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Classical ideas

Configuration space of an n-dimensional affinely-rigid body is identified with

Q = GAf (n,R) ' GL (n,R)⊗s Rn.

Rn - the center of mass motion, Qint = GL (n,R) - internal degrees of freedom. In
continuum case rather: Qint = GL+(n,R)

In more sophisticated terms: (M,V ) - the physical affine spaces of dimensional n, and
(N,U) - the material space of the same dimension n.

V , U - the linear space of translations in M , N . The fixed, time-independent positive
measure µ on N - the material mass distribution.

2



Lagrange center of mass in N ; v ∈ N such that
ˆ
−→va dµ (a) = 0

If Φ ∈ AfI (N,M), then vΦ := Φ (v) - position of the center of mass in M .

Therefore:
Q = M × LI (U, V ) ,

Φ: yi = xi + ϕiKa
K .
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The inertia:

• mass:
M =

ˆ
dµ (a) ,

• inertial tensor:
JKL =

ˆ
aKaLdµ (a) = JLK .

Kinetic energy - summation over the body elements:

T = Ttr + Tint =
M

2
gij
dxi

dt

dxj

dt
+

1

2
gij
dϕiA
dt

dϕjB
dt

JAB.

Putting M = N = U = V = Rn, Qint = GL (n,R):

T = Ttr + Tint =
M

2

dxT

dt

dx

dt
+

1

2
Tr

(
J
dϕT

dt

dϕ

dt

)
.
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Lagrangian:
L = T − V (x, ϕ) .

Legendre transformation:

pi =
∂L

∂ẋi
=
∂T

∂ẋi
, pAi =

∂L

∂ϕ̇iA
=

∂T

∂ϕ̇iA
.

Explicite:

pi = Mgij
dxj

dt
, pAi = gij

dϕjB
dt

JBA.
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Hamiltonian:

H = T + V = Ttr + Tint + V =
1

2M
gij pi pj +

1

2
J̃AB pAi p

B
j g

ij + V,

J̃AC J
CB = δA

B.

Action of GL(V ), GL(U):

A ∈ GL(V ) : LI(U, V ) 3 ϕ 7→ Aϕ ∈ LI(U, V ),

B ∈ GL(U) : LI(U, V ) 3 ϕ 7→ ϕB ∈ LI(U, V ).

ϕ 7→ AϕB non-effective kernel:

{
(`IdV , `

−1IdU) : ` ∈ R+
}
.
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Degenerate dimension, deformable coin

m = dimU < dimV = n,

Q = AfM(N,M) = M × LM(U, V ),

AfM(N,M), LM(U, V ) - monomorphisms

yi = xi + ϕiK a
K

The n×m matrix
[
ϕiK

]
has the rank m
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A ∈ GL(V ) : LM(U, V ) 3 ϕ 7→ Aϕ ∈ LM(U, V ), − transitive action

B ∈ GL(U) : LM(U, V ) 3 ϕ 7→ ϕB ∈ LM(U, V ). − non-transitive

Only such ϕ1, ϕ2 for which ϕ1(U) = ϕ2(U) may be joined by right action.

Let us fix some Ψ ∈ LM(U, V ). Then LM(U, V ) may be obtained as follows:

LM(U, V ) 3 Ψ 7→ ϕ = AΨ ∈ LM(U, V ), A ∈ GL(V ).

What is the stabilizer group H[Ψ] ⊂ GL[V ]? It preserves both Ψ(U) ⊂ V but also
every element of Ψ(U).
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Let us put: U = Rm, V = Rn and assume Ψ(U) to have zeros at (n − m) places[
a1, ..., am, 0, ..., 0

]T ,

Ψ
(
a1, ..., am

)
=


a1

...
am

o

 , o− (n−m)× 1 zero matrix

Then H is given by: [
Im A

o B

]
,

Im - m×m identity matrix, A, B -m× (n−m) and (n−m)× (n−m) matrices, o -
(n−m)×m zero matrix. A, B involve m(n−m) + (n−m)2 = n(n−m) parameters
and GL(n,R)/H : n2 − n(n − m) = nm parameters, the dimension of L(m,n) on
LM(m,n).
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H is indeed a subgroup:[
I A1

o B1

][
I A2

o B2

]
=

[
I A1B2 + A2

o B1B2

]
.

