply written as
T =

µ

2
(
ẋ2 + ẏ2 + ż2 + u̇2

)
, (12)

where x, y, z, u are simply the matrix elements of φ,

φ =
[
x y
z u

]
. (13)

This is formally the expression for the material point with the mass µ in R4 or the quadruple of such material points in R.
However, in the mechanics of deformable bodies these generalized coordinates are not very useful for dynamical models.

It is both convenient and instructive to use also other generalized coordinates in the affine kinematics. We mean coor-
dinates in which the problem is separable; as mentioned, the separability in various coordinates corresponds geometrically
to some degeneracy of the problem. And besides, those coordinates suggest some modifications of the potential V leading
to new models of deformative dynamics, more realistic than the harmonic oscillator and at the same time admitting also
some analytical treatment. As expected, in doubly isotropic models the most natural candidates are to be sought among
orthogonal coordinates on the plane of the deformation invariants (D1, D2). The most natural of them are just the variables
α, β introduced above: they are obtained from D1, D2 by the rotation by π/4 in R2. Together with the modified angular
variables η, γ they provide a system of T -orthogonal coordinates in R4, i.e., in the space of variables x, y, z, u. To be more
precise, they are orthogonal coordinates for the metric element dx2 +dy2 +dz2 +du2 on which the kinetic energy T is based.
And moreover, as said above, they are the nice separation variables for T in the Stäckel sense. Other natural T -separating
variables are obtained as some byproducts of α, β. The most natural of them are polar variables in the R2-plane of the
pairs (α, β). In certain problems it is analytically convenient to use the modified ”polar” variables r, ϑ given by

α =
√
r cos

ϑ

2
, β =

√
r sin

ϑ

2
.

Obviously, the ”literal” polar variables ρ, ε are defined by

α = ρ cos ε, β = ρ sin ε; ρ =
√
r, ε =

ϑ

2
.
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The natural metric on the manifold of 2× 2 matrices,

ds2 = Tr
(
dφT dφ

)
= dx2 + dy2 + dz2 + du2,

becomes then

ds2 = r cos2 ϑ

2
dη2 + r sin2 ϑ

2
dγ2 +

1
4r
dr2 +

r

4
dϑ2

= dρ2 + ρ2dε2 + ρ2 cos2 ε dη2 + ρ2 sin2 ε dγ2

= dρ2 +
1
4
ρ2dϑ2 + ρ2 cos2 ϑ

2
dη2 + ρ2 sin2 ϑ

2
dγ2.

Obviously, kinetic energy is then expressed as follows

T =
µ

2

(
1
4r

(
dr

dt

)2

+
r

4

(
dϑ

dt

)2

+ r cos2 ϑ

2

(
dη

dt

)2

+ r sin2 ϑ

2

(
dγ

dt

)2
)

=
µ

2

((
dρ

dt

)2

+ ρ2

(
dε

dt

)2

+ ρ2 cos2 ε

(
dη

dt

)2

+ ρ2 sin2 ε

(
dγ

dt

)2
)

=
µ

2

((
dρ

dt

)2

+
1
4
ρ2

(
dϑ

dt

)2

+ ρ2 cos2 ϑ

2

(
dη

dt

)2

+ ρ2 sin2 ϑ

2

(
dγ

dt

)2
)
.

The above crowd of expressions is due to the fact that different conventions are better suited to different analogies: the
two-dimensional homogeneously deformable body and three-dimensional spherical top with dilatations. Physically we are
interested here in the first problem, however, certain aspects of the second one (spherical top with dilatations) are formally
useful and the mysterious link between them is interesting in itself.
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Let us notice that (r, ϑ) may be interpreted as polar coordinates in the two-dimensional space of quantities 2D1D2,
D1

2 −D2
2,

2D1D2 = r cosϑ, D1
2 −D2

2 = r sinϑ, (14)

or, inverting these formulas,

r = ρ2 = D1
2 +D2

2, tanϑ = tan(2ε) =
1
2

(
D1

D2
− D2

D1

)
. (15)

Therefore, ϑ refers to the shear degrees of freedom, whereas r = ρ2 is some kind of the measure of size. More precisely,
dilatation is measured by the product D1D2, thus,

r =
2D1D2

cosϑ
(16)

contains an ”admixture” of the shear parameter ϑ. Nevertheless, just like D1D2 it is a homogeneous function of degree 2
of (D1, D2). The shear parameter ϑ is evidently a homogeneous function of degree zero.

It is also convenient to parametrize deformation invariants as follows:

D1 = exp
(
a+ b

2

)
, D2 = exp

(
a− b

2

)
.

Then
α =

1√
2

(D1 +D2) =
√

2e
a
2 cosh

b

2
, β =

1√
2

(D1 −D2) =
√

2e
a
2 sinh

b

2
,

D1D2 = ea, D1
2 +D2

2 = 2ea cosh b, D1
2 −D2

2 = 2ea sinh b,
D1

D2
= eb,

sinϑ = tanh b, cosϑ =
1

cosh b
, tanϑ = sinh b.

These simple formulas shed some light onto the link between two-dimensional homogeneously deformable body and three-
dimensional top. Nevertheless, this link is still rather mysterious and obscure.
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For the completeness let us also mention about other orthogonal coordinates on the plane of deformation invariants:

(i) Elliptic variables (κ, λ), where
α =
√

2 coshκ cosλ, β =
√

2 sinhκ sinλ.

(ii) Parabolic variables (ξ, δ), where

α =
1
2
(
ξ2 − δ2

)
, β = ξδ.

(iii) Two-polar variables (e, f), where

α =
c sinh e

cosh e− cos f
, β =

c sin f
cosh e− cos f

,

and c is a constant.
For our analysis of the deformative motion the parabolic (ξ, δ) and two-polar variables (e, f) are non-useful, because

the corresponding Hamilton-Jacobi equations are non-separable even in the non-physical geodetic models, i.e., ones with
vanishing potentials. In the elliptic coordinates (κ, λ) the metric underlying the kinetic energy takes on the form:

ds2 = Tr
(
dφT dφ

)
=
(
cosh2 κ− cos2 λ

)
dκ2

+
(
cosh2 κ− cos2 λ

)
dλ2 + cosh2 κ cos2 λdη2 + sinh2 κ sin2 λdγ2.
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The general Stäckel-separable HamiltoniansH = T+V in variables (α, β, η, γ), (r, ϑ, η, γ) and (κ, λ, η, γ) have respectively
the form:

H =
1

2µ

((
pα

2 +
pη

2

α2

)
+
(
pβ

2 +
pγ

2

β2

))
+ Vα(α) + Vβ(β) +

Vη(η)
α2

+
Vγ(γ)
β2

, (17)

H =
1

2µ

(
4rpr2 +

1
r

(
pϕ

2 + pψ
2 + 2pϕpψ cosϑ
sin2 ϑ

+ 4pϑ2

))
+ Vr(r) +

Vϑ(ϑ)
r

+
Vη(η)
r cos2 ϑ

2

+
Vγ(γ)
r sin2 ϑ

2

, (18)

H =
1

4µ

(
pκ

2(
cosh2 κ− cos2 λ

) +
pλ

2(
cosh2 κ− cos2 λ

)
+

pη
2

cosh2 κ cos2 λ
+

pγ
2

sinh2 κ sin2 λ

)
+

Vκ(κ)
2
(
cosh2 κ− cos2 λ

) +
Vλ(λ)

2
(
cosh2 κ− cos2 λ

)
+

Vη(η)
2 cosh2 κ cos2 λ

+
Vγ(γ)

2 sinh2 κ sin2 λ
. (19)
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Let us observe that, obviously,
cosh2 κ− cos2 λ = sinh2 κ+ sin2 λ

and it does not matter what is written in the corresponding denominators above. Making use of this fact we immediately
see that when the problem is doubly isotropic, i.e., Vη, Vγ are constant, then obviously (pη, pγ), equivalently (pϕ, pψ), are
constants of motion but also there is a separation of the Hamilton-Jacobi equation in the variables κ, λ. Therefore, there
are two additional constants of motion and the problem is integrable. Those constants of motion are given by

K =
hκ cos2 λ− hλ cosh2 κ

2
(
cosh2 κ− cos2 λ

) =
hκ cos2 λ− hλ cosh2 κ

2
(
sinh2 κ+ sin2 λ

) ,

L =
hκ sin2 λ− hλ sinh2 κ

2
(
sinh2 κ+ sin2 λ

) =
hκ sin2 λ− hλ sinh2 κ

2
(
cosh2 κ− cos2 λ

) ,
where the auxiliary quantities hκ, hλ are not constants of motion and are respectively given by

hκ =
1

2µ

(
pκ

2 + 2µVκ −
1
4 (pϕ − pψ)2 + 2µVκ

cosh2 κ
+

1
4 (pϕ + pψ)2 + 2µVκ

sinh2 κ

)
,

hλ =
1

2µ

(
pλ

2 + 2µVλ +
1
4 (pϕ − pψ)2 + 2µVλ

cos2 λ
+

1
4 (pϕ + pψ)2 + 2µVλ

sin2 λ

)
;

we remember that Vκ, Vλ are constants here.
Therefore, we have the involutive system of constants of motion (their Poisson brackets do vanish), and

H = K + L

has the vanishing Poisson brackets with all of them, i.e., with pϕ, pψ (i.e., with pη, pγ), K, L.
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The elliptic coordinates and the corresponding separable models are not very interesting for applications. From this
point of view the ”polar” coordinates (r, ϑ), or equivalently (ρ, ε), are much more useful. The configurational metric tensor
is then expressed as follows:

ds2 = Tr
(
dφT dφ

)
=

1
4r
dr2 +

r

4
dϑ2 + rdϕ2 − 2r cosϑdϕdψ + rdψ2

= dρ2 +
1
4
ρ2
(
dϑ2 + d(2ϕ)2 − 2 cosϑd(2ϕ)d(2ψ) + d(2ψ)2

)
=

1
4r
(
dr2 + r2

(
dΘ2 + dΦ2 − 2 cos ΘdΦdΨ + dΨ2

))
,

where, obviously, the doubled angles are used, Θ = ϑ, Φ = 2ϕ, Ψ = 2ψ. This expression is very interesting in itself. We
used here three alternative systems of symbols, each of them convenient and suggestive in some areas of applications. It is
seen that the expression

dσ2 = dΘ2 + dΦ2 − 2 cos ΘdΦdΨ + dΨ2

is exactly, up to a constant multiplier, identical with the doubly-invariant (i.e., both left- and right-invariant) squared metric
element on the rotation group in three dimensions, SO(3,R), or on its covering group SU(2). This identification is based
on interpreting Φ,Θ,Ψ as Euler angles. More precisely, to be literal in this analogy, one should change the sign at Ψ, then
one obtains the usual expression

dσ2 = dΘ2 + dΦ2 + 2 cos ΘdΦdΨ + dΨ2.

This metric underlies the kinetic energy expression for the spherical top,

T =
I

2

((
dΘ
dt

)2

+
(
dΦ
dt

)2

+ 2 cos Θ
dΦ
dt

dΨ
dt

+
(
dΨ
dt

)2
)
.

