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Summary

1. We show that the 2-torus in R3 is a critical point of a sequence of
functionals Fn (n = 1, 2, 3, · · · ) defined over compact 2-surfaces
(closed membranes) in R3.
2. When the Lagrange function E is a polynomial of degree n of the
mean curvature H of the surface, the radii (a, r) of the 2-torus are

related as a2

r2
= n2−n

n2−n−1 , n ≥ 2.

3. A simple generalization of 2-torus in R3 is a tube of radius r along
a curve α which we call it toroidal surface (TS). We show that
toroidal surfaces with non-circular curve α do not provide minimal
energy surfaces of the functionals Fn (n = 2, 3) on closed surfaces.
4. We discuss possible applications of the functionals discussed in this
work on cell membranes.

Metin Gürses Toroidal Surfaces June 5-10, 2015 3 / 41



Basic References
T.J. Willmore, Total Curvature in Riemannian Geometry, John Willey
and Sons, New York, (1982).
W. Helfrich, Elastic Properties of lipid bilayers: theory and possible
experiments, Z. Naturforssch, 28, 693 (1973).
Z.C. Tu and Z.C. Ou-Yang, A Geometric Theory on the Elasticity of
Bio-membranes, J. Phys. A: Math. Gen. 37, 11407-11429 (2004).
Z.C. Tu and Z.C. Ou-Yang, Lipid Membranes with Free Edges, Phys.
Rev. E 68, 061915 (2003).
Z. C. Tu and Z. C. Ou-Yang, Proceeding of the Seventh International
Conference on Geometry, Integrability and Quantization, Varna,
Bulgaria, 2005, edited by I. M. Mladenov and M. de León, SOFTEX,
Sofia, 237 (2005), Report No. math-ph/0506055.
Fernando C. Marques and Andrẽ Neves, Min-Max theory and the
Willmore conjecture,Annals of Mathematics, 179.2, 683-782 (2014):
arXiv:1202.6036v2 [math.DG].
U. Seifert, Vesicles of Toroidal Topology, Phys. Rev. Lett. 66, 2404
(1991).
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Introduction

In the history of differential geometry there are some special subclasses of
2-surfaces, such as surfaces of constant Gaussian curvature, surfaces of
constant mean curvature, minimal surfaces and the Willmore surfaces.
These surfaces arise in many different branches of sciences; in particular, in
various parts of theoretical physics (string theory, general theory of
relativity), cell-biology and differential geometry . All these special
surfaces constitute critical points of certain functionals. Euler-Lagrange
equations of these functionals are very complicated and difficult. There are
some techniques developed to solve them, such as using the deformation
of the Lax equations of the integrable equations.
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Introduction

The main objective in our work is to investigate 2-surfaces derivable from
a variational principle, such as the minimal and Willmore surfaces and
surfaces solving the shape equation. All these surfaces are critical points of
a functional where the Lagrange function is a polynomial of degree two in
the mean curvature of the surface. It is natural to ask whether there are
surfaces solving the Euler-Lagrange equations corresponding to more
general Lagrange functions depending on the mean and Gaussian
curvatures of the surface (Tu-Yang). It is the purpose of this work to give
an answer to such a question.
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Introduction

The quadratic Helfrich functional for a theoretical model of a closed
cell-membrane is

F =
1

2

∫
S

[kc (2H + c0)2 + 2w ] dA + p

∫
V

dV

where kc is the elasticity constant, H and c0 are the mean and the
spontaneous curvatures, w is the surface tension and p is the pressure
difference between in and out of the surface. First variation of the above
functional gives the shape equation

p − 2wH + 2 kc ∇2H + kc (2H + c0)(2H2 − c0H − 2K ) = 0.
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Introduction

Sphere with an arbitrary radius is an exact solution of this equation. The
radius of the sphere is related to the model parameters kc , c0, w and p
through the shape equation . Stability of this solution has been studied in
Tu-Yang (1987). A special 2-torus, called the Clifford torus, is also an
exact solution of the shape equation above. We might consider that
Helfrich’s functional as an approximation of some higher order functionals
Fn =