Affine velocity:

Ω =
dϕ

dt
ϕ−1, Ω̂ = ϕ−1dϕ

dt
= ϕ−1Ωϕ,

defined for m = n do not exist when m < n. More precisely, the righ inverse ρ such
that ϕρ = IdV does not exist at all. The left inverse λ, λϕ = IdU does exist but is
non-unique; various version coincide only on ϕ(U) ⊂ V .

But affine spin do exist; they are momentum mappings (Hamiltonian generators) of
the affine group,

Σi
j = ϕiAp

A
j, Σ̂A

B = pAiϕ
i
B.

But remark they are not spatial and material components of any object, because there
is no isomorphism between U and V .
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The canonical spin and vorticity are also defined:

Sij := Σi
j − gikgjlΣl

k,

VAB := Σ̂A
B − ηACηBDΣ̂D

C .

Hamiltonian generators of spatial and material rotations.

Similarly, the translational momentum pi gives rise to the material one p̂A:

p̂A = piϕ
i
A.
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Poisson brackets are given by structure constants of groups:{
Σi

j,Σ
k
l

}
= δilΣ

k
j − δkjΣi

l,
{

Σi
j + xipj, pk

}
= δikpj,

{pi, pj} = 0,{
Σi

j + xipj,Σ
k
l + xkpl

}
= δil

(
Σk

j + xkpj
)
− δkj

(
Σi

l + xipl
)
,{

Σi
j, pk

}
= 0.

For the material affine spin the following holds:{
ΣA

B,Σ
C
D

}
= δCBΣ̂A

D − δADΣ̂C
B,

and besides: {
Σi

j,Σ
A
B

}
= 0.
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Besides, the following Poisson brackets hold:{
xij, pj

}
= δij,

{
ϕiA, p

B
j

}
= δijδ

B
A .

We do not quote similar formulas for Sij, VAB in terms of structure constants of
SO(V, g), SO(U, η). If F depends only on the configuration (x, ϕ), then:

{
Σi

j, F
}

= −ϕiA
∂F

∂ϕjA
,

{
Σ̂A

B, F
}

= −ϕkB
∂F

∂ϕkA
.

Let us also quote the covariant Green tensor and contravariant deformation tensor:

G = ϕ∗ · g, C̃ = ϕ∗ · η̃,

analytically:

GAB = gijϕ
i
Aϕ

j
B, C̃ ij = ϕiAϕ

j
Bη

AB.

13



In matrix terms:
G = ϕTϕ, C̃ = ϕϕT .

In the case of non-degenerate affine bodies, m = n, we based on the polar and two-
polar decompositions:

ϕ = RL = ΛR, ϕ = V DU−1,

R, V, U ∈ SO(n,R), and L, Λ = RLR−1 are symmetric and positively definite, D is
diagonal and positive.

There are counterparts in the mechanics of degenerate affine bodies, when m < n.

So, we write:

ϕ = R

[
L

o

]

where R ∈ SO(n,R), L ∈ Symm(m,R), o is the (n − m) × m matrix made up of
zeros.
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DimSO(n,R) = n(n − 1)/2, dim Symm(m,R) = m(m + 1)/2. It is seen that for
general values of m, n the total number of these parameters,

n(n− 1)

2
+
m(m+ 1)

2

does not equal the number of internal degrees of freedom, i.e., to (nm). Because of some
redundant variables the configuration space cannot be identified with the Cartesian
product SO(n,R) × Sym(m,R). Because the subgroup SO(n −m,R) acting on the

(n−m)-tuple of the last variables in Rn does not affect

[
L

o

]
when multiplying it on

the left.
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Let us take the subgroup K ⊂ SO(n,R) composed of,

R =

[
Im oT

o u

]
,

where Im is an m×m identity matrix, o is (n−m)×m zero matrix and u ∈ SO(n−
m,R) is an arbitrary (n−m)× (n−m) rotation matrix. The subgroup K, isomorphic
with SO(n −m,R) is (n −m)(n −m − 1)/2-dimensional. The quotient manifold of
left cosets, SO(n,R)/K, has the dimension n(n − 1)/2 − (n −m)(n −m − 1)/2 =

mn −m(m + 1)/2. The configuration space of internal (relative) degrees of freedom
Qint is diffeomorphic with (SO(n,R)/K) × Sym(m,R). And the Cartesian product
is an mn-dimensional manifold, just as Qint = LM(m,n,R) itself.
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Let Ψ ∈ LM(U, V ) be a reference configuration, Ψ(U) ⊂ V a linear subspace and
K(Ψ) ⊂ SO(V, g) - a subgroup preserving every point of Ψ(U), the more Ψ(U) itself.
It acts trivially on Ψ(U) and is the group of rotations on Ψ(U)⊥. The quotient
manifold SO(V, g)/K(Ψ) describes rotational degrees of freedom. Without using Ψ:
this manifold is F(V, g;m), Stiefel manifold. When V = Rn, U = Rm, F(V, g;m) =

SO(n,R)/SO(n−m,R).