In mechanics of gyroscopic systems Φ,Θ,Ψ are referred to respectively as the precession, nutation and rotation angles.
This, of course, has nothing to do with our object, i.e., homogeneously deformable two-dimensional body; such a body has
only one rotational degree of freedom. The analogy is formal, nevertheless instructive and effective in the computational
sense. The idea has to do with the ”concentric” parametrization of R4.
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As mentioned, the Cartesian variables x, y, z, u, i.e., matrix elements of the configuration matrix φ, are non-effective
when investigating deformations. This was just the reason to use the two-polar decomposition and the corresponding
coordinates (D1, D2, ϕ, ψ) or (α, β, ϕ, ψ). The two ”radii” (D1, D2) or (α, β) have to do with the purely scalar deformation;
(ϕ,ψ) (equivalently (η, γ)) are angular variables of compact topology (orientation of deformations in the physical space
and in the body). The ”concentric” parametrization consists in encoding the possibility of unbounded motion in the radial
variable in R4,

ρ =
√
r =

√
x2 + y2 + z2 + u2 =

√
D1

2 +D2
2 =

√
Tr(φTφ) =

√
TrG,

where the symbol G is used for the Green deformation tensor expressed in the Cartesian coordinates. More geometrically,
we are dealing here with the deformation invariant:

ρ =
√
ηABGAB =

√
gijφiAφjBηAB ,

g, η denotes respectively the spatial and material (reference) metric tensors.
Degrees of freedom orthogonally transversal to the radial variable ρ (or equivalently r) describe the geometrically bounded

aspect of motion. Those modes of motion are encoded in the concentric spheres in R4, in particular, in the unit sphere given
by equation ρ = 1, i.e., r = 1. But it is well-known that the group SU(2), i.e., the group of unitary unimodular matrices
and the covering group of SO(3,R), may be naturally identified with the unit sphere S3(0, 1) ⊂ R4. And in this way this
sphere may be parametrized with the use of the Euler angles Φ, Θ, Ψ. The parametrization of R4 with the use of variables
(ρ,Φ,Θ,Ψ) or (r,Φ,Θ,Ψ) is rather nonusual, however well-suited to the description of the three-dimensional rigid body
with imposed dilatations or, as we see, to the description of the two-dimensional homogeneously deformable body. In other
applications one uses rather spherical systems of coordinates in R4, e.g., r, λ, µ, ν, where

x1 = r sinλ cosµ cos ν,
x2 = r sinλ cosµ sin ν,
x3 = r sinλ sinµ,
x4 = r cosλ.
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Let us mention that the isotropic harmonic oscillator may be described obviously in terms of those variables, and the
expression of Hamiltonian through the action variables Jr, Jλ, Jµ, Jν , in analogy to (32) below, is given by

H = ω(2Jr + Jλ + Jµ + Jν), (20)

where the degeneracy, i.e., the resonance between Jr, Jλ, Jµ, Jν is explicitly seen.
One can also use certain mixed type parametrizations in R4, e.g., representing it as R3×R, R2×R2 and taking spherical

coordinates in R3 or polar ones in one or two copies of R2. In all such coordinate systems the isotropic harmonic oscillator
is separable and this is some aspect of its very high, total degeneracy.

However, it is hard to realize a wider class of realistic applications of these coordinates, e.g., in elastic and similar
problems. Unlike this, the apparently exotic parametrization in terms of the ”radial distance” ρ and ”Euler angles” Φ,Θ,Ψ
offers certain models of potentials which are both separable and qualitatively physical.

We have quoted the general Stäckel-separable Hamiltonian in variables (r, ϑ, ϕ, ψ) (18). It is doubly isotropic when the
shape functions Vη, Vγ are put as constants. Obviously, the corresponding terms Vη/ cos2(ϑ/2), Vγ/ sin2(ϑ/2) may be simply
included into Vϑ(ϑ). We have the following four constants of motion in involution, responsible for separability:

• pϕ, pψ, i.e., equivalently pη, pγ ,

• hϑ = 1
2µ

1
sin2 ϑ

(
pϕ

2 + pψ
2 + 2pϕpψ cosϑ

)
+ 2

µpϑ
2 + Vϑ(ϑ),

• H = T + V = Hr + hϑ
r , where, however, the two indicated terms in H, namely

Hr =
2
µ
rpr

2 + Vr(r),
hϑ
r

are not constants of motion when taken separately.

The term Vr stabilizes the radial mode of motion which without this term would be unbounded, therefore physically non-
applicable in elastic problems. The term Vϑ is responsible for the shear dynamics. Let us stress that in spite of the ”angular”
character of ϑ the shear mode of motion is also non-compact. It is just seen from the fact that the shear is algebraically
expressed by the quantity tanϑ, which is unbounded. Therefore, in certain problems some non-constant expression for Vϑ is
also desirable. Even if we use Vr proportional to r = ρ2, any model with non-vanishing Vϑ introduces some anharmonicity.
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Particularly interesting is the following simple model:

V = Vr(r) +
Vϑ(ϑ)
r

=
C

2
r +

2C
r cosϑ

= C

(
1

D1D2
+
D1

2 +D2
2

2

)
. (21)

The model is perhaps phenomenological and academic, however, from the ”elastic” point of view it has very physical
properties: it prevents the collapse to the point or straight-line, because the term 1/D1D2 is singularly repulsive there, and
at the same time it prevents the unlimited expansion, because the harmonic oscillatory term C(D1

2+D2
2)/2 = C(α2+β2)/2

grows infinitely then. There is a stable continuum of relative equilibria at the non-deformed configurations when D1 = D2 =
1. Expansion along some axis results in contraction along the perpendicular axis, because

∂2V

∂D1∂D2
> 0

at D1 = D2 = 1. This qualitatively physical potential of nonlinear hyperelastic vibrations is separable, therefore, at the
same time it is also in principle analytically treatable. Its structure seems to suggest some three-dimensional models with
the attractive harmonic term proportional to (D1

2 +D2
2 +D3

2) and some collapse-preventing term, e.g., one proportional to
(D1D2D3)−p or (D1D2)−p+(D3D1)−p+(D2D3)−p, p > 0, however, there is no chance then for separability and integrability.

In the chapter below we begin with some problems concerning the harmonic oscillator,

V (α, β) =
C

2
(
α2 + β2

)
=
C

2
(
D1

2 +D2
2
)

=
C

2
(x2 + y2 + z2 + u2) =

C

2
Tr
(
φTφ

)
, C > 0. (22)

and then discuss some natural anharmonic modifications.
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Harmonic oscillator and certain anharmonic alternatives

The expressions Jα, Jβ depend on potentials Vα(α), Vβ(β), respectively. After specifying the form of these potentials
we can obtain the Hamilton function H as some function of our action variables, i.e., H = E(Jα, Jβ , Jϕ, Jψ). We can find
the explicit dependence of the energy E on the action variables and the possible further degeneracy. We will also perform
the usual Bohr-Sommerfeld quantization procedure for our model.

Hence, we consider the model of the harmonic oscillator potential (22). Some physical comments are necessary here.
Namely, the potential (22) describes only the attractive forces which prevent the unlimited expansion of the body. Its
non-physical feature is that it does not prevent the collapse, i.e., the contraction to the null-dimensional singularity. It
attracts to the configuration D1 = D2 = 0 instead than to the non-deformed state D1 = D2 = 1. Nevertheless, the model
may be useful in some range of initial conditions. Except the subset of measure zero in the manifold of those conditions, the
collapse to D1D2 = 0 is prevented by the centrifugal repulsion. And the collapse missbehaviour of (22) is not very malicious
when the system is discrete. Obviously, (11) and (22) describe the isotropic harmonic oscillator in R4 or the quadruple of
identical one-dimensional oscillators in R. In this sense the solution is obvious and a priori known. Nevertheless, the model
is a useful step towards investigating more realistic ones. And another point is very important. Namely, the very strong
degeneracy of this model has to do, as usually, with the separability of the Hamilton-Jacobi equation in several coordinate
systems.

After some calculations we obtain the dependence of the energy E = Eα + Eβ on the action variables as follows:

E =
ω

4π
[4J + |Jϕ − Jψ|+ |Jϕ + Jψ|] , J = Jα + Jβ , (23)

where ω =
√
C/µ and

Eα =
ω

4π
(4Jα + |Jϕ − Jψ|) ,

Eβ =
ω

4π
(4Jβ + |Jϕ + Jψ|) .
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Then performing the Bohr-Sommerfeld quantization procedure, i.e. supposing that J = nh, Jϕ = mh, Jψ = lh, where
h is the Planck constant and n = 0, 1, . . . ; m, l = 0,±1, . . ., we obtain the energy spectrum in the following form:

E =
1
2

~ω [4n+ |m− l|+ |m+ l|] . (24)

We may rewrite this formula as follows:

(i) if |m| > |l|, then m2 > l2 and
E = ~ω (2n±m) , (25)

(ii) if |m| < |l|, then m2 < l2 and
E = ~ω (2n± l) , (26)

(iii) if |m| = |l|, then m2 = l2 and
E = ~ω (2n±m) = ~ω (2n± l) . (27)

And similarly, on the purely classical level of the action variables we have the following formulas:

(i) in the phase space region where |Jϕ| > |Jψ|:

E =
ω

2π
(2J ± Jϕ) =

ω

2π
(2Jα + 2Jβ ± Jϕ) , (28)

(ii) in the region where |Jϕ| < |Jψ|:
E =

ω

2π
(2J ± Jψ) =

ω

2π
(2Jα + 2Jβ ± Jψ) , (29)

(iii) on the submanifold where Jϕ = Jψ:
E =

ω

2π
(2J ± Jϕ) =

ω

2π
(2J ± Jψ) . (30)
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The total degeneracy of the doubly invariant model with the potential (22) is a priori obvious because in coordinates
(x, y, z, u) it is explicitly seen that we deal with four-dimensional isotropic harmonic oscillator (equivalently–with the quadru-
ple of identical non-interacting oscillators). If we use coordinates (D1, D2, ϕ, ψ), or equivalently (α, β, ϕ, ψ), then the total
degeneracy is visualized by the fact that the action variables Jα, Jβ , Jϕ, Jψ enter (28) with integer coefficients, Jψ with the
vanishing one. Similarly in (29) they are also combined with integer coefficients, but now the coefficient at Jϕ does vanish.
The third case (30) is, so-to-speak, the seven-dimensional ”separatrice” submanifold. The existence of those regions with
various expressions for the functional dependence of energy on the action variables is due to the fact that the coordinate
system (D1, D2, ϕ, ψ) is not regular in the global sense and has some very peculiar singularities. Nevertheless, it is just
those coordinates that are more natural and physically lucid in dynamical problems.

The quasiclassical degeneracy of the Bohr-Sommerfeld energy levels is due to the fact that the quantum numbers may
be combined in a single one, although in slightly different ways in three possible ranges. Let us observe that in (25) the
quantum number l still does exist although does not explicitly occur in the formula for E. It runs the range |l| < |m| and
labels quasiclassical states within the same energy levels. And analogously in the remaining cases (26), (27). The action
variables Jϕ, Jψ and the corresponding quantum numbers m, l take symmetrically the positive and negative values, thus,
as a matter of fact, the ambiguity of signs in the above formulas (25)–(27) does not matter when the values of energy in
stationary states are concerned. Nevertheless, this ambiguity is essential for classical trajectories, namely, for different signs
the orbits or rather their angular cycles are ”swept” in opposite directions.



Home Page

Title Page

Contents

JJ II

J I

Page 21 of 66

Go Back

Full Screen

Close

Quit

Let us observe that the formulas (28)–(30) resemble the action-angle description of the two-dimensional isotropic har-
monic oscillator in terms of usual polar coordinates (r, ϕ) on R2. Namely, the Cartesian formula

E = ω(Jx + Jy) (31)

is then alternatively reformulated as
E = ω(2Jr + Jϕ). (32)

The ratio 2 : 1 of coefficients is due to the fact that the total angular rotation in the ϕ-variable is accompanied by the
exactly two total cycles of ”libration” in the r-variable. The analogy is neither accidental nor superficial. For the deformative
motion the deformation invariants D1, D2, i.e., stretchings, are analogues to the radial variable r, whereas the two-polar
angles ϕ, ψ describing the spatial and material orientation of stretchings play a role similar to the polar angle ϕ in material
point dynamics on R2 (do not confuse–the symbol ϕ is used in two different meanings). This is just the reason for the 2 : 1
ratio in (20) and (28)–(30).

