# 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

## Amir H. Fatollahi

Alzahra University

### June 5, 2015

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

- 4 伊 ト 4 ヨ ト 4 ヨ ト

Basic Idea

- Matrix Dynamics
- Quantum Dynamics
- Angular momentum
- Harmonic osc.

Rayleigh-Ritz Method and Spectrum

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

High energy Hadron-Hadron scatterings show two regimes:

 Large momentum transfer: interaction among point-like substructures
 Small momentum transfer: linear Regge

trajectories are exchanged  $\Rightarrow$  Motivation for String picture

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

伺下 イヨト イヨト

Possible reconciliation of two regimes: Hadrons as

bound-states of point-like Quarks and QCD

flux-tubes (QCD-Strings).



Field theory anomalies of 2-dim string world-sheet  $\Rightarrow$  Lack of consistent QCD-Strings in 3+1 dims.

・ 同 ト ・ ヨ ト ・ ヨ

0-branes: Point-like objects to which strings end



Coordinates of N 0-branes given by  $N \times N$ hermitian matrices  $\Rightarrow$  Strings' dynamics encoded in off-diagonal elements of matrices

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

Suggestion: Modelling bound-state of Quarks and QCD-Strings by 0-brane matrix dynamics  $\Rightarrow$ Encouraging features [Fatollahi, EPL 53, 56, EPJC **19**, **27**, **17**]: 1) Linear potential between static 0-branes 2) Regge behavior in scattering amplitudes

3) Whiteness of 0-branes' c.m. w.r.t U(1) gauge fields on matrix space

・ 同 ト ・ ヨ ト ・ ヨ ト

# **Q:** Do linear Regge trajectories emerge from

0-brane matrix dyn.?  $\Rightarrow$ 

Check Energy spectrum vs. Ang. Mom.

- **Q:** Advantage of QM to world-sheet theory?
- A: Absence of anomalies in QM of finite matrices
- $\Rightarrow$  Possible consistent theory in 3+1 dims.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

**Q:** Relevance of Matrix Coordinates to QCD physics?

A: 1) Special relativity lesson: 4-vector photon fields live in 4-vector space-time coordinates 2) SUSY lesson: anti-commuting coordinates represent fermion content Matrix[YM] Fields  $\Leftrightarrow$  Matrix Coordinates  $\rightarrow$ Who knows about the exact nature of **Coordinates inside a proton?** 

4 3 6 4 3 6

# Dynamics of N 0-branes given by U(N) YM theory dimensionally reduced to 0 + 1 dimensions:

$$L = m_0 \text{Tr} \left( \frac{1}{2} (D_t X_i)^2 + \frac{1}{4 l_s^2} [X_i, X_j]^2 \right)$$
  
i, j = 1, ..., d,  $D_t = \partial_t - i[A_0, ]$ 

X:  $N \times N$  hermitian matrices,  $X_i = x_{ia}T_a$ 

 $I_s$ : string length,  $m_0 = (g_s I_s)^{-1}$ 

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

 $m_0 \gg l_s^{-1}$ .

Alzahra University

・ 同 ト ・ ヨ ト ・ モ ト ・

Theory is invariant under the gauge symmetry

$$ec{X} 
ightarrow ec{X'} = Uec{X}U^{\dagger},$$
  
 $A_0 
ightarrow A'_0 = UA_0U^{\dagger} + iU\partial_tU^{\dagger},$  (1)

U: arbitrary time-dependent  $N \times N$  unitary matrix

$$D_t \vec{X} \rightarrow D'_t \vec{X'} = U(D_t \vec{X}) U^{\dagger},$$
  
 $D_t D_t \vec{X} \rightarrow D'_t D'_t \vec{X'} = U(D_t D_t \vec{X}) U^{\dagger}.$  (2)

Alzahra University

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

For each direction there are  $N^2$  variables  $\Rightarrow$ Extra  $N^2 - N$  degrees of freedom represent

dynamics of strings stretched between N 0-branes.

c.m. is represented by trace of X matrices.

QM of off-diagonal elements of matrices causes the interaction among 0-branes.