∫
S En dA + p

∫
V dV , (n ≥ 2) where

En =
n∑

k=0

an+1−k H
k , n = 1, 2, · · ·

= a1H
n + a2H

n−1 + · · ·+ an H + an+1. (4.1)
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Introduction

Here ai ’s are constants describing the parameters of the cell-membrane
model. Hence it is worthwhile to study such functionals and search for
possible critical points. This is another motivation of this work on
functionals on closed surfaces. In this work we consider only surfaces
which are diffeomorphic to 2-torus. We call such surfaces as toroidal
surfaces. The first example we consider is the 2-torus itself. The second
example is the tube of radius r about a closed planar curve α.
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Surfaces from a variational principle

Let S be a regular closed 2-surface in R3 with Gaussian (K ) and mean
(H) curvatures. A functional F is defined by

F =

∫
S
E(H,K )dA + p

∫
V
dV ,

where E is the Lagrange function depending on H and K . Functional F is
also called curvature energy or shape energy. Here p is a constant which
play the role of Lagrange multiplier and V is the volume enclosed within
the surface S . We obtain the Euler-Lagrange equations corresponding to
the above functional from its first variation. Let E be a twice differentiable
function of H and K . Then the first variation of F is given by

δF =

∫
S
E (E) Ω dA,

where Ω is an arbitrary smooth function on S .
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Surfaces from a variational principle

Then the Euler-Lagrange equation E (E) = 0 for F reduces to (Tu-Yang)

E (E) = (∇2 + 4H2 − 2K )
∂E
∂H

+ 2(∇ · ∇̄+ 2KH)
∂E
∂K
− 4HE + 2p = 0.

Here and in what follows, ∇2 = 1√
g

∂
∂x i

(√
gg ij ∂

∂x j

)
and

∇·∇̄ = 1√
g

∂
∂x i

(√
gKhij ∂

∂x j

)
, g = det (gij), g ij and hij are inverse

components of the first and second fundamental forms; x i = (u, v) and we
assume Einstein’s summation convention on repeated indices over their
ranges.
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Surfaces from a variational principle

Weingarten surfaces are the surfaces where the mean and Gauss
curvatures satisfy certain algebraic relations. Surfaces are called linear
Weingarten surfaces if αH + βK + γ = 0 relation holds for any constants
α, β and γ. Here we have a nice theorem on such surfaces.

Theorem 1. Let S be linear Weingarten surface ,i.e., αH + βK + γ,
where α, β and γ are constants. Then S is a critical point of the
functional F with a Lagrange function E = β

2H + α
2 and p = −γ

Proof. Inserting E = β
2H + α

2 into the Euler-Lagrange equation we simply
obtain the linear Weingarten relation with γ = −p.
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Surfaces from a variational principle

For the second variation of the functional we assume that E depends only
on H. In this case the expression is much simpler (Tu-Yang)

δ2F =

∫
S

(
E1 Ω2 + E2 Ω∇2 Ω− 2

∂E
∂H

Ω∇ · ∇̃Ω +
1

4

∂2E
∂H2

(∇2Ω)2

+
∂E
∂H

[∇(HΩ) · ∇Ω−∇Ω · ∇̃Ω]

)
dA

where

E1 = (2H2 − K )2
∂2E
∂H2

− 2HK
∂E
∂H

+ 2KE − 2Hp,

E2 = (2H2 − K )
∂2E
∂H2

+ 2H
∂E
∂H
− E ,

where Ω is an arbitrary function over the closed surface. To have minimal
energy solutions of it is expected that the second variation δ2F > 0.
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Surfaces from a variational principle

We have the following classical examples:

i) Minimal surfaces: E = 1, p = 0.

ii) Constant mean curvature surfaces: E = 1.

iii) Linear Weingarten surfaces: E = aH + b, where a and b are some
constants.

iv) Willmore surfaces: E = H2 .

v) Surfaces solving the shape equation of lipid bilayer cell membranes:
E = 1

2 kc (2H + c0)2 + w , where kc , c0 and w are constants.