Let us now review certain still isotropic, but anharmonic modifications of the harmonic model of affine vibrations (11)
and (22). They are based on the use of variables (α, β, ϕ, ψ) or (ρ, ϑ, ϕ, ψ). The corresponding potentials are given by

V (α, β) =
C

2

(
α2 +

4
α2

)
+
C

2
β2 =

C

2
(
α2 + β2

)
+

2C
α2

, (33)

V (ρ, ϑ) =
C

2

(
ρ2 +

4
ρ2

)
+

2C
ρ2

tan2 ϑ

2
=
C

2
ρ2 +

2C
ρ2

1
cos2 ϑ

2

, (34)

where in both formulas C denoting some positive constant.
Using the former symbols we have

Vα =
C

2

(
α2 +

4
α2

)
, Vβ =

C

2
β2, Vr =

C

2
r, Vϑ =

2C
cos2 ϑ

2

.
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An important peculiarity of these models is that they have the stable equilibria in the natural configuration D1 = D2 = 1,
so they are viable from the elastic point of view. And both of them are separable ((97) in the obvious additive sense),
therefore, the corresponding Hamiltonian systems are integrable.

One can calculate explicitly the action variables (Jα, Jβ , Jϕ, Jψ) and (Jr, Jϑ, Jϕ, Jψ) that correspond to (97) and (34).
They are some functions of the separation constants (one of them is the energy E). Eliminating other constants one obtains
the expression of E, or more precisely, of the Hamiltonian H, as a function of action variables.

For the model (97) one obtains

E =
ω

4π

(
4(Jα + Jβ) + |Jϕ + Jψ|+

√
64µπ2C + (Jϕ − Jψ)2

)
,

where, as usually, we denote

ω =

√
C

µ
.

It is seen that the collapse-preventing term C/α2 in Vα partially removes the degeneracy. Evidently, there is no longer
resonance between ϕ and ψ. The resonance between α and β obviously survives; their conjugate actions Jα, Jβ enter the
energy formula through the rational combination J = Jα + Jβ and the corresponding frequencies are equal:

να = νβ =
ω

π
.

Obviously, we use here the standard formulas:

να =
∂E

∂Jα
, νβ =

∂E

∂Jβ
, νϕ =

∂E

∂Jϕ
, νψ =

∂E

∂Jψ
.

There are two phase-space regions given respectively by Jϕ + Jψ > 0 and Jϕ + Jψ < 0. In any of these regions there is a
resonance between γ = ϕ+ ψ and α, β. This is seen from the formulas

Jϕ = Jη + Jγ , Jψ = −Jη + Jγ .
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In the mentioned regions we have respectively

E =
ω

4π

(
4Jα + 4Jβ ± 2Jγ +

√
16µπ2C + Jη2

)
.

This implies the following independent resonances:

να − νβ = 0, να ∓ 2νγ = 0

or, equivalently,
να − νβ = 0, νβ ∓ 2νγ = 0.

Therefore, in any of the mentioned regions, where Jγ > 0 or Jγ < 0, the system is twice degenerate and the closures of its
trajectories are two-dimensional isotropic tori in the eight-dimensional phase space.

Using the primary variables ϕ, ψ, we have the following expressions for νϕ, νψ:

νϕ =
ω

4π

(
±1 +

2(Jϕ − Jψ)√
64µπ2C + (Jϕ − Jψ)2

)
,

νψ =
ω

4π

(
±1 +

2(Jψ − Jϕ)√
64µπ2C + (Jψ − Jϕ)2

)
,

the ± signs respectively in the regions where Jϕ + Jψ > 0 or Jϕ + Jψ < 0. Then, taking into account that

ω = πνα = πνβ = πν =
∂E

∂J
,

we have the following degeneracy conditions:

να − νβ = 0, να ∓ 2νϕ ∓ 2νψ = 0,

respectively in the regions where Jα + Jβ > 0 or Jα + Jβ < 0. Obviously, in the second equation, να may be equivalently
replaced by νβ .
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The corresponding quasiclassical Bohr-Sommerfeld spectrum is given by

E =
1
2

~ω

(
4n+ |m+ l|+

√
(m− l)2 +

16Cµ
~2

)
. (35)

Another interesting model is (34), separable in the variables (ρ, ϑ), i.e., equivalently (r, ϑ). Then we obtain

E =
ω

4π

(
4(Jr + Jϑ) + |Jϕ + Jψ|+

√
64µπ2C + (Jϕ − Jψ)2

)
=

ω

4π

(
4(2Jρ + Jϑ) + |Jϕ + Jψ|+

√
64µπ2C + (Jϕ − Jψ)2

)
.

Again there is only a two-fold degeneracy and the system is not periodic. Trajectories are dense in two-dimensional
isotropic tori. Degeneracy is described by the following pair of independent equations:

νρ − 2νϑ = 0, νϑ ∓ 2νϕ ∓ 2νψ = 0,

respectively in the phase-space regions where Jϕ + Jψ > 0 or Jϕ + Jψ < 0. Obviously, the second equation may be
alternatively replaced by

νρ ∓ 4νϕ ∓ 4νψ = 0.

The corresponding quasiclassical Bohr-Sommerfeld spectrum is given by

E =
1
2

~ω

(
4n+ |m+ l|+

√
(m− l)2 +

16Cµ
~2

)
,

where the quantum numbers n, m, l, refer respectively to the action variables J , Jϕ, Jψ, and the system is twice degenerate.
Quasiclassical energy levels are labelled by two effective quantum numbers, namely, (4n+m+ l) and (m− l), and there is
also an obvious degeneracy with respect to the simultaneous change of signs of m and l.
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Let us mention that some anharmonic potentials independent of ϑ, e.g., the first term in (34), are also of some practical
utility as models of a bounded motion. The point is that, as seen in formula (15), the variable r depends both on the area of
the body (its ”two-dimensional volume”) and on the shear parameter. Therefore, to be bounded in r implies to be bounded
both in the ”volume” and shear degrees of freedom. Due to the separability, the motion in (ϕ, ϑ, ψ)-variables is geodetic in
the sense of invariant metric tensors on SO(3,R) or SU(2). And this problem is mathematically isomorphic with the motion
of the free spherically-symmetric rigid body in the three-dimensional space (purely rotational one, without translations in
R3).

Another helpful model would be one with Vϑ(ϑ) = A cosϑ, where A denotes some constant. The resulting problem is
isomorphic with that of the three-dimensional heavy top.

It is not excluded that some more general problems from the realm of three-dimensional gyroscopic dynamics, e.g.,
symmetric top, might be also of some mathematical usefulness when studying the two-dimensional affine motion.
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Quantized problems

Classical dynamical models described above may be easily quantized in the sense of Schrödinger wave mechanics on
manifolds. And those rigorously solvable on the classical level are so as well on the quantum level.

Let us fix some notation. Let Q be a differential manifold of dimension n with the metric tensor G. The components of
G with respect to some local coordinates q1, . . . , qn will be denoted by Gij and the components of the contravariant inverse
of G will be denoted by Gij ; obviously, GikGkj = δi

j . The determinant of the matrix [Gij ] will be briefly denoted by the
symbol |G| (no confusion between two its meanings); obviously, this determinant is an analytic representation of some scalar
density of weight two; the square root

√
|G| is a scalar density of weight one. The invariant measure induced by G will be

denoted by µ̃; analytically its element is given by

dµ̃(q) =
√
|G(q)|dq1 · · · dqn.

Operators of the covariant differentation induced in the Levi-Civita sense by G will be denoted by ∇i. The corresponding
Laplace-Beltrami operator ∆ is analytically given by

∆ = Gij∇i∇j

or explicitly, when acting on scalar fields,

∆Ψ =
1√
|G|

∑
i,j

∂

∂qi

(√
|G|Gij ∂Ψ

∂qj

)
,

Ψ denoting a twice differentiable complex function on Q.
Wave mechanics is formulated in L2(Q, µ̃), the space of square-integrable functions on Q with the scalar product meant

as follows:
〈Ψ|Φ〉 :=

∫
Ψ(q)Φ(q)dµ̃(q).
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The operator ∆ is symmetric with respect to this product, and ∇i are skew-symmetric. The metric G underlies the
classical kinetic energy, therefore, the classical energy/Hamiltonian function

H =
µ

2
Gij(q)

dqi

dt

dqj

dt
+ V (q) =

1
2µ
Gij(q)pipj + V (q)

becomes the operator

Ĥ = − ~
2µ

∆ + V.

Then, denoting and ordering our coordinates qi as (ϕ,ψ, α, β) in the Cartesian case we have for explicitly separable isotropic
potentials:

[Gij ] =


α2 + β2 β2 − α2 0 0
β2 − α2 α2 + β2 0 0

0 0 1 0
0 0 0 1

 , (36)

Ĥ = Ĥα + Ĥβ = − ~2

2µ
∆ + V (α, β), (37)

where

Ĥα =
1

2µ

(
1
α2

(
Ŝ − Σ̂

)2

− ~2

(
∂2

∂α2
+

1
α

∂

∂α

))
+ Vα(α), (38)

Ĥβ =
1

2µ

(
1
β2

(
Ŝ + Σ̂

)2

− ~2

(
∂2

∂β2
+

1
β

∂

∂β

))
+ Vβ(β), (39)

and Ŝ = (~/i)∂/∂ϕ is the spin operator, the generator of spatial rotations about the current spatial position of the center of
mass, whereas Σ̂ = (~/i)∂/∂ψ is the ”vorticity” operator, the generator of material rotations. Operators Ĥα, Ĥβ , Ŝ, Σ̂ are
the quantum constants of motion. They also commute with each other (they represent co-measurable physical quantities).
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Those formulas follow from the expression of ∆ in coordinates (ϕ,ψ, α, β)

∆Ψ =
∂2Ψ
∂α2

+
∂2Ψ
∂β2

+
1
α

∂Ψ
∂α

+
1
β

∂Ψ
∂β

+
(

1
4α2

+
1

4β2

)(
∂2Ψ
∂ϕ2

+
∂2Ψ
∂ψ2

)
+

(
1

2β2
− 1

2α2

)
∂2Ψ
∂ϕ∂ψ

. (40)

Separable solutions of the stationary Schrödinger equation ĤΨ = EΨ have the form:

Ψ(ϕ,ψ, α, β) = fϕ(ϕ)fψ(ψ)fα(α)fβ(β), (41)

where fϕ(ϕ) = eimϕ, fψ(ψ) = eilψ (m, l are integers) and fα(α), fβ(β) are the deformative wave functions.
Hence, the stationary Schrödinger equation with an arbitrary potential V (α, β) = Vα(α)+Vβ(β) leads after the standard

separation procedure to the following system of one-dimensional eigenequations:

d2fα(α)
dα2

+
1
α

dfα(α)
dα

− (m− l)2

4α2
fα(α) +

2µ
~2

(Eα − Vα(α)) fα(α) = 0, (42)

d2fβ(β)
dβ2

+
1
β

dfβ(β)
dβ

− (m+ l)2

4β2
fβ(β) +

2µ
~2

(Eβ − Vβ(β)) fβ(β) = 0. (43)
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It is natural to expect that for potentials (5) the resulting Schrödinger equations should be rigorously solvable in terms
of some standard special functions. The most convenient way of solving them is to use the Sommerfeld polynomial method.
In this method the solutions are expressed by the usual or confluent Riemann P -functions. They are deeply related to
the hypergeometric functions (respectively usual F1 or confluent F2). If the usual convergence demands are imposed, then
the hypergeometric functions become polynomials and our solutions are expressed by elementary functions. At the same
time the energy levels are expressed by the eigenvalues of the corresponding operators. There exists some special class of
potentials to which the Sommerfeld polynomial method is applicable. The restriction to solutions expressible in terms of
Riemann P -functions is reasonable, because this class of functions is well investigated and many special functions used in
physics may be expressed by them. There is also an intimate relationship between these functions and representations of
Lie groups.