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: quantum fluctuations of off-diagonal elements for classically static 0-branes  $\Rightarrow$  linear potential between 0-branes, just like QCD-string picture [Fatollahi, EPL 53] Canonical momenta:

$$P_i = \frac{\partial L}{\partial X_i} = m_0 D_t X_i \tag{3}$$

Hamiltonian:

$$H = \operatorname{Tr}\left(\frac{P_i^2}{2\,m_0} - \frac{m_0}{4\,l_s^2}\,[X_i, X_j]^2\right).$$

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

As the time-derivative of the dynamical variable  $A_0$ is absent, its equation of motion introduces constraints, the so-called Gauss's law

$$G_a := \sum_i [X_i, P_i]_a = \mathrm{i} \sum_{i,b,c} f_{abc} \, x_{i\,b} \, p_{i\,c} \equiv 0.$$

Pair of 0-branes (N = 2) in 2 dim (d = 2)

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Possible decomposition:  $SU(2) \times \Lambda \times SO(2)$  [Kares, NPB **689**]

 $X_{i\,a} = (\Psi)_{a\,b}(\Lambda)_{b\,j}(\eta)_{j\,i}$ 

Matrix  $\Psi$ : SU(2) group element  $\Rightarrow$  Gauge

transformations of variable  $X_{ia}$  are captured by  $\Psi$ 

through ordinary gauge group left multiplications.

Parameterizing SU(2) by three Euler angles:

$$\Psi = R_z(\alpha)R_x(\gamma)R_z(\beta),$$

 $R_a$ : rotation matrix about the *a*th axis.

伺下 イヨト イヨト

Matrix  $\eta$ : SO(2) group element parameterized by

angle  $\phi \Rightarrow$  capturing effect of rotation in 2-dim

space

Remaining degrees: matrix  $\Lambda$ 

$$\Lambda = \begin{pmatrix} r\cos\theta & 0\\ 0 & r\sin\theta\\ 0 & 0 \end{pmatrix}$$

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

・ 同 ト ・ ヨ ト ・ ヨ ト

SU(2) pure gauge degrees:  $\alpha$ ,  $\beta$ ,  $\gamma \Rightarrow$  gauging away by the Gauss law constraint:  $G_1 = \sin \alpha \cot \gamma \ p_{\alpha} - \sin \alpha \csc \gamma \ p_{\beta} - \cos \alpha \ p_{\gamma} = 0$  $G_2 = \cos \alpha \cot \gamma \ p_{\alpha} - \cos \alpha \csc \gamma \ p_{\beta} + \sin \alpha \ p_{\gamma} = 0$  $G_3 = -p_{\alpha} = 0$ 

 $p_{lpha}, p_{eta}, p_{\gamma}$ : canonical momenta $p_{lpha} = p_{eta} = p_{\gamma} \equiv 0.$ 

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

▲ロト ▲母ト ▲目ト ▲目ト → 目 → のへで

After imposing constraints, Hamiltonian is [Kares, NPB **689**]:

$$H = \frac{1}{2\mu} \left( p_r^2 + \frac{p_{\theta}^2}{r^2} + \frac{p_{\phi}^2}{r^2 \cos^2(2\theta)} \right) + \frac{\mu}{8} r^4 \sin^2(2\theta)$$

- $\mu = m_0/2$ : reduced mass of relative motion
- $p_{\phi}$ : constant motion

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

- (目) - (日) - (日)

Quantum theory

$$p_{\alpha} \rightarrow -i \frac{\partial}{\partial \alpha}, \quad p_{\beta} \rightarrow -i \frac{\partial}{\partial \beta}, \quad p_{\gamma} \rightarrow -i \frac{\partial}{\partial \gamma}$$

Wave-function: independent of pure-gauge degrees (as expected!) Laplacian

$$abla^2 \equiv rac{1}{\sqrt{g}} \partial_i (\sqrt{g} g^{ij} \partial_j)$$

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

- 4 伊 ト 4 ヨ ト 4 ヨ ト

[Kares]

$$H = -\frac{1}{2\mu} \left( \frac{1}{r^5} \partial_r \left( r^5 \partial_r \right) + \frac{1}{r^2} \nabla_{\Omega}^2 \right) + \frac{\mu}{8} r^4 \sin^2(2\theta),$$

$$abla_{\Omega}^2 = rac{1}{\sin(4 heta)}\partial_{ heta}\left(\sin(4 heta)\partial_{ heta}\right) + rac{\partial_{\phi}^2}{\cos^2(2 heta)}.$$

