Slant Curves in \mathcal{S}-Space Forms

Şaban GÜVENÇ and Cihan ÖZGÜR

Department of Mathematics
Balikesir University, TURKEY
sguvenc@balikesir.edu.tr, cozgur@balikesir.edu.tr

Introduction

J. S. Kim, M. K. Dwivedi and M. M. Tripathi obtained the Ricci curvature of integral submanifolds of an \mathcal{S}-space form in [KDT-2007]. On the other hand, D. Fetcu and C. Oniciuc studied biharmonic Legendre curves in Sasakian space forms in [Fetcu-2008] and [Fetcu-2009]. We studied biharmonic Legendre curves of \mathcal{S}-space forms in [OG-2014]. J. T. Cho, J. Inoguchi and J.E. Lee defined and studied slant curves in Sasakian 3-manifolds in [CIL-2006].

Motivated by these studies, in the present talk, we focus our interest on biharmonic slant curves in \mathcal{S}-space forms. We find curvature characterizations of these special curves in four cases.

Let (M, g) and (N, h) be two Riemannian manifolds and $\phi:(M, g) \rightarrow(N, h)$ a smooth map. The energy functional of ϕ is defined by

$$
E(\phi)=\frac{1}{2} \int_{M}|d \phi|^{2} v_{g} .
$$

The critical points of the energy functional $E(\phi)$ are called harmonic [Eells-Sampson-1964]. The Euler-Lagrange equation gives the harmonic map equation

$$
\tau(\phi)=\operatorname{trace} \nabla d \phi=0,
$$

where $\tau(\phi)$ is called the tension field of ϕ.

The bienergy functional of ϕ is given by

$$
E_{2}(\phi)=\frac{1}{2} \int_{M}|\tau(\phi)|^{2} v_{g} .
$$

A biharmonic map is a critical point of $E_{2}(\phi)$. The Euler-Lagrange equation of $E_{2}(\phi)$ gives the biharmonic map equation

$$
\tau_{2}(\phi)=-J^{\phi}(\tau(\phi))=-\Delta \tau(\phi)-\operatorname{trace}^{N}(d \phi, \tau(\phi)) d \phi=0
$$

where J^{ϕ} is the Jacobi operator of $\phi . \tau_{2}(\phi)$ is called the bitension field of ϕ [Jiang-1986].

The bienergy functional of ϕ is given by

$$
E_{2}(\phi)=\frac{1}{2} \int_{M}|\tau(\phi)|^{2} v_{g} .
$$

A biharmonic map is a critical point of $E_{2}(\phi)$. The Euler-Lagrange equation of $E_{2}(\phi)$ gives the biharmonic map equation

$$
\tau_{2}(\phi)=-J^{\phi}(\tau(\phi))=-\Delta \tau(\phi)-\operatorname{trace}^{N}(d \phi, \tau(\phi)) d \phi=0
$$

where J^{ϕ} is the Jacobi operator of $\phi . \tau_{2}(\phi)$ is called the bitension field of ϕ [Jiang-1986].

In a different setting, in [Chen-1996], B.Y. Chen defined a biharmonic submanifold $M \subset \mathbb{E}^{n}$ of the Euclidean space as its mean curvature vector field H satisfies $\Delta H=0$, where Δ is the Laplacian.

\mathcal{S}-space form and its submanifolds

Let (M, g) be a $(2 m+s)$-dimensional framed metric manifold [Yano-Kon-1984] with a framed metric structure $\left(f, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}$, that is, f is a $(1,1)$ tensor field defining an f-structure of rank $2 m ; \xi_{1}, \ldots, \xi_{s}$ are vector fields; $\eta^{1}, \ldots, \eta^{s}$ are 1 -forms and g is a Riemannian metric on M such that for all $X, Y \in T M$ and $\alpha, \beta \in\{1, \ldots, s\}$,

$$
\begin{equation*}
f^{2}=-I+\eta^{\alpha} \otimes \xi_{\alpha}, \quad \eta^{\alpha}\left(\xi_{\beta}\right)=\delta_{\beta}^{\alpha}, \quad f\left(\xi_{\alpha}\right)=0, \quad \eta^{\alpha} \circ f=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
g(f X, f Y)=g(X, Y)-\sum_{\alpha=1}^{s} \eta^{\alpha}(X) \eta^{\alpha}(Y) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
d \eta^{\alpha}(X, Y)=g(X, f Y)=-d \eta^{\alpha}(Y, X), \quad \eta^{\alpha}(X)=g(X, \xi) \tag{3}
\end{equation*}
$$

$\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is also called framed f-manifold [Nakagawa-1966] or almost r-contact metric manifold [Vanzura-1972].
$\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is also called framed f-manifold [Nakagawa-1966] or almost r-contact metric manifold [Vanzura-1972].