Let us now quote some formulas for quantized problems separable in coordinates (r,Φ,Θ,Ψ) (equivalently (ρ,Φ,Θ,Ψ)),
namely, the quantum counterparts of classical models (18). One can easily show that the Laplace operators take on the
form:

∆Ψ = 4r
∂2Ψ
∂r2

+ 8
∂Ψ
∂r

+
1

r sin2 ϑ

(
∂2Ψ
∂ϕ2

+ 2 cosϑ
∂2Ψ
∂ϕ∂ψ

+
∂2Ψ
∂ψ2

)
+

4
r

(
∂2Ψ
∂ϑ2

+ cotϑ
∂Ψ
∂ϑ

)
,

i.e.,

∆Ψ =
∂2Ψ
∂ρ2

+
3
ρ

∂Ψ
∂ρ

+
4

ρ2 sin2 Θ

(
∂2Ψ
∂Φ2

+ 2 cot Θ
∂2Ψ
∂Φ∂Ψ

+
∂2Ψ
∂Ψ2

)
+

4
ρ2

(
∂2Ψ
∂Θ2

+ cot Θ
∂Ψ
∂Θ

)
.
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We assume the doubly isotropic separable potential energy (21), i.e.,

V = Vr(r) +
Vϑ(ϑ)
r

= Vρ(ρ) +
Vϑ(ϑ)
ρ2

.

The corresponding Schrödinger equation separates and, taking into account the cyclic character of angular variables ϕ,ψ,
we put

Ψ(ϕ,ψ, r, ϑ) = eimϕeilψfr(r)fϑ(ϑ) = eimϕeilψfρ(ρ)fϑ(ϑ), (44)

where m, l are integers.
Quantum integration constants responsible for this separability are given by operators:

• p̂ϕ = ~
i
∂
∂ϕ = Ŝ– spin,

• p̂ψ = ~
i
∂
∂ψ = V̂ – vorticity,

• ĥϑ = 1
2µ sin2 ϑ

(
p̂ϕ

2 + 2 cosϑp̂ϕp̂ψ + p̂ψ
2
)
− 4~2

2µ

(
∂2

∂ϑ2 + cotϑ ∂
∂ϑ

)
+ Vϑ,

• Ĥ = Ĥr + Ĥϑ = Ĥr + 1
r ĥϑ = Ĥρ + 1

ρ2 ĥϑ– energy,

where the ”radial energy” is given by

Ĥr = Ĥρ = − ~2

2µ

(
4r

∂2

∂r2
+ 8

∂

∂r

)
+ Vr(r) = − ~2

2µ

(
∂2

∂ρ2
+

3
ρ

∂

∂ρ

)
+ Vρ(ρ).

The four mentioned constants of motion p̂ϕ, p̂ψ, ĥϑ, Ĥ are pairwise commuting and therefore they represent co-measurable
physical quantities.
Warning: the two indicated contributions to Ĥ, i.e., Ĥr and Ĥϑ = ĥϑ/r are not constants of motion.
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The stationary Schrödinger equation for the factorized wave function (44) reduces to the following pair of ordinary
Schrödinger equations (Sturm-Lioville equations) for the factors depending only on one variable, respectively ϑ and r (or
ρ):

ĥϑfϑ = eϑfϑ, (45)

Ĥrfr +
eϑ
r
fr = Efr, i.e., Ĥρfρ +

eϑ
ρ2
fρ = Efρ. (46)

The procedure is first to solve the ϑ-equation and then to substitute the resulting eigenvalues eϑ to the r/ρ-equation.
Then one obtains (at least in principle) the energy levels E.

It was mentioned that there exists some strange relationship between the two-polar parametrization of GL(2,R) and the
Euler angles and scale parameters of rigid body with dilatations. There is some very interesting aspect of this link, which we
noticed first quite accidentally, on the purely analytical level, before the trivial geometric meaning of this surprise became
evident to us. This artificial detour (wandering about) was due to the fact that by chance we invented our separating
coordinates (r, ϑ) better (ρ, ϑ) just where they are rather obscurely hidden, namely as polar parametrization of the pair of
quantities (2D1D2, D1

2 −D2
2) (14)–(16).

Namely, differential eigenequations (45), (46) may be explicitly written down as follows:

d2fϑ
dϑ2

+ cotϑ
dfϑ
dϑ
−
(
m2 + 2ml cosϑ+ l2

4 sin2 ϑ
+

µ

2~2
(Vϑ − eϑ)

)
fϑ = 0, (47)

4r
d2fr
dr2

+ 8
dfr
dr

+
2µ
~2

(
E −

(
Vr +

eϑ
r

))
fr = 0, (48)

where m, l are integers in Ψ as coefficients at the angles ϕ, ψ in complex exponential functions (eigenfunctions of p̂ϕ,
p̂ψ). Let us now divide by 4 the nominator and denominator in the bracket expression (47) and formally admit half-integer
coefficients.
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We can rewrite our equations as follows:

d2fϑ
dϑ2

+ cotϑ
dfϑ
dϑ
−
(
m2 + 2ml cosϑ+ l2

sin2 ϑ
+

µ

2~2
(Vϑ − eϑ)

)
fϑ = 0, (49)

d2fρ
dρ2

+
3
ρ

dfρ
dρ

+
2µ
~2

(
E −

(
Vρ +

eϑ
ρ2

))
fρ = 0, (50)

where now the numbers m, l are assumed to run over the set of non-negative integers and half-integers, i.e., m, l =
0, 1

2 , 1,
3
2 , · · · .

Let us notice that when there is no purely shear-like potential, i.e., Vϑ = 0, then the ϑ-equation is just nothing else but
the eigenequation for the nutation ϑ-factor of the stationary states of the spherical top:

d2fϑ
dϑ2

+ cotϑ
dfϑ
dϑ
−
(
m2 + 2ml cosϑ+ l2

sin2 ϑ
− µ

2~2
eϑ

)
fϑ = 0. (51)

The history of this equation traces back to the Reiche-Rademacher theory of quantum top and to the Wigner theory of
irreducible unitary representations of the group SU(2), i.e., roughly speaking, to the one-valued and two-valued irreducible
unitary representations of the rotation group SO(3,R). Then the quantized eigenvalues eΘ are given by the expression

eΘj =
2~2

µ
j(j + 1)

labelled by non-negative half-integer and integer numbers, j = 0, 1/2, 1, 3/2,
. . ., i.e., j ∈ {0} ∪ (N/2), N denoting the set of naturals.

The corresponding eigenfunctions djml(Θ) were found by Wigner as factors in expressions for the matrix elements of
unitary irreducible representations of SU(2),

Dj
ml(Φ,Θ,Ψ) = eimΦdjml(Θ)eilΨ.

Here, as mentioned, Φ, Θ, Ψ denote the Euler angles parametrization of SU(2). Their range is twice larger than the range
of Euler angles on the quotient group SO(3,R); this is the reason why the half-integer quantum numbers do appear.
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The celebrated functions Dj
ml appear also as stationary states of the quantized spherical free top. Energy levels are

then given by

Ej =
~2

2I
j(j + 1), j = 0,

1
2
, 1,

3
2
, · · · ,

I denoting the main moment of inertia, and of course they are (2j + 1)2-fold degenerate. The labels of basic j-states, m, l,
are quantum numbers of projections of the angular momentum respectively on the space-fixed and body-fixed z-axes:

~
i

∂

∂Φ
Dj

ml = ~mDj
ml,

~
i

∂

∂Ψ
Dj

ml = ~lDj
ml.

Obviously, m, l run over the range −j,−j + 1, . . . , j − 1, j, jumping by one. Strictly speaking, in applications concerning
the rotational spectra of mole-cules, one has to restrict ourselves to integer values of j, m and l. There are however some
arguments that perhaps the half integer values might be also acceptable.

Let us also mention that m, l are good quantum numbers also for a more general free symmetric top, not necessarily the
spherical one. If I, K are two main moments of inertia, I doubly degenerate one, then Dj

ml are still basic eigenfunctions
corresponding to the energy levels

Ej,l =
~2

2I
j(j + 1) + ~2

(
1
2I
− 1

2K

)
l2.

They are 2(2j + 1)-fold degenerate, namely with respect to the quantum number m and to the sign of l.
One can wonder whether such a symmetric free top in three dimensions, or more general three-dimensional top with

some external potential, first of all one of the shape U(Θ) (e.g., heavy top), might be useful as a tool for analyzing the
two-dimensional affinely-rigid body. This is just a question worth to be analyzed.
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Quantized harmonic and anharmonic vibrations

First let us consider the model of the harmonic oscillator potential (22). Applying the Sommerfeld polynomial method
we obtain the energy levels E = Eα + Eβ as follows:

E =
1
2

~ω (4n+ 4 + |m− l|+ |m+ l|) , (52)

where
Eα =

~ω
2

(4nα + 2 + |m− l|) , Eβ =
~ω
2

(4nβ + 2 + |m+ l|) , (53)

and ω =
√
C/µ, n = nα + nβ , n = 0, 1, . . . , m, l = 0,±1, . . . . We may write:

(i) if |m| > |l|, then m2 > l2 and
E = ~ω (2n+ 2±m) ,

(ii) if |m| < |l|, then m2 < l2 and
E = ~ω (2n+ 2± l) ,

(iii) if |m| = |l|, then m2 = l2 and
E = ~ω (2n+ 2±m) = ~ω (2n+ 2± l) .

After some calculations we obtain the deformative wave functions fα(α) and fβ(β) in the form:

fα(α) = ασκ
1
4 +σ

2 e−
κ
2 α

2
F2

(
−nα; 1 + σ;κα2

)
, (54)

fβ(β) = βγκ
1
4 + γ

2 e−
κ
2 β

2
F2

(
−nβ ; 1 + γ;κβ2

)
, (55)

where σ = 1
2 |m− l|, κ =

√
Cµ/~2, γ = 1

2 |m+ l|.
The constant term 4 occurying in the rigorous quantum formula (52) and absent in the quasiclassical one (24) was in

principle expected. This resembles the difference between Schrödinger and Bohr-Sommerfeld-quantized harmonic oscillators.
This is an essentially quantum effect.



Home Page

Title Page

Contents

JJ II

J I

Page 35 of 66

Go Back

Full Screen

Close

Quit

In the classical part we mentioned that the harmonic oscillator model, in spite of its academic character, may have some
practical utility, and besides, it suggests some reasonable anharmonic corrections well suited to certain of its degeneracy
properties. The mentioned corrections reduce degeneracy in some characteristic way and at the same time the model
becomes more realistic. On the classical and quasiclassical level we discussed the potential (97), i.e.,

V (α, β) =
C

2

(
α2 +

4
α2

)
+
C

2
β2.

The model may be rigorously solved on the quantum level and one obtains the following formula for the energy levels:

E =
1
2

~ω

(
4n+ 4 + |m+ l|+

√
(m− l)2 +

16Cµ
~2

)
. (56)

The energy in (56) depends on an integer combination of the quantum numbers, i.e., n = nα + nβ . The wave functions are
as follows:

fα(α) = αχκ
1
4 +χ

2 e−
κ
2 α

2
F2

(
−nα; 1 + χ;κα2

)
, (57)

fβ(β) = βγκ
1
4 + γ

2 e−
κ
2 β

2
F2

(
−nβ ; 1 + γ;κβ2

)
, (58)

where

χ =
1
2

√
(m− l)2 +

16Cµ
~2

.

It is seen that the formula for the energy levels is structurally ”almost” identical with the quasiclassical one (35), i.e.,

E =
1
2

~ω

(
4n+ |m+ l|+

√
(m− l)2 +

16Cµ
~2

)
.

This is rather typical for systems invariant under ”large” symmetry groups and based on interesting geometric structures.
There is a characteristic shift of energy levels, corresponding to the ”null vibrations” of the harmonic part of the system. Just
like on the classical and quasiclassical levels, the system is twice degenerate and its energy levels are essentially controlled
by two effective quantum numbers: nα + nβ + |m+ l| and |m− l|.
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Using the formulas (47), (48), i.e., (49), (50), we can also quantize the model (34), i.e.,

V (r, ϑ) =
C

2

(
r +

4
r

)
+

2C
r
tg2ϑ

2
.