Using scaling  $\psi \rightarrow r^{-3/2}\psi$ 

$$H = -\frac{1}{2\mu} \left( \frac{1}{r^2} \partial_r \left( r^2 \partial_r \right) + \frac{1}{r^2} (\nabla_\Omega^2 - \frac{15}{4}) \right) + \frac{\mu}{8} r^4 \sin^2(2\theta)$$

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

≣। ≡ २०० Alzahra University

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$egin{aligned} 
abla_\Omega^2 \, \mathcal{Y}_\lambda( heta, \phi) &= \lambda \; \mathcal{Y}_\lambda( heta, \phi) \ \mathcal{Y}_\lambda( heta, \phi) &= oldsymbol{g}_\lambda( heta) rac{oldsymbol{e}^{oldsymbol{im}_z \phi}}{\sqrt{2\pi}} \end{aligned}$$

 $m_z$ : 0,  $\pm 2$ ,  $\pm 4$ ,  $\cdots$  (due to  $Z_2$  sym)

New variable:  $x = cos(4\theta), 0 \le \theta \le \pi/4$ 

$$rac{\mathrm{d}}{\mathrm{d}x}\left((1-x^2)rac{\mathrm{d}g_\lambda}{\mathrm{d}x}
ight)-rac{m^2}{2(1+x)}g_\lambda(x)=rac{\lambda}{16}\;g_\lambda(x).$$

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

・ロト ・ 一下・ ・ ヨト・

$$(1-x^2)Q''(x) + (m-(m+2)x)Q'(x)$$

$$-\left(\lambda+\frac{m(m+2)}{4}\right)Q(x)=0,$$

Solution: Jacobi polynomials of order  $n = l - m \ge 0$ ,  $\mathcal{P}_n^{(0,m)}(x)$ 

$$\lambda = -16(I - m/2)(I - m/2 + 1), \qquad m \leq I_{\text{B}} = 0, 1, \dots, \dots$$

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

Normalized Ang. Mom. eigenfunctions

$${\mathcal Y}_{l}^{m}( heta,\phi) = \sqrt{rac{2l-m+1}{2^{m+1}}}(1\!+\!\cos(4 heta))^{m/2} {\mathcal P}_{l-m}^{(0,m)}(\cos(4 heta))$$

#### Recurrence relations:

$$\frac{2(l+1)(l-m+1)}{(2l-m+1)(2l-m+2)}\mathcal{P}_{l-m+1}^{(0,m)}(x) + \frac{2l(l-m)}{(2l-m)(2l-m-1)} + \frac{m^2}{(2l-m)(2l-m+2)}\mathcal{P}_{l-m}^{(0,m)}(x) = x \mathcal{P}_{l-m}^{(0,m)}(x)$$

Alzahra University

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Need a basis-function: H.O. (as usual!)

$$\psi_{E,l,m}(r,\theta,\phi) = R_{E,l,m}(r) \mathcal{Y}_l^m(\theta,\phi)$$

Radial eq.

$$-\frac{1}{2\mu} \left( R_{E,l,m}'' - \frac{J_l^m (J_l^m + 1)}{r^2} R_{E,l,m} \right) + \frac{1}{2} \mu r^2 R_{E,l,m}$$
$$= E R_{E,l,m}$$

$$J_l^m = 4 l - 2 m + 3/2.$$

Alzahra University

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

$$R_{k,l,m}(r) = \sqrt{\frac{2 \, k! \, \mu^{J_l^m + 3/2}}{\Gamma(k + J_l^m + 3/2)}} \, r^{J_l^m} e^{-\mu r^2/2} \, L_k^{(J_l^m + 1/2)}(\mu r^2)$$