Metin Gürses Toroidal Surfaces June 5-10, 2015 14 / 41



Surfaces from a variational principle

2-sphere in R3 has constant mean and Gaussian curvatures. Hence it is a
critical point of the most general functional E(H,K ). Eq. Euler-Lagrange
equation E (E) = 0 gives a relation between p, radius of the sphere and
other parameters in model.

Another compact surface in R3 is the 2-torus, T . It has been shown
(Yang-can) that a special kind of torus, known as the Clifford torus, solves
the shape equation. In this work we shall show that, T is not only a critical
point of quadratic functional but it is also critical point of functional with
Lagrange function E is any polynomial function of the mean curvature H,
provided that the radii of the torus satisfies certain relations.
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2-Torus
Definition 1 (2-Torus T ). 2-Torus in R3 is defined as X : U → R3 where

X (u, v) = ((a + r cos u) cos v , (a + r cos u) sin v , r sin u),

0 < u < 2π, 0 < v < 2π

The first and second fundamental forms of T are

ds21 = gij dx
i dx j = r2 du2 + (a + r cos u)2 dv2,

ds22 = hij dx
i dx j = r du2 + (a + r cos u) cos udv2

The Gaussian, K , and mean, H, curvatures of T are

K =
cos u

r(a + r cos u)
, H =

1

2

(
1

r
+

cos u

(a + r cos u)

)
,

where a and r (a > r) are the radii of the torus.

It is interesting that K and H satisfy a linear equation r2K − 2rH + 1 = 0.
Hence torus T is a linear Weingarten surface.
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Functionals with Mean Curvature

In this section we shall consider the Lagrange function E depending only
on the mean curvature H of the surface. Furthermore we shall assume
that E is a polynomial function of H. Let the degree of the polynomial be
n, then we write

En =
n∑

k=0

an+1−k H
k , n = 1, 2, · · ·

= a1H
n + a2H

n−1 + · · ·+ an H + an+1, (7.1)

where ak , (k = 1, 2, · · · ) are constants to be determined. Assuming that
the torus is a critical point of the functional F we shall determine the
coefficients ai of the polynomial expansion of E and p in terms of the
torus radii a and r . We shall give three examples here in this section. In all
examples in this section S is the 2-torus and H is the mean curvature of
the 2-torus.
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Functionals with Mean Curvature

Example 1: First Order Functional. Since torus T is a linear
Weingarten surfaces then by Theorem 1 it is a critical point of the
functional where the Lagrange function is a linear function of H, i.e.,
E1 = a1H + a2. Euler-Lagrange equation is exactly solved, provided

p = −a1
r2
, a2 = −a1

r
.

There is no restriction on the radii a and r . Torus T is a critical point of
the functional F for all values of r and a.
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Functionals with Mean Curvature
Example 2: Second Order Functional. Lagrange function is a quadratic
function of H, i.e., E2 = a1H

2 + a2H + a3. Euler-Lagrange equation is
exactly solved, provided

p = −a2
r2
, a3 = −a2

r
, a2 = 2r2.

This is the Clifford Torus. We find that (for p = 0)

F2 =

∫
T
E2dS = 2π2 a1.

2-torus with a2 = 2r2 minimizes the functional
∫
S E2dS which is the

minimum energy . Willmore conjecture states that (a1 6= 0)

1

a1

∫
S
E2dA ≥ 2π2

for all compact surfaces S with genus g > 0.
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Functionals with Mean Curvature

The proof of this conjecture has been given very recently (Marques and
Neves). In terms of the Helfrich’s functional we have a1 = 2 kc ,
a2 = 2kcc0 and a3 = 1

2 kcc
2
0 + w . The parameters p,w , c0 must satisfy

p =
2kcc0
r2

, w = p r (1 +
1

4
rc0).