The expression for the energy levels E is as follows:

E =
1
2

~ω

(
4n+ 4 + |m+ l|+

√
(m− l)2 +

16Cµ
~2

)
, (59)

where n = nr + nϑ. The functions fr(r), fϑ(ϑ) have the form:

fr(r) = r−
1
2 +εκ

1
2 +εe−

κ
2 rF2 (−nr; 1 + 2ε;κr) , (60)

fϑ(ϑ) =
(

cos
ϑ

2

)χ(
sin

ϑ

2

)γ
F1

(
−nϑ, 1 + nϑ + γ + χ; 1 + χ; cos2 ϑ

2

)
, (61)

where

ε =
1
2

√
1 +

2µ
~2
eϑ +

2Cµ
~2

,

eϑ =
~2

8µ

(4nϑ + 2 + |m+ l|+
√

(m− l)2 +
16Cµ

~2

)2

− 4− 16Cµ
~2

 .

For many physical reasons it would be interesting to discuss the model (21), however, we were not yet successful in
solving explicitly the corresponding Schrödinger equation.

Rigorous solutions for two-dimensional problems may be useful in microscopic physical problems (vibrations of pla-
nar molecules such as S8, C6H6) and in macroscopic elasticity (cylinders with homogeneously-deformable cross-sections).
Applications in dynamics of nanotubes seem to be possible.

The next important thing to be done is a more comprehensive analysis of the status of analogy with Euler angles and
the related complexification problems. This will be done in a subsequent paper. Some introductory analysis is outlined
below.
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Planar affine body versus spatial rigid body

It was mentioned above about certain interesting links between mechanics of isotropic affine body in two dimension and
the dynamics of three-dimensional rigid body, more precisely, rigid body with imposed dilatations. Only certain analytical
aspects, useful in calculations, were stressed there. However, the problem is geometrically interesting in itself and has to
do with certain complexification procedures on Lie groups used as configuration spaces. We shall analyze this problem in
more detail in a forthcoming paper; here we mention only a few simple analytical relationships.

Let us remind that the metric tensor underlying kinetic energy of the planar isotropic affine body was given by

ds2 = Tr
(
dφT dφ

)
= dx2 + dy2 + dz2 + du2; (62)

the corresponding kinetic energy form reads

T =
µ

2
Tr
(
dφT

dt

dφ

dt

)
=
µ

2

((
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

+
(
du

dt

)2
)
, (63)

where µ denotes the scalar inertial moment.
For certain reasons it is convenient to use some modified parametrization of the two-polar decomposition

φ = ODR−1, (64)

where O, R are proper orthogonal and D is diagonal, namely,

O =
[

cos Φ
2 − sin Φ

2

sin Φ
2 cos Φ

2

]
, D =

[
D1 0
0 D2

]
, R =

[
cos Ψ

2 sin Ψ
2

− sin Ψ
2 cos Ψ

2

]
and D1 = exp (a+ b/2), D2 = exp (a− b/2).
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It is convenient and instructive from the point of view of our analogies to write these matrices as:

O = exp
(

Φ
1
2i
σ2

)
, R−1 = exp

(
Ψ

1
2i
σ2

)
, D = exp

(
a

1
2
σ0

)
exp

(
b
1
2
σ3

)
,

where σν (ν = 0, 1, 2, 3) are Pauli matrices; more precisely, σa (a = 1, 2, 3) are ”true” Pauli matrices, so

σ0 =
[

1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (65)

The crucial point for our analogies and links is that the matrices

τa =
1
2i
σa, a = 1, 2, 3, (66)

are generators of the group SU(2), the universal covering of SO(3,R), with standard commutation rules

[τ1, τ2] = τ3, [τ2, τ3] = τ1, [τ3, τ1] = τ2. (67)

And similarly, the matrices
τ̃1 = iτ1, τ̃2 = iτ2, τ̃3 = iτ3 (68)

are generators of SL(2,R) with the standard structure constants,

[τ̃1, τ̃2] = τ̃3, [τ̃2, τ̃3] = τ̃1, [τ̃3, τ̃1] = −τ̃2. (69)

Obviously, the matrix

τ0 = τ̃0 =
1
2

[
1 0
0 1

]
(70)

generates real dilatations. So, the matrices τ̃ν generate the group GL(2,R), the configuration space of the planar affine body,
and τν generate R+SU(2), the 2 : 1 covering of the configuration space of rigid body with admitted dilatations (”breathing
top”).
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In our models of the doubly isotropic planar affine body, with the metric element (62) we were used rather to parametrize
the plane of deformation invariants (D1, D2) by r = ρ2 = (D1)2 +(D2)2 and the angle ϑ such that sinϑ = D1

2−D2
2/D1

2 +
D2

2 so that the relationships (14)–(16) and those following them are satisfied. However, in models with affinely-invariant
kinetic energies the variables a, b as deformation invariants are more convenient. As mentioned, one can show that

ds2 = dρ2 +
1
4
ρ2
(
dΘ2 + dΦ2 + 2 cos ΘdΦdΨ + dΨ2

)
=

1
4r
(
dr2 + r2

(
dΘ2 + dΦ2 + 2 cos ΘdΦdΨ + dΨ2

))
. (71)

We easily recognize the term characteristic for the spherical top described in terms of the ”Euler angles” (Φ,Θ,Ψ) and the
term corresponding to the evolution of the invariant r, a kind of ”dilatation” (not in a rigorous sense). Using the more
geometric variables a, b and the auxiliary, literally dilatational variable

δ =
√
D1D2 = exp (a/2) , (72)

we express (71) as follows:

ds2 = cosh b dδ2 + δ sinh b dδdb+
1
4
δ2 cosh b db2

+
1
4
δ2 cosh b

(
dΦ2 +

2
cosh b

dΦdΨ + dΨ2

)
. (73)

This is an ugly non-diagonal form; the reason is that ds2 is not affinely-invariant, but only isotropic. The ”Euler angles”
term is readable, because, as we saw, (cosh b)−1 = cos Θ. There are no essential geometric arguments against modifying
(71) by some extra term proportional to dρ2.
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Let us compare these formulas with those for the spherical three-dimen-sional rigid body with dilatations. More precisely,
we write down the formulas on the group R+SU(2), the universal (2 : 1) covering group of SO(3,R) (roughly speaking, the
spinorial breathing-rigid-body). Then φ ∈ R+SU(2) is ”Euler-parametrized” as follows:

φ = exp(aτ0)exp(Φτ2)exp(Θτ3)exp(Ψτ2). (74)

More precisely, historical term ”Euler angles” is used when the following convention is used:

φ̃′ = exp(aτ0)exp(Φτ3)exp(Θτ1)exp(Ψτ3), (75)

or similarly, (more popular in textbooks),

φ̃′′ = exp(aτ0)exp(Φτ3)exp(Θτ2)exp(Ψτ3). (76)

If (74)–(76) are identified, then, obviously, (Φ,Θ,Ψ) in those formulas denote numerically different functions on SU(2).
Nevertheless, there is no essential difference between them. What matters is that the SU(2)-matrices are factorized into
products of three elements taken from two orthogonal one-parameter subgroups. This is only the question how those three
one-parameter subgroups are called (ordered). The non-historical, apparently exotic convention (74) is optimally adapted
to our programme of exhibiting some links between planar affine body and spatial rigid body.

Namely, let us take the following metric on R+SU(2), underlying the kinetic energy of the spherical breathing top:

ds2 = Tr
(
dφ†dφ

)
, (77)

where, obviously, the ”† - symbol” denotes Hermitian conjugation of matrices.
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Denoting again:
δ = exp (a/2) , λ = δ2 = exp(a), (78)

we obtain:
ds2 = dδ2 +

1
4
δ2
(
dΘ2 + dΦ2 + 2 cos ΘdΦdΨ + dΨ2

)
, (79)

i.e., equivalently,

ds2 =
1

4λ
(
dλ2 + λ2

(
dΘ2 + dΦ2 + 2 cos ΘdΦdΨ + dΨ2

))
, (80)

or,

ds2 =
1
4
ea
(
da2 + dΘ2 + dΦ2 + 2 cos ΘdΦdΨ + dΨ2

)
. (81)

Obviously, the R+-factor in R+SU(2) is a normal divisor and from the purely geometrical point of view of two-side invariant
metrics on R+SU(2), there are no obstacles against modifying ds2 by adding an arbitrary correction term ds2

corr = c dδ2,
c being a constant. This means that (79)–(81) may be replaced by

ds2 = (1 + c)dδ2 +
1
4
δ2
(
dΘ2 + dΦ2 + 2 cos ΘdΦdΨ + dΨ2

)
, (82)

ds2 =
1

4λ
(
(1 + c)dλ2 + λ2

(
dΘ2 + dΦ2 + 2 cos ΘdΦdΨ + dΨ2

))
, (83)

ds2 =
1
4
ea
(
(1 + c)da2 + dΘ2 + dΦ2 + 2 cos ΘdΦdΨ + dΨ2

)
. (84)
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Concerning the extra dilatational term in dynamics of the breathing top. Replacing the real parameter a in (77), (78)
by imaginary one ia, one obtains instead (84) the following arc element for the two-side invariant Riemannian metric on
the unitary group U(2):

ds2 =
1
4
(
(1 + c)da2 + dΘ2 + dΦ2 + 2 cos ΘdΦdΨ + dΨ2

)
. (85)

For some application or just comparison purposes one can admit in (77), (78) the general complex parameter a. This results
in the doubly-invariant Riemannian metric on (C / {0})SU(2) = R+U(2).

This was, so-to-speak, ”one side” of injecting geometry and dynamics of the ”breathing top” into those of planar affine
body (or conversely). There is also another aspect, namely one based on affinely-invariant metric tensors on GL+(2,R).
Such metric tensors, of non-definite signature (SL(2,R),GL+(2,R) are non-compact, SL(2,R) is semisimple, and GL+(2,R)
is the direct product of R+SL(2,R)) are linear combinations of those given by the arc element

ds2 = Tr
(
Ω2
)

= Tr
(

Ω̂2
)

(86)

and the purely dilatational correction term

ds2
corr = Tr (Ω)2 = Tr

(
Ω̂
)2

, (87)

where the Lie-algebraic Cartan one-forms Ω, Ω̂ on GL(2,R) are given by the usual formulas:

Ω = (dφ)φ−1, Ω̂ = φ−1dφ = φ−1Ωφ. (88)

Obviously, (86) is the main, non-degenerate term of signature (+ + +−). Killing tensor on GL(2,R) is degenerate; the
singular direction is that of the one-dimensional center R+Id2. This Killing case corresponds to the ratio 4 : (−2) of
coefficients at (86), (87).
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For calculations we need the following parametrization of φ ∈ GL+(2,R), analogous to (74)

φ = exp(aτ̃0)exp(Φτ̃2)exp(bτ̃3)exp(Ψτ̃2)
= δexp(Φτ̃2)exp(bτ̃3)exp(Ψτ̃2), (89)

where, obviously,
δ = exp (a/2) =

√
λ. (90)

Combining (86), (87) with appropriate coefficients (that at the main term (86) must be non-vanishing), we finally obtain:

ds2 = (1 + c)dδ2 +
1
4
δ2
(
db2 − dΦ2 − 2 cosh b dΦdΨ− dΨ2

)
=

1
4λ
(
(1 + c)dλ2 + λ2

(
db2 − dΦ2 − 2 cosh b dΦdΨ− dΨ2

))
=

1
4
ea
(
(1 + c)da2 + db2 − dΦ2 − 2 cosh b dΦdΨ− dΨ2

)
. (91)

The relationship between these formulas (as matter of fact, one formula written in three alternative forms) and (71),
(73), (79)–(81) is obvious. Namely, the last four terms in any form of (91) become the ”minus” terms of the spherical top,
when some complexification procedure is performed, i.e., when we put b = iΘ, Θ being real. Then, obviously, the last four
terms become the spherical top expression with reversed sign,

− dΘ2 − dΦ2 − 2 cos ΘdΦdΨ− dΨ2, (92)

and no wonder, because SL(2,R) and SU(2) are two different (and is a sense, having opposite properties) real forms of
the same complex Lie group SL(2,C). The over-all minus term of the Killing metric on SU(2) is due to its compactness.
Performing a similar ”imaginarization” of a, we obtain just the ”minus” expression (85), the doubly invariant metric on
U(2). This also expresses the fact that GL+(2,R), U(2) are two different real forms of GL(2,C).
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Two-dimensional models in Riemannian manifolds

In generic Riemannian manifold (M, g) there is no isometry concept obviously, except for the trivial isometry (the
identity transformation). So, there is no concept of an extended rigid body. Similarly, in general there are no finite
affine transformations (with an exception of the trivial one), and therefore, there is no concept of extended affine bodies
(homogeneously deformable gyroscopes). But we can consider some models of infinitesimal affinely-rigid body and metrically-
rigid body.