Remark:

Stiefel manifold differs from Grassmann manifold,

SO (n,R/SO (n−m,R))× SO (m,R) .

Grassmann dimension equals m(n−m).
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The "polar" decomposition identifies the internal configuration space with:

(SO (n,R) /SO (n−m,R))× Sym (m,R) .

Fortunately whenm = n−1 (physically 2), then SO(1,R) = {1} and SO(3,R)/SO(1,R) =

SO(3,R), and

Qint = SO(3,R)× Sym(2,R).

The “two-polar” decomposition has the form:

ϕ = V

[
D

o

]
U−1,

V ∈ SO(n,R), D = diag(D1, . . . , Dm), U ∈ SO(m,R).
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Physically,when n = 3, m = 2 the configurations are correctly represented by the
triples (V,D, U). The “polar” and “two-polar” decompositions have the forms:

ϕ = R


ξ α

α ζ

0 0

 , ϕ = V


λ 0

0 µ

0 0

U−1(θ),

where R ∈ SO(3,R), U [θ] =

[
cos θ − sin θ

sin θ cos θ

]
∈ SO(2,R), and

ξ > 0, ξζ − α2 > 0, λ > 0, µ > 0.

SO(3,R) is parametrized by local coordinates like e.g., Euler angles, rotation vector
etc.
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We introduce angular velocities in co-moving representation:

ω = R−1dR

dt
=


0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 ,

χ = V −1dV

dt
=


0 χ3 −χ2

−χ3 0 χ1

χ2 −χ1 0



ϑ = U−1dU

dt
=
dU

dt
U−1 =

dθ

dt

[
0 −1

1 0

]
.
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The internal kinetic energy in the “polar” representation has the form:

T = −1

2
Tr

([
LJL oT

o On−m

]
ω2

)
+ Tr

([
LJL̇ oT

o On−m

]
ω

)
+

1

2
Tr
(
JL̇2

)
.

The three terms are interpreted as:

1. Trot - rotational part coupled to the deformation matrix L.

2. Trot−def - Coriolis term - coupling between angular velocity and the deformation
velocity.

3. Tdef - the kinetic energy of deformation.
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Explicite:
T = Trot + Trot−def + Tdef ,

where

Trot =
J1α

2 + J2ζ
2

2
ω2

1 +
J1ξ

2 + J2α
2

2
ω2

2

+
J1ξ

2 + J2ζ
2 + (J1 + J2)α

2

2
ω2

3 − (J1ξ + J2ζ)αω1ω2,

Trot−def =

(
J1α

dξ

dt
+ (J2ζ − J1ξ)

dα

dt
− J2α

dζ

dt

)
ω3,

Tdef =
J1

2

(
dξ

dt

)2

+
J2

2

(
dζ

dt

)2

+
J1 + J2

2

(
dα

dt

)2

.
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In the “two-polar” case, when JAB = JδAB,

T =
J

2

(
µ2χ2

1 + λ2χ2
2 +

(
λ2 + µ2

)
χ2

3

)
+ 2Jλµχ3

dθ

dt
+

+
J
(
λ2 + µ2

)
2

(
dθ

dt

)2

+
J

2

((
dλ

dt

)2

+

(
dµ

dt

)2
)
.
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Legendre transformation in the "polar” case:

pα = (J1 + J2)
dα

dt
− (J1ξ − J2ζ)ω3,

pξ = J1

(
dξ

dt
+ αω3

)
, pζ = J2

(
dζ

dt
− αω3

)
,

s1 =
(
J1α

2 + J2ζ
2
)
ω1 − α (J1ξ + J2ζ)ω2,

s2 = −α (J1ξ + J2ζ)ω1 +
(
J1ξ

2 + J2α
2
)
ω2,

s3 = α

(
J1
dξ

dt
− J2

dζ

dt

)
− dα

dt
(J1ξ − J2ζ) +

(
J1ξ

2 + (J1 + J2)α
2 + J2ζ

2
)
ω3.