If the Nijenhuis tensor of f equals $-2 d \eta^{\alpha} \otimes \xi_{\alpha}$ for all $\alpha \in\{1, \ldots, s\}$, then $\left(f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is called \mathcal{S}-structure [Blair-1970].
$\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is also called framed f-manifold [Nakagawa-1966] or almost r-contact metric manifold [Vanzura-1972].

If the Nijenhuis tensor of f equals $-2 d \eta^{\alpha} \otimes \xi_{\alpha}$ for all $\alpha \in\{1, \ldots, s\}$, then $\left(f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is called \mathcal{S}-structure [Blair-1970].

If a framed metric structure on M is an \mathcal{S}-structure, then the following equations hold [Blair-1970]:

$$
\begin{gather*}
\left(\nabla_{X} f\right) Y=\sum_{\alpha=1}^{s}\left\{g(f X, f Y) \xi_{\alpha}+\eta^{\alpha}(Y) f^{2} X\right\} \tag{4}\\
\nabla \xi_{\alpha}=-f, \alpha \in\{1, \ldots, s\} \tag{5}
\end{gather*}
$$

A plane section in $T_{p} M$ is an f-section if there exist a vector $X \in T_{p} M$ orthogonal to ξ_{1}, \ldots, ξ_{s} such that $\{X, f X\}$ span the section. The sectional curvature of an f-section is called an f-sectional curvature. In an \mathcal{S}-manifold of constant f-sectional curvature, the curvature tensor R of M is of the form

$$
\begin{gather*}
R(X, Y) Z=\sum_{\alpha, \beta}\left\{\eta^{\alpha}(X) \eta^{\beta}(Z) f^{2} Y-\eta^{\alpha}(Y) \eta^{\beta}(Z) f^{2} X\right. \\
\left.-g(f X, f Z) \eta^{\alpha}(Y) \xi_{\beta}+g(f Y, f Z) \eta^{\alpha}(X) \xi_{\beta}\right\} \tag{6}\\
+\frac{c+3 s}{4}\left\{-g(f Y, f Z) f^{2} X+g(f X, f Z) f^{2} Y\right\} \\
\frac{c-s}{4}\{g(X, f Z) f Y-g(Y, f Z) f X+2 g(X, f Y) f Z\}
\end{gather*}
$$

for all $X, Y, Z \in T M$ [CFF-1993]. An \mathcal{S}-manifold of constant f-sectional curvature c is called an \mathcal{S}-space form which is denoted by $M(c)$.
When $s=1$, an \mathcal{S}-space form becomes a Sasakian space form [Blair-2002].

A submanifold of an \mathcal{S}-manifold is called an integral submanifold if $\eta^{\alpha}(X)=0, \alpha=1, \ldots, s$, for every tangent vector X [KDT-2007]. We call a 1-dimensional integral submanifold of an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ a Legendre curve of M. In other words, a curve $\gamma: I \rightarrow M=\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is called a Legendre curve if $\eta^{\alpha}(T)=0$, for every $\alpha=1, \ldots s$, where T is the tangent vector field of γ.

Let γ be a unit-speed curve in an \mathcal{S}-manifold $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$. We call γ a slant curve, if there exists a constant angle θ such that $\eta^{\alpha}(T)=\cos \theta$, for all $\alpha=1, \ldots s$. Here, θ is called the contact angle of γ. Every Legendre curve is slant with contact angle $\frac{\pi}{2}$.