Remark: Since K is a topological invariant and total curvature for torus is
zero, there will be no contribution of adding linear K terms to E .
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Functionals with Mean Curvature
Example 3: Third Order Functional. Lagrange function is a polynomial
of H of degree three, i.e., E3 = a1H

3 + a2H
2 + a3H + a4. Euler-Lagrange

equation is exactly solved, provided

p = −3a1 − a3r
2

r4
, a4 =

2a1 − a3r
2

r3
, a2 =

15a1
2r

,

a2 = (6/5)r2.

We also find that (for p = 0)

F3 =

∫
T
E3dA = 9

√
5π2 (a1/r).

2-torus with a2 = (6/5)r2 minimizes the functional
∫
S E3dA and it is

minimum energy. We expect that (a1 6= 0)

(a1/r)−1
∫
S
E3dA ≥ 9

√
5π2

for all compact surfaces S with genus g > 0. This is the Willmore
conjecture for n = 3.
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Functionals with Mean Curvature

Definition 2 (Torii Tn). 2-Torus T with radii (a, r) satisfying the relation

a2

r2
=

n2 − n

n2 − n − 1
, n = 2, 3, 4, · · ·

are special and symbolized by Tn. For all these surfaces 1 < a2

r2
≤ 2.

It is possible to continue on finding critical points of higher order
functionals with En, (n = 4, 5, 6, · · · ). We observe that critical points are
the special torii Tn (n = 2, 3, · · · ). We have the following theorem.
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Functionals with Mean Curvature
Theorem 2: 2-torus T in R3 is a critical point of functionals
Fn =

∫
S En dA + p

∫
V dV where En are the nth degree polynomials of the

mean curvature H of the surface S if T = Tn for all n ≥ 2.

Proof: The shape equation with E = E(H) is given by

E (E) = (∇2 + 4H2 − 2K )
∂E
∂H
− 4HE + 2p = 0.

Using metrics of the 2-torus we obtain

∇2H =
1

a2r3
[4r3(−a2 + r2)H3 + 2r2(5a2 − 6r2)H2

+4r(−2a2 + 3r2)H + 2(a2 − 2r2)],

(∇H) · (∇H) =
1

a2r4
[4r4(−a2 + r2)H4 + 4r3(3a2 − 4r2)H3

+r2(−13a2 + 24r2)H2 + 2r(3a2 − 8r2)H + 4r2]
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Functionals with Mean Curvature

Using these equations for the 2-torus for all n ≥ 2 we get

∇2Hn =
4n2

a2
(−a2 + r2)Hn+2 +

2

a2r
[(6n2− n)a2− (8n2− 2n)r2]Hn+1 + · · ·

(7.2)
Hence inserting

En = a1H
n + a2H

n−1 + · · ·+ an H + an+1,

into the general shape equation we get

E (E) = (na1∇2Hn−1 + (n − 1)a2∇2Hn−2 + · · · )
+(4(n − 1)a1H

n+1 + 4(n − 2)a2H
n + · · · )

− 2

r2
(2rH − 1)(na1H

n−1 + (n − 1)a2H
n−2 + · · · ) = 0.
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Functionals with Mean Curvature
Using the identity (7.2) for the 2-torus and collecting the coefficients of
the powers of H we get equations for ai ’s. The coefficient of the highest
power Hn+1 in E (E) can be calculated exactly

a1 [
4n(n − 1)2 (−a2 + r2)

a2
+ 4(n − 1)]Hn+1 + · · · = 0.

Then coefficient of Hn+1 must vanish which leads to the constraint
equations

a2

r2
=

n2 − n

n2 − n − 1
,

for all n ≥ 2. This completes the proof Theorem 1.
The remaining n + 1 number of equations are linear algebraic equations for
ai , (i = 1, 2, · · · , n + 1) and p. In general one can solve them in terms of
one arbitrary parameter, for instance a1. In examples 1-3 above, the
solutions contain two arbitrary coefficients. This means that one of the
remaining equations vanishes identically. This is due to the following
property
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Functionals with Mean Curvature

Theorem 3: Let the torus Tn be a critical point of the functional Fn. Tn

is left invariant under the change of the Lagrange function
Ēn = En + b1H + b0 where b1 and b0 are constants satisfying

p̄ = p − b1
r2
, b0 = −b1

r
.