The treatment consists in replacing extended bodies by structured material points, i.e., by material points with attached
linear frames (affine body) or orthonormal frames (gyroscope). These bases describe internal degrees of freedom. This means
that degrees of freedom are analytically described by the spatial coordinates xi (i = 1, · · · , n) and the components eiA of
the attached co-moving bases eA (A = 1, · · · , n). In gyroscopic case, the quantities eiA are constrained by the orthogonality
condition:

gije
i
Ae

j
B = δAB . (93)

Obviously, the metric tensor gij is always taken at the point x ∈ M , where the body is instantaneously placed, and the
basis (· · · , eA, · · · ) is attached, so eA ∈ TxM . Therefore, the quantities eiA are then functionally constrained by (93), and
they are not generalized coordinates. So, they are not very suitable for analytical calculations.

The configuration space Q of infinitesimal rigid body in (M, g) may be identified with F (M, g), i.e., the manifold of
all g-orthonormal frames in all tangent spaces of M . Obviously, F (M, g) is n(n + 1)/2-dimensional manifold; there is n-
translational degrees of freedom and n(n− 1)/2 rotational ones

dim Q = n+
n(n− 1)

2
=
n(n+ 1)

2
.

To obtain an effective analytical description, one fixes some, usually non-holonomic field of frames EA, A = 1, · · · , n,
usually somehow distinguished by the geometry of (M, g). Then we take the expansion:

eA(t) = EB(x(t))RBA(t), (94)

where R(t) is a time-dependent orthogonal matrix, i.e.,

δCDR
C
AR

D
B = δAB . (95)
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The angular velocity ω in the co-moving representation is defined by

DeB
Dt

:= eAω
A
B . (96)

One can show that
ωAB = ρAB + dAB , ρAB = (R−1)AC

d

dt
RCB ,

dAB = (R−1)AFΓFDCRDBRCGvG,

we omit the simple proof. Here ρ is the ”relative” angular velocity of the co-moving frame e with respect to the fixed
reference frame E, the object d (”drive”) describes the angular velocity with which E itself rotates along the trajectory of
motion. The symbols

vG = eGi
dxi

dt

are the co-moving components of the translational velocity,

ΓABC = EAiΓijkEjBEkC − EAi,jEiBEjC

are the anholonomic components of the Levi-Civita affine connection with respect to EA.
We have the following expression for the total kinetic energy:

T = Ttr + Tint =
m

2
gijv

ivj +
1
2
δABω

A
Cω

B
DJ

CD. (97)

In this formula the descriptors ”tr” and ”int” refer obviously to the translational and internal parts, m denotes the mass,
and JCD = JDC are co-moving components of the tensor of internal inertia.

Here we are interested mainly in the two-dimensional gyroscope, however this procedure is also convenient when dealing
with infinitesimal affinely-rigid body. The reason for this is that also in the case of affine motion there is a distinction between
the compact n(n− 1)/2 - dimensional subgroup of rotations and the n(n+ 1)/2 - dimensional quotient manifold. Therefore,
even in this case it may be convenient to distinguish between analytical formulas for the rotations and deformations.

The formulas above, first of all (97), are very convenient, almost indispensible in the technical procedures of solving
equations of motion. However, their disadvantage is that some geometric aspects are rather hidden.
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Let us repeat some of them. In a more general case of affine motion, i.e., one without constraints (93), the expression
for the kinetic energy has the form

T = Ttr + Tint =
m

2
gij
dxi

dt

dxj

dt
+

1
2
gij
DeiA
Dt

DejB
Dt

JAB . (98)

Obviously, it remains also true when (93) is imposed. For Lagrangians of the potential form

L = T − V (x, e)

the resulting equations of motion read:

m
Dva

Dt
=

1
2
SklR

l
k
a
jv
j + F a

(99)

eaK
D2ebL
Dt2

JKL = Nab.

The meaning of symbols is as follows:

va =
dxa

dt
, Skl = Skmg

ml = Kkl −Klk, Kab = eaA
DebB
Dt

JAB ,

F a = gabFb = −gab
(
∂V

∂xb
− ΓijbejB

∂V

∂eiB

)
, (100)

Nab = Na
cg
cb = −gbceaK

∂V

∂ecK

and Rijkl is the curvature tensor of (M, g).
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Therefore, va are components of the translational velocity, Skl are components of spin (intrinsic angular momentum), F a

are coordinates of the translational force, and Nab are components of the affine torque. It is important that the covariant
components of F in general differ from −∂V/∂xb; moreover, the latter ones are not covector components in M . It is only
the total F , the covariant exterior differential of V that is a good M -covector. When the metrical constraints are imposed,
i.e., when we deal with the metrically-rigid body, (99) becomes:

m
Dva

Dt
=

1
2
SklR

l
k
a
jv
j + F a

(101)

DSab

Dt
= eaK

D2ebL
Dt2

JKL − ebK
D2eaL
Dt2

JKL = N ab = Nab −N ba

obviously, with algebraically substituted (93). This is a nice balance of linear momentum and spin, geometrically suggestive,
but computationally not so effective as equations derived from (97). Nevertheless, (101) presents a nice description of the
mutual interaction between the translational and the attitude motion.
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Now we shall consider some special two-dimensional cases. Therefore, for the infinitesimal rigid body (infinitesimal
gyroscope) we are dealing with three degrees of freedom: two translational ones and one internal, rotational. The resulting
models are interesting in themselves from the point of view of pure analytical mechanics, in particular, some integrability
and hyperintegrability (degeneracy) problems may be effectively studied. Obviously, the explicit analytical results exist
only in Riemann manifolds (M, g) with some peculiar structure, first of all (but not only) in constant-curvature spaces.
Some practical applications of classical two-dimensional models also seem to be possible, e.g., in geophysical problems, in
mechanics of structured micropolar and micromorphic shells, etc. What concerns geophysics, we mean, e.g., motion of
continental plates. Motion of pollutions like oil spots on the oceanic surface is an another suggestive example.

Let us now quote some instructive special examples, namely, the two-dimensional rigid body moving in constant-curvature
spaces like the spherical space S2(0, R) and pseudo-spherical Lobachevsky space H2,2,+(0, R). The corresponding metric
elements are given respectively by

ds2 = dr2 +R2 sin2 r

R
dϕ2, ds2 = dr2 +R2 sinh2 r

R
dϕ2, (102)

with the proviso that in the spherical case all situations with r = πR and arbitrary values of ϕ correspond to the same
point (the ”southern” pole, or if r = 0 - the ”northern” pole). The range of r is respectively [0, πR], and [0,∞].

The most convenient choice of the reference frame is

Er =
∂

∂r
; Eϕ =

1
R sin r

R

∂

∂ϕ
, Eϕ =

1
R sinh r

R

∂

∂ϕ
,

respectively, in the spherical and pseudospherical case.
In two dimensions the angular velocity matrix has only one essential component, namely

ω1
2 = −ω2

1 = ω, ρ1
2 = −ρ2

1 = ρ, d1
2 = −d2

1 = d,

the diagonal entries obviously vanish.
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After some calculations the above formulae give:

(i) sphere:

ρ =
dψ

dt
, d = cos

r

R

dϕ

dt
, ω =

dψ

dt
+ cos

r

R

dϕ

dt
, (103)

(ii) pseudosphere:

ρ =
dψ

dt
, d = cosh

r

R

dϕ

dt
, ω =

dψ

dt
+ cosh

r

R

dϕ

dt
. (104)

Therefore, using the formula (97), we obtain for the kinetic energy T = Ttr + Tint the expression below. Depending on
the considered manifold, it has the following form:

(i) sphere:

T =
m

2

((
dr

dt

)2

+R2 sin2 r

R

(
dϕ

dt

)2
)

+
I

2

(
dψ

dt
+ cos

r

R

dϕ

dt

)2

, (105)

where I is the inertial moment. In the absence of deformations the internal inertia is controlled only by this single scalar.
This is the peculiarity of the ”two-dimensional world”.

Even for the purely translational motion some interesting questions arise, e.g., what are spherically symmetric potentials
V (r) for which all orbits are closed? Obviously we mean problems based on Lagrangians

Ltr = Ttr − V (r).
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This is a counterpart of the famous Bertrand problem in R2. And it may be shown that the answer is similar, i.e., the
possible potentials are as follows:

(a) oscillatory potentials:
V (r) =

γ

2
R2tan2 r

R
, (106)

(b) Kepler-Coulomb potentials:
V (r) = −α

R
cot

r

R
. (107)

Obviously, with the spherical topology also the geodetic problem belongs here:

(c) V (r) = 0, i.e., (in a sense) the special case of (a) or (b) when γ = 0, α = 0.

There is an obvious correspondence with the flat-space Bertrand problem; it is suggested by the very asymptotics for r ≈ 0,
i.e.,

V (r) ≈ γ

2
r2, V (r) ≈ −α

r
.

Obviously, this is a rough argument, but it may be shown that there exists a rigorous isomorphism based on the projective
geometry.

The mentioned Bertrand models lead to completely integrable and maximally degenerate (hyperintegrable) problems.
But even for the simplest, i.e., geodetic, models with the internal degrees of freedom the situation drastically changes.
There exist interesting and practically applicable integrable models, but as a rule interaction with internal degrees of
freedom reduces or completely removes degeneracy.

For certain reasons it will be convenient to rewrite the formula (105) in terms of the new variable ϑ = r/R - modified
”geographic latitude”, i.e.,

T =
mR2

2

((
dϑ

dt

)2

+ sin2 ϑ

(
dϕ

dt

)2
)

+
I

2

(
dψ

dt
+ cosϑ

dϕ

dt

)2

. (108)
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It is seen that if formally (ϕ, ϑ, ψ) are interpreted as Euler angles (respectively the precession, nutation and rotation),
the above expression is formally identical with the kinetic energy of the three-dimensional symmetric rigid body (without
translations) with the main moments of inertia given by

I1 = I2 = mR2, I3 = I.

If I = mR2 one obtains the expression for the spherical top in three dimensions.
There is nothing surprising in the mentioned isomorphism because the quotient manifold SO(3,R)/SO(2,R) may be in

a natural way identified with S2(0, 1) (or with any S2(0, R)). Projecting the motion of the three-dimensional symmetric
top onto the quotient sphere-manifold we obtain two-dimensional translational motion; the one dimensional subgroup of
rotations about z-axis refers to the internal motion of the two-dimensional rotator.

The projection procedure is exactly compatible with the mentioned correspondence between Euler angles in SO(3,R)
and our generalized coordinates (ϕ, ϑ = r/R, ψ) of the infinitesimal rotator in S2(0, R).