 $k = 0, 1, 2, \cdots$ 

## $E_{k,l,m} = 2k + J_l^m + 3/2 = 2k + 4l - 2m + 3$

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

≣ ▶ ≣ প ৭ Alzahra University

・ロト ・四ト ・ヨト ・ヨト

### Basis function: 80 per Ang. Mom.

Rescalings:

$$X_i o g_s^{1/3} \, l_s \, X_i, \quad P_i o g_s^{-1/3} \, l_s^{-1} \, P_i$$
 $E \propto \, g_s^{1/3} \, l_s^{-1}$ 

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

≣ ▶ ≣ পএ Alzahra University

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| mz | $E_1$ | $E_2$ | E <sub>3</sub> | $E_4$ | $E_5$ | E <sub>6</sub> | mz | $E_1$ | $E_2$ | E <sub>3</sub> | $E_4$ | $E_5$ |
|----|-------|-------|----------------|-------|-------|----------------|----|-------|-------|----------------|-------|-------|
| 0  | 2.66  | 4.54  | 5.95           | 7.15  | 8.25  | 9.09           | 22 | 13.5  | 14.9  | 16.5           | 18.3  | 20.   |
| 2  | 4.13  | 5.31  | 6.22           | 7.16  | 8.34  | 9.79           | 24 | 14.4  | 15.9  | 17.6           | 19.5  | 21.   |
| 4  | 5.39  | 6.13  | 6.89           | 7.91  | 9.22  | 10.9           | 26 | 15.4  | 16.9  | 18.7           | 20.6  | 22.   |
| 6  | 6.44  | 6.99  | 7.83           | 8.95  | 10.4  | 12.1           | 28 | 16.3  | 17.9  | 19.7           | 21.8  | 24.   |
| 8  | 7.33  | 7.96  | 8.89           | 10.1  | 11.6  | 13.4           | 30 | 17.3  | 18.9  | 20.8           | 22.9  | 25.   |
| 10 | 8.18  | 8.95  | 9.97           | 11.3  | 12.8  | 14.7           | 32 | 18.2  | 19.9  | 21.9           | 24.1  | 26.   |
| 12 | 9.03  | 9.95  | 11.1           | 12.4  | 14.1  | 16.1           | 34 | 19.2  | 21.0  | 23.0           | 25.2  | 27.   |
| 14 | 9.90  | 10.9  | 12.2           | 13.6  | 15.4  | 17.4           | 36 | 20.2  | 22.0  | 24.0           | 26.4  | 28.   |
| 16 | 10.8  | 11.9  | 13.3           | 14.8  | 16.6  | 18.8           | 38 | 21.1  | 23.0  | 25.1           | 27.5  | 30.   |
| 18 | 11.7  | 12.9  | 14.3           | 16.0  | 17.9  | 20.1           | 40 | 22.1  | 24.0  | 26.2           | 28.6  | 31.   |
| 20 | 12.6  | 13.9  | 15.4           | 17.2  | 19.1  | 21.4           | 42 | 23.1  | 25.0  | 27.3           | 29.8  | 32.   |
|    |       |       |                |       |       |                |    |       |       |                |       |       |

・ロト ・四ト ・ヨト ・ヨト



Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

≣। ≡ २०० Alzahra University

イロト イヨト イヨト イヨト

 $E_1 = 3.474$  [0.059] + 0.462 [0.002]  $m_z$ 

$$E_2 = 3.953$$
 [0.031]  $+$   $0.500$  [0.001]  $m_z$ 

$$E_3 = 4.632$$
 [0.020]  $+$   $0.539$  [0.001]  $m_z$ 

$$E_4 = 5.535$$
 [0.027]  $+$   $0.579$  [0.001]  $m_z$ 

$$E_5 = 6.754$$
 [0.038]  $\,+\,0.616$  [0.001]  $m_z$ 

$$E_6 = 8.277$$
 [0.047]  $+$  0.654 [0.002]  $m_z$ 

 $m_z: 0, 2, 4, \cdots, 42$ 

Less than %2 error: staight-lines fit data!

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

### Thank you on behalf of Matrix Coordinates!

Amir H. Fatollahi: 0-Brane Matrix Dynamics for QCD purposes: Regge Trajectories

Alzahra University

・ 同 ト ・ ヨ ト ・ ヨ ト