We can give the following essential proposition for slant curves:

Proposition 1

Let $M=\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be an \mathcal{S}-manifold. If θ is the contact angle of a non-geodesic unit-speed slant curve in M, then

$$
\frac{-1}{\sqrt{s}}<\cos \theta<\frac{1}{\sqrt{s}} .
$$

Biharmonic Slant curves in \mathcal{S}-Space Forms

Let $\gamma: I \rightarrow M$ be a curve parametrized by arc length in an n-dimensional Riemannian manifold (M, g). If there exists orthonormal vector fields $E_{1}, E_{2}, \ldots, E_{r}$ along γ such that

$$
\begin{align*}
E_{1}= & \gamma^{\prime}=T, \\
\nabla_{T} E_{1}= & \kappa_{1} E_{2}, \\
\nabla_{T} E_{2}= & -\kappa_{1} E_{1}+\kappa_{2} E_{3}, \tag{7}\\
& \cdots \\
\nabla_{T} E_{r}= & -\kappa_{r-1} E_{r-1},
\end{align*}
$$

then γ is called a Frenet curve of osculating order r, where $\kappa_{1}, \ldots, \kappa_{r-1}$ are positive functions on $/$ and $1 \leq r \leq n$.

A Frenet curve of osculating order 1 is a geodesic; a Frenet curve of osculating order 2 is called a circle if κ_{1} is a non-zero positive constant; a Frenet curve of osculating order $r \geq 3$ is called a helix of order r if $\kappa_{1}, \ldots, \kappa_{r-1}$ are non-zero positive constants; a helix of order 3 is shortly called a helix.

Now let $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be an \mathcal{S}-space form and $\gamma: I \rightarrow M$ a slant curve of osculating order r. Differentiating

$$
\begin{equation*}
\eta^{\alpha}(T)=\cos \theta \tag{8}
\end{equation*}
$$

and using (7), we find

$$
\begin{equation*}
\eta^{\alpha}\left(E_{2}\right)=0, \alpha \in\{1, \ldots, s\} . \tag{9}
\end{equation*}
$$

Then, (1) and (9) give us

$$
\begin{equation*}
f^{2} E_{2}=-E_{2} \tag{10}
\end{equation*}
$$

By the use of (1), (2), (3), (6), (7), (9) and (10), it can be seen that

$$
\begin{aligned}
\nabla_{T} \nabla_{T} T= & -\kappa_{1}^{2} E_{1}+\kappa_{1}^{\prime} E_{2}+\kappa_{1} \kappa_{2} E_{3}, \\
\nabla_{T} \nabla_{T} \nabla_{T} T= & -3 \kappa_{1} \kappa_{1}^{\prime} E_{1}+\left(\kappa_{1}^{\prime \prime}-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}\right) E_{2} \\
& +\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) E_{3}+\kappa_{1} \kappa_{2} \kappa_{3} E_{4}, \\
R\left(T, \nabla_{T} T\right) T= & -\kappa_{1}\left[s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right)\right] E_{2} \\
& -3 \kappa_{1} \frac{(c-s)}{4} g\left(f T, E_{2}\right) f T .
\end{aligned}
$$

So we have

$$
\begin{aligned}
\tau_{2}(\gamma)= & \nabla_{T} \nabla_{T} \nabla_{T} T-R\left(T, \nabla_{T} T\right) T \\
= & -3 \kappa_{1} \kappa_{1}^{\prime} E_{1} \\
& +\left\{\kappa_{1}^{\prime \prime}-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}\right. \\
& \left.+\kappa_{1}\left[s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right)\right]\right\} E_{2} \\
& +\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) E_{3}+\kappa_{1} \kappa_{2} \kappa_{3} E_{4} \\
& +3 \kappa_{1} \frac{(c-s)}{4} g\left(f T, E_{2}\right) f T .
\end{aligned}
$$

So we have

$$
\begin{align*}
\tau_{2}(\gamma)= & \nabla_{T} \nabla_{T} \nabla_{T} T-R\left(T, \nabla_{T} T\right) T \\
= & -3 \kappa_{1} \kappa_{1}^{\prime} E_{1} \\
& +\left\{\kappa_{1}^{\prime \prime}-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}\right. \tag{11}\\
& \left.+\kappa_{1}\left[s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right)\right]\right\} E_{2} \\
& +\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) E_{3}+\kappa_{1} \kappa_{2} \kappa_{3} E_{4} \\
& +3 \kappa_{1} \frac{(c-s)}{4} g\left(f T, E_{2}\right) f T .
\end{align*}
$$

Let $k=\min \{r, 4\}$. From (11), the curve γ is proper biharmonic if and only if $\kappa_{1}>0$ and
(1) $c=s$ or $f T \perp E_{2}$ or $f T \in \operatorname{span}\left\{E_{2}, \ldots, E_{k}\right\}$; and
(2) $g\left(\tau_{2}(\gamma), E_{i}\right)=0$, for any $i=1, \ldots, k$.