In the "two-polar" case:

pλ = J
dλ

dt
, pµ = J

dµ

dt
, pθ = J

(
λ2 + µ2

) dθ
dt

+ 2Jλµχ3,

s1 = Jµ2χ1, s2 = Jλ2χ2, s3 = 2Jλµ
dθ

dt
+ J

(
λ2 + µ2

)
χ3.
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Kinetic energy in the "polar" case:

T =
J1(ξs1 + αs2)

2 + J2(αs1 + ζs2)
2

2(α2 − ξζ)2J1J2

+

(
ξ2J1 + ζ2J2

)
pα

2

2(ξ + ζ)2J1J2

+

+

(
α2J1 +

(
α2 + (ξ + ζ)2

)
J2

)
pξ

2 +
((
α2 + (ξ + ζ)2

)
J1 + α2J2

)
pζ

2

2(ξ + ζ)2J1J2

+

+
(J1 + J2) (s3 (s3 − 2αpζ) + 2αpξ (s3 − αpζ))

2(ξ + ζ)2J1J2

+

+
2 (ξJ1 − ζJ2) pα (αpζ − αpξ + s3)

2(ξ + ζ)2J1J2

.

Kinetic energy in the "two-polar" case:

T =
1

2J
p2
λ +

1

2J
p2
µ +

λ2 + µ2

2J (λ2 − µ2)2p
2
θ +

1

2Jµ2
s2

1

+
1

2Jλ2
s2

2 +
λ2 + µ2

2J (λ2 − µ2)2s
2
3 −

2λµ

J (λ2 − µ2)2pθs3.
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Poisson brackets:

dqi

dt
=
{
qi, H

}
,

dsi
dt

= {si, H} ,
dpi
dt

= {pi, H} .

{f, g} = −{g, f} , {{f, g} , h}+ {{g, h} , f}+ {{h, f} , g} = 0,

{f, F (g)} = {f, g} dF
dg
.

{
qi, pj

}
= δij, {si, sj} = −εijksk, {pi, sj} = 0, {qi, sj} = 0.
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The "two-polar" equations of motion:

dλ

dt
=
pλ
J
,

dµ

dt
=
pµ
J
,

dθ

dt
=

(
λ2 + µ2

)
pθ

J (λ2 − µ2)2 −
2λµpθ

J (λ2 + µ2)2 ,

ds1

dt
=
λ
(
2λ3pθ + λ

(
µ2 − 3λ2

)
s3

)
s2

J(λ3 − λµ2)2
,

ds2

dt
=
λ
(
2µ3pθ + λ

(
λ2 − 3µ2

)
s3

)
s1

J(µ3 − µλ2)2
,

ds1

dt
=

(
µ2 − λ2

)
s1s2

Jλ2µ2
,

dpµ
dt

= 0,

dpλ
dt

= K +
λ
(
λ2 + 3µ2

)
p2
θ

J(λ2 − µ2)3
+

s2
2

Jλ3
−

2
(
3λ2µ+ µ3

)
pθs3

J(λ2 − µ2)3
+
λ
(
λ2 + 3µ2

)
s2

3

J(λ2 − µ2)3
,

dpµ
dt

= P −
(
3λ2µ+ µ2

)
p2
θ

J(λ2 − µ2)3
+

s2
1

Jµ3
+

2
(
3λµ2 + λ3

)
pθs3

J(λ2 − µ2)3
−
(
3µλ2 + µ3

)
s2

3

J(λ2 − µ2)3
.

The resulting equations are terribly complicated. But there are stationary ellipses as
solutions on which the Green deformation tensor and angular velocities are constant.
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We have shown this for the potentials:

V = k
(
λ2 + µ2

)
/2.

V = c

(
1

λ2
+ λ2

)
+ c

(
1

µ2
+ µ2

)

V = k

(
1

λµ
+
λ2 + µ2

2

)
where

x = % cos ε, y = % sin ε.

x =
1√
2

(λ+ µ) , y =
1√
2

(λ− µ)
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Quantization ideas

Applications:

• internal degrees of freedom of molecules

• microobjects with almost “flat” core

• “Schwungrad” model used in molecular dynamics in the pioneering days of quan-
tum theory

• convolution of “classical” and “quantum” in nanophysics
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The quantum operator of the internal kinetic energy has the form proportional to the
Laplace-Beltrami operator:

T = − ~2

2J
∆Γ,

and Γµν(Q) is given by the underlying classical kinetic energy:

Tint =
1

2
Γµν(Q)

dQµ

dt

dQν

dt
.
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Laplace-Beltrami operator is given by:

∆Ψ =
∑
µν

1√
|Γ|

∂

∂Qµ

(√
|Γ|Γµν ∂Ψ

∂Qν

)
,

where

|Γ| = |det [Γµν]| .