Proof: It is straightforward to show that

E (Ēn) = E (En) + 2p̄ − 2p − 4H(b0 +
b1
r

) +
2b1
r2
.

Since E (Ēn) = E (En) = 0 we obtain equations in the theorem.

Here b1 is left arbitrary. This is the reason why the coefficients of the
linear H terms are arbitrary in the first, second and third order functionals
studied above. It is left arbitrary in all En.
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Toroidal Surfaces

Definition 3 (Toroidal Surfaces TS). Let α(v) be a simple and a
regular closed curve in R3 with the unit tangent vector t(v), the unit
normal vector n(v) and the bi-normal vector b(v). Here v ∈ I = [v1, v2] is
the arclength parameter of the curve. A parametrization
X : U ⊂ R2 → R3 of this surface is given as

X (u, v) = aα(v) + r [− cos u n(v) + sin u b(v)],

where a and r are constants. Here u ∈ [0, 2π] and v ∈ I such that
α(v1) = α(v2). This is a tube of radius r around the closed curve α. The
radius r is so chosen that tube has no self intersections. We call these
surfaces as toroidal surface (TS). The first and second fundamental forms
of this surface are
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Toroidal Surfaces

ds21 = gij dx
i dx j

= r2 du2 − 2r2 τ(v) dudv + [(a + rk(v) cos u)2 + (τ(v))2 r2] dv2,

ds22 = hij dx
i dx j

= r du2 − 2rτ(v)dudv + [(a + rk(v) cos u) k(v) cos u + r(τ(v))2] dv2

The Gaussian (K ) and mean (H) curvatures are

K =
k(v) cos u

r(a + rk(v) cos u)
, H =

1

2

(
1

r
+

k(v) cos u

(a + rk(v) cos u)

)
,

where k(v) and τ(v) are the curvature and torsion of the closed curve α.
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Toroidal Surfaces

It is simple to show that K and H satisfy the same linear equation
r2K − 2rH + 1 = 0. Hence TS is also a linear Weingarten surface. When
k = 1 this surface becomes the the 2-Torus we discussed in section 2.
Below we shall assume that the Lagrange function E is a polynomial of the
mean curvature H.

Example 4: Linear functional. Since toroidal surface TS is linear
Weingarten surface then by Theorem 1 it is a critical point of the
functional with the Lagrange function E1 = a1H + a2 , provided that

p = −a1
r2
, a2 = −a1

r
(8.1)

Hence any toroidal surface TS with arbitrary closed curve α(v) in R3 is a
critical point of the corresponding functional F1.
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Toroidal Surfaces

Example 5: Quadratic functional. The Lagrange function is a quadratic
function of H, i.e., E2 = a1H

2 + a2H + a3. The toroidal surface TS is a
critical point of the corresponding functional F2 provided that τ = 0,
k = k0 a constant and

p = −a2
r2
, a3 = −a2

r
, a2 = 2k20 r

2 (8.2)

Without loosing any generality we take k0 = 1. Hence TS is the 2-torus
T2, i.e., Clifford Torus.
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Toroidal Surfaces

Example 6: Qubic functional. The Lagrange function is a cubic
polynomial of H, i.e.,E3 = a1H

3 + a2H
2 + a3H + a4. The toroidal surface

TS is a critical point of the corresponding functional F3 provided that
τ = 0, k = k0 a constant and

p =
3a1 − a3

r4
, a2 =

15a1
2r

, a4 = −2a1 − a3r
2

r3
, a2 = (6/5)k20 r

2 (8.3)

Again we take k0 = 1. Hence TS is the 2-torus T3.
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Toroidal Surfaces

We may continue finding solutions of the Euler-Lagrange equations for En
with n ≥ 4. We observe that, except n = 1, for all n ≥ 2 toroidal surfaces
reduce to 2-torus. We claim that this is true in general. Toroidal surface
TS with non-vanishing torsion τ , non-constant curvature k is not a critical
point of the functional Fn (n = 2, 3, · · · ) where the Lagrange function En
is a polynomial of the mean curvature H.
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Toroidal Surfaces
Theorem 4. Let S be a toroidal surface TS given in definition 3. Let the
Lagrange function function E be a polynomial of the mean curvature H of
degree n ≥ 2 given in (4.1). Then the critical points of the functional
(7.1) on TS are the surfaces Tn, n ≥ 2.