So we can state the following theorem:

Theorem 2

Let γ be a slant curve of osculating order r in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}$ and $k=\min \{r, 4\}$. Then γ is proper biharmonic if and only if
(1) $c=s$ or $f T \perp E_{2}$ or $f T \in \operatorname{span}\left\{E_{2}, \ldots, E_{k}\right\}$; and
(2) the first k of the following equations are satisfied (replacing $\kappa_{k}=0$):

$$
\begin{gathered}
\kappa_{1}=\text { constant }>0, \\
\kappa_{1}^{2}+\kappa_{2}^{2}=s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right)+\frac{3(c-s)}{4}\left[g\left(f T, E_{2}\right)\right]^{2}, \\
\kappa_{2}^{\prime}+\frac{3(c-s)}{4} g\left(f T, E_{2}\right) g\left(f T, E_{3}\right)=0, \\
\kappa_{2} \kappa_{3}+\frac{3(c-s)}{4} g\left(f T, E_{2}\right) g\left(f T, E_{4}\right)=0 .
\end{gathered}
$$

Theorem 2

Let γ be a slant curve of osculating order r in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}$ and $k=\min \{r, 4\}$. Then γ is proper biharmonic if and only if
(1) $c=s$ or $f T \perp E_{2}$ or $f T \in \operatorname{span}\left\{E_{2}, \ldots, E_{k}\right\}$; and
(2) the first k of the following equations are satisfied (replacing $\kappa_{k}=0$):

$$
\begin{gathered}
\kappa_{1}=\text { constant }>0, \\
\kappa_{1}^{2}+\kappa_{2}^{2}=s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right)+\frac{3(c-s)}{4}\left[g\left(f T, E_{2}\right)\right]^{2}, \\
\kappa_{2}^{\prime}+\frac{3(c-s)}{4} g\left(f T, E_{2}\right) g\left(f T, E_{3}\right)=0, \\
\kappa_{2} \kappa_{3}+\frac{3(c-s)}{4} g\left(f T, E_{2}\right) g\left(f T, E_{4}\right)=0 .
\end{gathered}
$$

Now we give the interpretations of Theorem 2.

Case I: $c=s$.

In this case γ is proper biharmonic if and only if

$$
\begin{gathered}
\kappa_{1}=\text { constant }>0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=s \\
\kappa_{2}=\text { constant } \\
\kappa_{2} \kappa_{3}=0
\end{gathered}
$$

Theorem 3

Let γ be a slant curve in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}, c=s$. Then γ is proper biharmonic if and only if either γ is a circle with $\kappa_{1}=\sqrt{s}$, or a helix with $\kappa_{1}^{2}+\kappa_{2}^{2}=s$. Moreover, if γ is Legendre, then $2 m+s>3$.

Remark 4

If $2 m+s=3$, then $m=s=1$. So M is a 3-dimensional Sasakian space form. Since a Legendre curve in a Sasakian 3-manifold has torsion 1 (see [CB - 1994]), we can write $\kappa_{1}>0$ and $\kappa_{2}=1$, which contradicts $\kappa_{1}^{2}+\kappa_{2}^{2}=s=1$. Hence γ cannot be proper biharmonic.

Case II: $c \neq s, f T \perp E_{2}$.

In this case, $g\left(f T, E_{2}\right)=0$. From the main Theorem, we obtain

$$
\begin{gather*}
\kappa_{1}=\text { constant }>0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right) \tag{12}\\
\kappa_{2}=\text { constant } \\
\kappa_{2} \kappa_{3}=0
\end{gather*}
$$

Case II: $c \neq s, f T \perp E_{2}$.

In this case, $g\left(f T, E_{2}\right)=0$. From the main Theorem, we obtain

$$
\begin{gather*}
\kappa_{1}=\text { constant }>0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right) \tag{12}\\
\kappa_{2}=\text { constant } \\
\kappa_{2} \kappa_{3}=0
\end{gather*}
$$

Firstly, we give the following proposition:

Case II: $c \neq s, f T \perp E_{2}$.