More geometrically:

∆Ψ = Γµν∇µ∇νΨ,
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The Hilbert space is L2(Qint, ν), where ν is the induced Γ-Riemannian measure,

dν(Q) =
√

Γ(Q) dQ1 . . . dQ6.

The scalar product is given by:

〈Ψ,Φ〉 =

ˆ
Ψ(Q)Φ(Q)dν(Q).
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To calculate anything in detail is difficult, but one can replace the spin variables sa by
the quantum operators Sa generating right rotations of V :

f (V (I + ε)) = f(V ) + εiRif(V ) = f(V ) +
i

~
εiSif(V ) + ~o(ε)

where Ri are generators and

ε =


0 ε3 −ε2

−ε3 0 ε1

ε2 −ε1 0


and o(ε)

ε → 0 when ε → 0. Quantum spin operators Si satisfy the quantum Poisson
brackets:

1

~i
[Sa,Sb] = −εabcSc.
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The classical quantity pθ will be replaced by the operator:

pθ =
~
i

∂

∂θ
.

It is possible to show that the operator Tint = − ~2
2J∆ may be expressed as:

Tint =
S1

2

2Jµ2
+

S2
2

2Jλ2
+

λ2 + µ2

2J (λ2 − µ2)2S3
2 +

λ2 + µ2

2J (λ2 − µ2)2pθ
2 − 2λµ

J (λ2 − µ2)2pθS3

− ~2

2J

1

P

[
∂

∂λ
P ∂

∂λ
+

∂

∂µ
P ∂

∂µ

]
,

where the weight factor P is given by

P = λµ
∣∣λ2 − µ2

∣∣ .
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The kinetic energy operator becomes:

Tint =
S1

2

2Jµ2
+

S2
2

2Jλ2
+

λ2 + µ2

2J (λ2 − µ2)2S3
2 +

λ2 + µ2

2J (λ2 − µ2)2pθ
2 − 2λµ

J (λ2 − µ2)2pθS3

− ~2

2J

∂2

∂λ2
− ~2

2J

∂ lnP
∂λ

∂

∂λ
− ~2

2J

∂2

∂µ2
− ~2

2J

∂ lnP
∂µ

∂

∂µ
.

The total operator of the kinetic energy is obviously given by:

T = Ttr + Tint,

where the translational part is given as usual by:

Ttr = − ~2

2m
∆tr = − ~2

2m
gij

∂

∂xi
∂

∂xj
= − ~2

2m

∑
i

∂2

∂xi2
.
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The total volume element in Q = Qtr ×Qint is given by:

dvvol(x, V, λ, µ, ϕ) = d3x dν(V, λ, µ, U(θ)).

When the body is isotropic JAB = IηAB and the potential depends only on invariants
λ, µ, then the solving procedure of Schrödinger equation may be partially algebraized.
Namely, one can perform the Fourier analysis on SO(3,R), SO(2,R).
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Parametrizing:

V (k̄) = exp (kaEa) , (Ea)
b
c = −εabc

on SO(3,R), and

SU(2) 3 u(k̄) = exp (kaea) = cos
k

2
I2 −

ka

k
sin

k

2
iσa,

we find the j-th irreducible representation of G = SU(2)× SO(3,R) is given by:

Dj(k̄) = exp

(
i

~
kaSja

)
,

where Sja are the Wigner matrices of the angular momentum with the Casimir quan-
tum number j and the square of magnitudes ~2j (j + 1)). In any case, Dj are unitary
(2j + 1)× (2j + 1) matrices.
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We introduce the operators:

Sa =
~
i
La, sa =

~
i
Ra,

where for „small” values of ε̄ we have:

f
(
V (k̄)V (ε̄)

)
= f

(
V (k̄)

)
+ εiRif

(
V (k̄)

)
+ o(ε),

f
(
V (ε̄)V (k̄)

)
= f

(
V (k̄)

)
+ εiLif

(
V (k̄)

)
+ o(ε).