Let U(ϕ, ϑ, ψ) ∈ SO(3,R) be just the element labelled by the Euler angles (ϕ, ϑ, ψ), thus

U(ϕ, ϑ, ψ) = Uz(ϕ)Ux(ϑ)Uz(ψ), (109)

where Uz, Ux are rotations respectively around the z- and x-axes; angles of rotations are indicated as arguments and

U(ϕ, ϑ, ψ) =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 1 0 0
0 cosϑ − sinϑ
0 sinϑ cosϑ

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (110)

Calculating the ”co-moving angular velocity”

κ̂ = U−1 dU

dt
(111)

of this fictitious three-dimensional top one obtains that

κ̂ = κ̂1

 0 0 0
0 0 −1
0 1 0

+ κ̂2

 0 0 1
0 0 0
−1 0 0

+ κ̂3

 0 −1 0
1 0 0
0 0 0

 , (112)
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where

κ̂1 = sinϑ sinψ
dϕ

dt
+ cosψ

dϑ

dt
, (113)

κ̂2 = sinϑ cosψ
dϕ

dt
− sinψ

dϑ

dt
, (114)

κ̂3 = cosϑ
dϕ

dt
+
dψ

dt
. (115)

In expression (115) we easily recognize ω in (103), i.e., the expression for the one-component angular velocity of the two-
dimensional rotator. Calculating formally the kinetic energy of the three-dimensional symmetric SO(3,R)-top, i.e.,

T =
K

2
(κ̂1)2 +

K

2
(κ̂2)2 +

I

2
(κ̂3)2

, (116)

and substituting K = mR2, ϑ = r/R, we obtain exactly (105), i.e., (108).
As usual in analytical mechanics, the kinetic energy (105), (108) may be identified with some Riemannian structure

on the configuration space. Let us write down our kinetic energy in the following form with the explicitly separated mass
factor:

T =
m

2
Gij(q)

dqi

dt

dqj

dt
. (117)

Just as above, our generalized coordinates qi, i = 1, 2, 3, are the variables (r, ϕ, ψ) written just in this direction. After some
calculations we obtain that

[Gij ] =


1 0 0

0 R2 sin2 r
R + I

m cos2 r
R

I
m cos r

R

0 I
m cos r

R
I
m

 . (118)
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In the special case I = mR2 one obtains that G simplifies to Ğ, where

[
Ğij

]
=

 1 0 0
0 R2 R2 cos r

R
0 R2 cos r

R R2

 . (119)

In analogy to (105), (108) we obtain that:

(ii) pseudosphere:

T =
m

2

((
dr

dt

)2

+R2 sinh2 r

R

(
dϕ

dt

)2
)

+
I

2

(
dψ

dt
+ cosh

r

R

dϕ

dt

)2

, (120)

i.e.,

T =
mR2

2

((
dϑ

dt

)2

+ sinh2 ϑ

(
dϕ

dt

)2
)

+
I

2

(
dψ

dt
+ coshϑ

dϕ

dt

)2

. (121)

The kinetic energy is based on the metric tensor Gij with components:

[Gij ] =


1 0 0

0 R2 sinh2 r
R + I

m cosh2 r
R

I
m cosh r

R

0 I
m cosh r

R
I
m

 . (122)

It is seen that the spherically very special case I = mR2 here, in the pseudospherical case also leads to some simplification
of [Gij ], but not so striking one as previously. This fact has deep geometric reasons which will be explained in the sequel.

Namely, in the spherical space an essential point is the natural identification between the quotient manifold SO(3,R)/SO(2,R)
and the spheres S2(0, R), S2(0, 1). And this has to do with the formal identification between two-dimensional rigid body
moving over the spherical surface and the three-dimensional symmetrical top without translational degrees of freedom. The
special case I = mR2 corresponds to the spherical top.
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In general the kinetic energy is then invariant under SO(3,R)×SO(2,R). In the three-dimensional top analogy SO(3,R)
is acting as left regular translations and SO(2,R) as right regular translations corresponding to the group of rotations around
the body-fixed z-axis. If I = mR2 we have the full invariance under SO(3,R)× SO(3,R).

In the hyperbolic pseudospherical geometry the problem is isomorphic with the three-dimensional Lorentzian (Minkowskian)
top on R3. The rotation group SO(3,R) is replaced by the three-dimensional Lorentz group SO(1, 2). And still an im-
portant role is played by SO(2,R) interpreted again as the group of usual rotations in Euclidean space of (x, y)-variables
(thus, not affecting the z-direction). The above kinetic energy (120), (121) is invariant under SO(1, 2) × SO(2,R). But it
is never invariant under SO(1, 2) × SO(1, 2), i.e., under left and right Lorentz regular translations in the SO(1, 2)-sense.
The spherical special case I = mR2 does not help here. Indeed, the underlying metric G (and the kinetic energy itself) is
positively definite. But the doubly-invariant (SO(1, 2) × SO(1, 2)-invariant) metric on SO(1, 2), i.e., its Killing metric is
not positively definite. Instead it has the normal-hyperbolic signature (+ + −). The reason is that it is semi-simple (even
simple) non-compact group. This brings about the question about non-positive kinetic energies (metric tensors) on our
configuration space. As the negative contribution to the Killing metric tensor on SO(1, 2) comes from its compact subgroup
SO(2,R) of (x, y)-rotations, i.e., from the gyroscopic degree of freedom in the language of H2,2,+(0, R), there is a natural
suggestion to invert the sign of the gyroscopic contribution to (105), (108), i.e., to make it negative. One is naturally
reluctant to indefinite kinetic energies but there are examples when they are just convenient and very useful as tools for
describing some kinds of physical interactions, just encoding them even without any use of potentials.

So, we can try to use, or at least mathematically analyze, the ”Lorentz-type kinetic energies” TL of the form

TL =
m

2

((
dr

dt

)2

+R2 sinh2 r

R

(
dϕ

dt

)2
)
− I

2

(
dψ

dt
+ cosh

r

R

dϕ

dt

)2

=
mR2

2

((
dϑ

dt

)2

+ sinh2 ϑ

(
dϕ

dt

)2
)
− I

2

(
dψ

dt
+ coshϑ

dϕ

dt

)2

. (123)

Thus, it is so as if the extra rotation diminished effectively the kinetic energy of translational motion. If we write as usual
that

TL =
m

2 LGij(q)
dqi

dt

dqj

dt
,
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then, with the same as previously convention concerning the ordering of coordinates (r, ϕ, ψ), we have that

[LGij ] =


1 0 0

0 R2 sinh2 r
R −

I
m cosh2 r

R − I
m cosh r

R

0 − I
m cosh r

R − I
m

 (124)

(compare this with (122)).
And now, obviously, the remarkable simplification occurs in the very special case I = mR2 just as in the spherical

symmetry. This has to do ”as usual” with the enlarging of the symmetry group from SO(1, 2) × SO(2,R) to SO(1, 2) ×
SO(1, 2) (two additional parameters of symmetry). And namely, LG becomes then LĞ, i.e.,

[
LĞij

]
=

 1 0 0
0 −R2 −R2 cosh r

R
0 −R2 cosh r

R −R2

 (125)

(compare this with (119) and notice the characteristic sign differences).
Obviously, if we use the above isomorphism between the two-dimensional top sliding over the Lobachevsky plane with the

three-dimensional Lorentz top without translational motion in R3, then it is clear that LG is, up to normalization, identical
with the Killing metric tensor of SO(1, 2). Let us quote some formulas and concepts analogous to three-dimensional angular
velocities, i.e., to (111), (112). And then the kinetic energy will be expressed like in (116).

First of all we parameterize SO(1, 2) with the help of what we call the ”pseudo-Euler angles”. So, let us write that

SO(1, 2) 3 L(ϕ, ϑ, ψ) = Uz(ϕ)Lx(ϑ)Uz(ψ),

where the meaning of Uz is like in (109) and Lx denotes some Lorentz transformation in R3, namely, the ”boost” along the
x-axis, i.e.,

Lx(ϑ) =

 1 0 0
0 coshϑ sinhϑ
0 sinhϑ coshϑ

 .
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During the motion all these quantities are functions of time and we can calculate the corresponding Lie-algebraic element

λ̂ = L−1 dL

dt
,

i.e., the co-moving pseudo-angular velocity. After some calculations we obtain formulas analogous to (112)-(115), and
namely,

λ̂ = λ̂1

 0 0 0
0 0 1
0 1 0

+ λ̂2

 0 0 1
0 0 0
1 0 0

+ λ̂3

 0 −1 0
1 0 0
0 0 0

 ,
where

λ̂1 = sinhϑ sinψ
dϕ

dt
+ cosψ

dϑ

dt
,

λ̂2 = − sinhϑ cosψ
dϕ

dt
+ sinψ

dϑ

dt
,

λ̂3 = coshϑ
dϕ

dt
+
dψ

dt
.

Both the similarities and differences in comparison with the corresponding spherical formulas are easily seen.
And now we can write two formulas analogous to (116), i.e.,

T =
K

2

(
λ̂1

)2

+
K

2

(
λ̂2

)2

+
I

2

(
λ̂3

)2

, (126)

T =
K

2

(
λ̂1

)2

+
K

2

(
λ̂2

)2

− I

2

(
λ̂3

)2

, (127)

where K > 0 and I > 0. This is the symmetric SO(1, 2)-top in R3. The indefinite expression (127) is structurally suited to
the normal-hyperbolic signature of SO(1, 2). When K = I, then it becomes the spherical Lorentz top in R3 in the indefinite
version based on the Killing metric.

It is easily seen that both expressions (126) and (127) are invariant under SO(1, 2) × SO(2,R), where SO(1, 2) and
SO(2,R) acts on SO(1, 2) through respectively the left and right regular translations.
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The form (127) with K = I is invariant under all regular translations (both left and right), i.e., under SO(1, 2)×SO(1, 2).
And specifying K = mR2 in (126) and (127), we obtain respectively (120) and (123).

And again there are two Bertrand-type potentials, i.e.,

(a) the ”harmonic oscillator”-type potential:

V (r) =
γ

2
R2tan2 r

R
, γ > 0, (128)

(b) the ”attractive Kepler-Coulomb”-type one:

V (r) = −α
R

cot
r

R
, α > 0. (129)

With these and only these potentials all bounded orbits are closed. And now the term ”bounded” is essential because the
”physical space” is now not compact. And indeed, there exist unbounded motions corresponding to energy values exceeding
some thresholds. It is interesting that unlike in the spherical world, in Lobachevsky space the isotropic degenerate oscillator
has an open subset of unbounded trajectories because the potential (128) has a finite upper bound, i.e.,

Sup V =
γ

2
R2.

For energy values above this threshold all trajectories are unbounded, the motion is infinite. Below this threshold all
trajectories are not only bounded but also periodic.

The existence of threshold in (129) is not surprising, it is like in the usual Kepler in R2. But the threshold for the
isotropic degenerate oscillator is a very interesting feature of the Lobachevsky ”world”.
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Quantized problems

We formulate now the quantized version of our models. Before doing this, let us remain briefly the general ideas of
quantization in Riamannian configuration spaces. Considered is a classical geodetic system in a Riemannian manifold
(Q,G), where Q denotes the configuration space, and G is the ”metric” tensor field on Q underlying the kinetic energy
form. In terms of generalized coordinates we have

T =
1
2
Gij

dqi

dt

dqj

dt
.

As usual, the metric tensor G gives rise to the natural measure µ on Q,

dµ(q) =
√
|det[Gij ]|dq1 · · · dqf ,

where f denotes the number of degrees of freedom, i.e., f = dimQ. For simplicity the square-root expression will be
denoted by

√
|G|. The mathematical framework of Schrödinger quantization is based on L2(Q,µ), i.e., the Hilbert space of

complex-valued wave functions on Q, which are square-integrable in the µ-sense. Their scalar product is given by the usual
formula:

〈Ψ1|Ψ2〉 =
∫

Ψ1(q)Ψ2(q)dµ(q).

The classical kinetic energy expression is replaced by the operator

T̂ = −~2

2
∆,

where ~ denotes the (”crossed”) Planck constant, and ∆ is the Laplace-Beltrami operator corresponding to G,

∆ =
1√
|G|

∑
i,j

∂i
√
|G|Gij∂j = Gij∇i∇j ,

where ∇ denotes the Levi-Civita covariant differentiation in the G-sense.
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If the problem is non-geodetic and some potential V (q) is admitted, the corresponding Hamilton (energy) operator is
given by:

Ĥ = T̂ + V̂ ,

where the operator V̂ acts on wave functions simply multiplying them by V ,

(V̂Ψ)(q) = V (q)Ψ(q).