Proof: The Euler-Lagrange equation for the Lagrange function

En =
n∑

k=0

an+1−k H
k , n = 1, 2, · · · (8.4)

= a1H
n + a2H

n−1 + · · ·+ an H + an+1, (8.5)

takes the form

E (E) = (na1∇2Hn−1 + (n − 1)a2∇2Hn−2 + · · · ) + (4(n − 1)a1H
n+1

+4(n − 2)a2H
n + · · · )− 2

r2
(2rH − 1)(na1H

n−1 + (n − 1)a2H
n−2 + · · · )

= 0. (8.6)
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Toroidal Surfaces

We can write ∇2Hn−1, ∇2Hn−2, · · · by using ∇2H and ∇H · ∇H given
in the Appendix. We collect the terms sin u Hn and Hn for all
n = 0, 1, 2, · · · and equate the coefficients of these terms to zero. It is
clear from the expression of ∇2H the highest order term sin uHn+4 gives
τ = 0. This simplifies the remaining equations considerably. Equating the
coefficient of the highest order factor Hn+4 to zero in the remaining
equations we get k ′ = 0 .With this result α reduces to a plane curve with
constant curvature. Since it is a closed curve then α is the circle with
k = 1 and TS is the 2-torus. From the theorem 3 we know that critical
points of functional (8.4) on TS are Tn (n ≥ 2).
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Concluding Remarks

1. Clifford torus is a critical point of Willmore and also Helfrich’s
functional where the Lagrange function is a quadratic polynomial in the
mean curvature of a closed surface in R3. One of the main contributions
of this work is that the sequence torus surfaces {Tn} where radii a and r

restricted to satisfy a2

r2
= n2−n

n2−n−1 for all n ≥ 2 are the critical points of the
functionals Fn where the Lagrange function En are polynomial of degree n
in the mean curvature H of the surface. We have given 3 examples
n = 1, 2, 3 and proved this assertion in section 3.
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Concluding Remarks

2. A simple generalization of 2-torus in R3 is the tube around a closed
curve α. We call such surfaces as toroidal surfaces which are topologically
diffeomorphic to 2-torus. Except the linear case we showed that these
surfaces with non-vanishing torsion τ and nonconstant curvature k are not
critical points of the functionals Fn. Euler-Lagrange equations force the
torsion of the curve α to vanish and the curvature be a constant.

3. In section 3, for each solution with n = 2, 3 and p = 0 we have
calculated the curvature energy Fn. As in the case of the Willmore energy
functional (n = 2) it is expected the torus surfaces for n ≥ 3 with the
constraints are minimal energy surfaces. To support this assertion, second
variation of the functionals on these surfaces must be nonnegative.
Another point to be examined is the stability of these minimal energy
surfaces. These points will be clarified in a forthcoming communication.
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Concluding Remarks

4. The constraints a2

r2
= n2−n

n2−n−1 can be utilized to select the correct
functional for the toroidal fluid membranes. These functionals are used to
minimize the energy of the lipid membranes. The ratio a/r of toroidal
configuration can be measured experimentally. Comparing the measured
value of this ratio with a2

r2
= n2−n

n2−n−1 we can identify the degree of the
polynomial function En from (7.2), hence finding the functional for the
corresponding closed membrane. As an example, for vesicle membranes
such a measurement had been done by Mutz and Bensimon (Phys. Rev. A
43, 4525 (1991)). They measured the value of this ratio approximately as
a
r = 1.43, or a2

r2
= 2.04. Hence for vesicle membranes the correct

functional should be the quadratic one which was first introduced by W.
Helfrich several years ago (Z. Naturforssch, 28, 693 (1973)).. For other
closed fluid membranes the functionals might be different.
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