They are formally self-adjoint and:

La =
k

2
cot

k

2

∂

∂ka
+

(
1− k

2
cot

k

2

)
ka
k

kb

k

∂

∂kb
+

1

2
εab

ckb
∂

∂kc
,

Ra =
k

2
cot

k

2

∂

∂ka
+

(
1− k

2
cot

k

2

)
ka
k

kb

k

∂

∂kb
− 1

2
εab

ckb
∂

∂kc
.
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Using the operator:
Da = La −Ra

we have:

La =
ka
2

∂

∂k
− 1

2
εab

ckbDc +
1

2
Da, (1)

Ra =
ka
2

∂

∂k
− 1

2
εab

ckbDc −
1

2
Da.
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The Casimir invariants have the form:

L2 = R2 = L1
2 + L2

2 + L3
2 = R1

2 +R2
2 +R3

2 =

=

(
∂2

∂k2
+ cot

k

2

∂

∂k

)
+

1

4 sin2 k
2

D2,

where
D2 = D1

2 +D2
2 +D3

2.

Sa =
~
i
La, sa =

~
i
Ra

are respectively operators of the internal angular momentum (spin) in the laboratory
representation and in the system of axes connected with the moving top.
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1

~i
[Sa,Sb] = εab

cSc,

1

~i
[Sa,Sb] = −εabcSc.

Obviously

S2 =
∑
a

(Sa)
2 = S2 =

∑
a

(Sa)
2.

41



It is clear that:

SaD
j = SjaD

j,

SaD
j = DjSja,

S2Dj = S2Dj = ~2j(j + 1)Dj,

S3D
j

m m′ = ~mDj

m m′ ,

S3D
j

m m′ = ~m′
Dj

m m′ .

Let us make the afore-mentioned Weyl-Peter expansion:

Ψ(V ;λ, µ; θ) =
∑

j,m,m′ ,k

f j,k
m′ ,m

(λ, µ) Dj

m m′(V ) eikθ.
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In the compact matrix form:

Ψ(V ;λ, µ; θ) =
∑
j,k

Tr
(
f j,k(λ, µ) Dj(V )

)
eikθ.

The action of the operator Sa and Sa on Ψ is algebraically represented in such a
way that the reduced amplitudes f j,km′,m interpreted with the fixed values of j, k as
(2j + 1)× (2j + 1) matrices with indices m′,m are transformed as follows:

f j,k 7→ Sjaf
j,k,

f j,k 7→ f j,kSa
j.

And pθ acts on Ψ:
f j,k 7→ ~kf j,k.
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If we use the isotropic internal Hamiltonian:

H = T + V(λ, µ).

the stationary Schrödinger equation:

HΨ = EΨ

becomes reduced to the system of independent equations for the matrix amplitudes
f j,k(λ, µ):

Hj,kf j,k = Ej,kf j,k,
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where

Hj,kf j,k =
Sj1

2

2Jµ2
f j,k +

Sj2
2

2Jλ2
f j,k +

λ2 + µ2

2J (λ2 − µ2)2S
j
3

2
f j,k

+
λ2 + µ2

2J (λ2 − µ2)2~
2k2f j,k − 2λµ

J (λ2 − µ2)2S
j
3

2~kf j,k (2)

− ~2

2J

1

P
∂

∂λ

(
P ∂

∂λ
f j,k
)
− ~2

2J

1

P
∂

∂µ

(
P ∂

∂µ
f j,k
)

+ V f j,k.

We obtain, the family of reduced Schrödinger equations for the system of matrix-valued
amplitudes f j,k(λ, µ). These amplitudes are dependent on deformation invariants.

In this way the number of degrees of freedom of internal motion of our model is
effectively reduced from six to two. The price we pay is that we obtain the system of
Schrödinger equations for multicomponent complex amplitudes, however, depending
only on two variables.
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This reduction is possible only for models with high symmetries, when both the inertial
tensor and the potential energy are isotropic.

V =
k

2

(
λ2 + µ2

)
,

V = c

(
1

λ2
+ λ2

)
+ c

(
1

µ2
+ µ2

)
,

V = Vρ(ρ) +
Vε(ε)
ρ2

,

where:

x =
1√
2

(λ+ µ) = ρ cos ε,

y =
1√
2

(λ− µ) = ρ sin ε.
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Comments:

In non-degenerate three-dimensional models it appeared in a natural way by taking
instead of GL(3,R) its covering group GL(3,R). In the two-polar decomposition the
orthogonal group SO(3,R) had to be replaced by the universal covering group SU(2).
The same may be done here. Namely, the SO(3,R)-factor of the decomposition must
be replaced by SU(2). And the resulting wave functions must satisfy a condition that
they combine expressions Dj

mm′(u)eikθ in such a way that either both j and k in the
admissible superposition are integers, or both of them are half-integers.
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Thank you !
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