This is the reason why very often one does not distinguish graphically between V̂ and V .
Remark: There is a delicate problem concerning quantization which cannot be discussed here, and, fortunately, does not
interfere directly with the main subjects of our analysis. Strictly speaking, wave functions are not scalars but complex
densities of the weight 1/2 so that the bilinear expression ΨΨ is a real scalar density of weight one, thus, a proper object for
describing probability distributions. But in all realistic models, and the our one is not an exception, the configuration space
is endowed with some Riemannian structure. And this enables one to factorize scalar (and tensor) densities into products
of scalars (tensors) and some standard densities built of the metric tensor. Therefore, the wave function may be finally
identified with the complex scalar field (multicomponent one when there are internal degrees of freedom).

From now on we concentrate ourselves on the special case of test rigid body moving on the two-dimensional sphere
and pseudosphere. The previous notations are used to denote the variables. The Hamiltonian operator is given by the
expression:

Ĥ = T̂ + V (r) = − ~2

2m
∆ + V (r). (130)

The variables ϕ, ψ have the cyclic character in T . This focuses our attention on dynamical models where the potential
energy is also independent of the angles ϕ, ψ.

After some calculations we obtain for the Laplace-Beltrami operator the expression below. Depending on the considered
manifold, it has the following form:

(i) sphere:

∆ =
∂2

∂r2
+

1
R

cot
r

R

∂

∂r
−

2 cos r
R

R2 sin2 r
R

∂2

∂ϕ∂ψ

+
mR2 sin2 r

R + I cos2 r
R

IR2 sin2 r
R

∂2

∂ψ2
+

1
R2 sin2 r

R

∂2

∂ϕ2
. (131)



Home Page

Title Page

Contents

JJ II

J I

Page 60 of 66

Go Back

Full Screen

Close

Quit

In the special case, when I = mR2, we obtain

∆̆ =
∂2

∂r2
+

1
R

cot
r

R

∂

∂r
−

2 cos r
R

R2 sin2 r
R

∂2

∂ϕ∂ψ

+
1

R2 sin2 r
R

∂2

∂ψ2
+

1
R2 sin2 r

R

∂2

∂ϕ2
, (132)

as was mentioned above, the problem is isomorphic with the three-dimensional spherical top (without translations) and
similarly on the pseudosphere:

(ii) pseudosphere:

∆ =
∂2

∂r2
+

1
R

coth
r

R

∂

∂r
−

2 cosh r
R

R2 sinh2 r
R

∂2

∂ϕ∂ψ

+
mR2 sinh2 r

R + I cosh2 r
R

IR2 sinh2 r
R

∂2

∂ψ2
+

1
R2 sinh2 r

R

∂2

∂ϕ2
. (133)

If we assume the rotational kinetic energy to contribute with the negative sign, then the expression (133) becomes

L∆ =
∂2

∂r2
+

1
R

coth
r

R

∂

∂r
−

2 cosh r
R

R2 sinh2 r
R

∂2

∂ϕ∂ψ

+
−mR2 sinh2 r

R + I cosh2 r
R

IR2 sinh2 r
R

∂2

∂ψ2
+

1
R2 sinh2 r

R

∂2

∂ϕ2
. (134)

In particular, in the very special case I = mR2, these operators have the following form

∆̆ =
∂2

∂r2
+

1
R

coth
r

R

∂

∂r
−

2 cosh r
R

R2 sinh2 r
R

∂2

∂ϕ∂ψ

+
1

R2 sinh2 r
R

∂2

∂ψ2
+

1
R2 sinh2 r

R

∂2

∂ϕ2
. (135)
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L∆̆ =
∂2

∂r2
+

1
R

coth
r

R

∂

∂r
−

2 cosh r
R

R2 sinh2 r
R

∂2

∂ϕ∂ψ

+
1

R2 sinh2 r
R

∂2

∂ψ2
+

1
R2 sinh2 r

R

∂2

∂ϕ2
. (136)

Let us observe that ∆ and therefore, also the kinetic energy operator T̂ for (131) are left-invariant under the action of the
group SO(3,R), while (134) and the corresponding T̂ are left-invariant under SO(1, 2). On the right they are invariant only
under SO(2,R), the subgroup of rotations about the ”material” z-axis. In the special case I = mR2, they are invariant also
under the total right actions of SO(3,R), SO(1, 2). Obviously, even in the case I = mR2, (133) fails to be right-Lorentz-
invariant, but of course (136) is right-invariant. But in applications, when some potential V is admitted, the invariance is
lost. In any case, it is seen that the quantum operators of the kinetic energy have invariance properties quite analogous to
the corresponding classical ones. Obviously, the symmetry operations are meant in the sense of the argument-wise action
of the unitary operators representing the transformations of wave functions. Infinitesimal generators of the corresponding
one-parameter subgroups simply do commute with the kinetic energy operator.

A basis of solutions of the stationary Schrödinger equation ĤΨ = EΨ has the form:

Ψ(r, ϕ, ψ) = fr(r)fϕ(ϕ)fψ(ψ). (137)

It is convenient to use the variable ϑ = r/R for our calculations, then we put

Ψ(ϑ, ϕ, ψ) = fϑ(ϑ)einϕeilψ, n, l − integers. (138)

The true quantum dynamics is contained in the factor fϑ. The separation of variables and the procedure of Sommerfeld
polynomials guarantee that our wave functions are proper global solutions. However, some comments are necessary here.
Namely, in a sense one can admit some additional ”solutions”. The point is that the configuration space, in the case, e.g.,
of the motion on sphere, being isomorphic with the rotation group SO(3,R) is doubly connected. Its universal covering is
SU(2), obviously the homomorphism ratio is 2 : 1. Therefore, according to certain ideas of Pauli one can try to use the
covering manifold as a modified configuration space. The same holds in principle in the hyperbolic case. This ”covering
space-philosophy” seems to suggest us to admit the numbers n, l in our product formula for Ψ to be simultaneously integers
or simultaneously half-integers. Let us mention that there are systematically returning ideas of spin as the ”internal angular
momentum” of a quantized rigid (or deformable) body.
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Nevertheless, we were dealing there with the three-dimensional rigid body without translational motion. One can quite
reasonably expect the corresponding ”half-integer” solutions to be then realistic. It is not clear if this is the case also for
the body moving on the sphere S2(0, R) with one internal/rotational degree of freedom, although the configuration space
is then the same, i.e., SO(3,R).

Hence, the stationary Schrödinger equation with an arbitrary potential V (ϑ) leads after the standard separation proce-
dure to the following one-dimensional ”radial” eigenequations:

(i) sphere:
d2fϑ(ϑ)
dϑ2

+ cotϑ
dfϑ(ϑ)
dϑ

−((
m
I R

2 sin2 ϑ+ cos2 ϑ
)
n2 + l2 − 2nl cosϑ

sin2 ϑ
− 2mR2

~2
(E − V (ϑ))

)
fϑ(ϑ) = 0. (139)

(ii) pseudosphere:
d2fϑ(ϑ)
dϑ2

+ cothϑ
dfϑ(ϑ)
dϑ

−((
±mI R

2 sinh2 ϑ+ cosh2 ϑ
)
n2 + l2 − 2nl coshϑ

sinh2 ϑ
− 2mR2

~2
(E − V (ϑ))

)
fϑ(ϑ) = 0 (140)

with the above-mentioned meaning of the ± signs.
It is natural to expect that for Bertrand potentials the resulting Schrödinger equations should be rigorously solvable in

terms of some standard special functions. The most convenient way of solving them is to use the Sommerfeld polynomial
method. In this method the solutions are expressed by the usual or confluent Riemann P -functions. They are deeply related
to the hypergeometric functions (respectively usual F or confluent F1). If the usual convergence demands are imposed, then
the hypergeometric functions become polynomials and our solutions are expressed by elementary functions. At the same
time the energy levels and separation constants are expressed by the eigenvalues of the corresponding operators. There
exists some special class of potentials to which the Sommerfeld polynomial method is applicable.
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Examples

The equations (139) and (140) may be solved only when the explicit form of potential is specified. We consider a special
case, when the translational part of the potential energy V (ϑ) (V (r)) has the Bertrand structure, i.e. with the ”frozen”
rotations all orbits would be closed.

(i) sphere:

Here we consider the following model of the oscillatory potential (106):

V (r) =
γ

2
R2 tan2 r

R
.

Let us mention, it is a kind of the anharmonic potential which in the neighbourhood of the equilibrium resembles some
properties of the harmonic oscillator. This is the reason we are interested in it.

Applying the Sommerfeld polynomial method we obtain the energy levels E as follows:

E =
1
2

~Ω

(2k + 1 + |n− l|+
√

(n+ l)2 +
γmR4

~2

)2

+ 4n2
(m
I
R2 − 1

)
− 4γmR4

~2
− 1
)
, (141)

where Ω = ~ω/4mR2, ω =
√
γ/m and k = 0, 1, ... . After some calculations we obtain the function fr(r) in the form:

fr(r) =
(

cos
r

R

)κ (
sin

r

R

)ν
F
(
−k, k + 1 + κ+ ν; 1 + κ; cos2 r

R

)
, (142)

where

κ =

√
(n+ l)2 +

γmR4

~2
, ν = |n− l|.
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(ii) pseudosphere:

We take the ”harmonic oscillator” - type potential (128):

V (r) =
γ

2
R2 tanh2 r

R
, γ > 0.

We find the energy levels E in the form:

E =
1
2

~Ω

(2k + 1 + |n− l|+
√

(n+ l)2 +
γmR4

~2

)2

− 4n2
(
±m
I
R2 − 1

)
− 4γmR4

~2
− 1
)
. (143)

The function fr(r) is as follows:

fr(r) =
(

cosh
r

R

)κ (
sinh

r

R

)ν
F
(
−k, k + 1 + κ+ ν; 1 + κ; cosh2 r

R

)
. (144)

Let us notice that
lim
r→∞

γ

2
R2 tanh2 r

R
=
γ

2
R2.

This is the upper bound of the potential V (128). Therefore, the formula (143) is correct only for such quantum numbers
that

E < Sup V =
γ

2
R2.

Above this threshold we are dealing with the continuous spectrum and the classically non-restricted motion.
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The considered systems are completely non-degenerate. On the quantum level this fact is reflected by the existence of
three quantum numbers labelling the energy levels. They cannot be combined into a single quantum number, i.e., there
is no total quantum degeneracy, i.e., hyperintegrability, with respect to them. The interaction between translational and
rotational degrees of freedom completely removes degeneracy. As yet it is not clear for us if some weaker degeneracy does
occur for some relationships between constants m, I, R, γ.

Nevertheless, in the spherical, resonanse I = mR2 model

d2fϑ(ϑ)
dϑ2

+ cotϑ
dfϑ(ϑ)
dϑ

−
(
n2 + l2 − 2nl cosϑ

sin2 ϑ
− 2I

~2
(E − V (ϑ))

)
fϑ(ϑ) = 0 (145)

some special case of the total degeneracy is seen, namely γ = 0. This is the geodetic motion V = 0. The point is that this
problem is isomorphic, as we mentioned above, with the quantum mechanics of the spherical rigid body without translational
motion in three dimensions, i.e., with evidently completely degenerate model.

In the pseudospherical case, when I = mR2

d2fϑ(ϑ)
dϑ2

+ cothϑ
dfϑ(ϑ)
dϑ

−
(
n2 + l2 − 2nl coshϑ

sinh2 ϑ
− 2I

~2
(E − V (ϑ))

)
fϑ(ϑ) = 0 (146)

the situation is not clear, because in the geodetic problem γ = 0 one deals with the continuous spectrum, where the
Sommerfeld polynomial method is not literally applicable.
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***

Thank you for your attention

***