In this case, $g\left(f T, E_{2}\right)=0$. From the main Theorem, we obtain

$$
\begin{gather*}
\kappa_{1}=\text { constant }>0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right) \tag{12}\\
\kappa_{2}=\mathrm{constant} \\
\kappa_{2} \kappa_{3}=0
\end{gather*}
$$

Firstly, we give the following proposition:

Proposition 5

Let γ be a slant curve of osculating order 3 in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}$ and $f T \perp E_{2}$. Then $\left\{T=E_{1}, E_{2}, E_{3}, f T, \nabla_{T} f T, \xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent at any point of γ. Therefore $m \geq 3$.

Now we can state the following Theorem:

Theorem 6

Let γ be a slant curve in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}, c \neq s$ and $f T \perp E_{2}$. Then γ is proper biharmonic if and only if either
(1) $m \geq 2$ and γ is a circle with $\kappa_{1}=\frac{1}{2} \sqrt{c+3 s-(c-s) s \cos ^{2} \theta}$, where $c>-3 s+(c-s) s \cos ^{2} \theta$ and $\left\{T=E_{1}, E_{2}, f T, \nabla_{T} f T\right.$, $\left.\xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent; or
(2) $m \geq 3$ and γ is a helix with $\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3 s-(c-s) s \cos ^{2} \theta}{4}$, where $c>-3 s+(c-s) s \cos ^{2} \theta$ and $\left\{T=E_{1}, E_{2}, E_{3}, f T, \nabla_{T} f T\right.$, $\left.\xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent.

Case III: $c \neq s, f T| | E_{2}$

In this case, $f T= \pm \sqrt{1-s \cos ^{2} \theta} E_{2}, g\left(f T, E_{2}\right)= \pm\left(1-s \cos ^{2} \theta\right)$, $g\left(f T, E_{3}\right)=0$ and $g\left(f T, E_{4}\right)=0$. From Theorem 2, γ is biharmonic if and only if

$$
\begin{gathered}
\kappa_{1}=\text { constant }>0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=c-s \cos ^{2} \theta(c-s), \\
\kappa_{2}=\text { constant } \\
\kappa_{2} \kappa_{3}=0
\end{gathered}
$$

Case III: $c \neq s, f T \| E_{2}$

In this case, $f T= \pm \sqrt{1-s \cos ^{2} \theta} E_{2}, g\left(f T, E_{2}\right)= \pm\left(1-s \cos ^{2} \theta\right)$, $g\left(f T, E_{3}\right)=0$ and $g\left(f T, E_{4}\right)=0$. From Theorem 2, γ is biharmonic if and only if

$$
\begin{gathered}
\kappa_{1}=\text { constant }>0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=c-s \cos ^{2} \theta(c-s) \\
\kappa_{2}=\text { constant } \\
\kappa_{2} \kappa_{3}=0
\end{gathered}
$$

We can assume that $f T=\sqrt{1-s \cos ^{2} \theta} E_{2}$. From equation (1), we get
$\sqrt{1-s \cos ^{2} \theta} f E_{2}=f^{2} T=-T+\sum_{\alpha=1}^{s} \eta^{\alpha}(T) \xi_{\alpha}=-T+\cos \theta \sum_{\alpha=1}^{s} \xi_{\alpha}$.
(13)

From (13), we find

$$
\begin{align*}
\nabla_{T} f T= & -s \cos \theta T+\sum_{\alpha=1}^{s} \xi_{\alpha} \\
& +\kappa_{1}\left[\frac{-1}{\sqrt{1-s \cos ^{2} \theta}} T+\frac{\cos \theta}{\sqrt{1-s \cos ^{2} \theta}} \sum_{\alpha=1}^{s} \xi_{\alpha}\right] \tag{14}\\
= & \sqrt{1-s \cos ^{2} \theta}\left(-\kappa_{1} T+\kappa_{2} E_{3}\right)
\end{align*}
$$

From (13), we find

$$
\begin{align*}
\nabla_{T} f T= & -s \cos \theta T+\sum_{\alpha=1}^{s} \xi_{\alpha} \\
& +\kappa_{1}\left[\frac{-1}{\sqrt{1-s \cos ^{2} \theta}} T+\frac{\cos \theta}{\sqrt{1-s \cos ^{2} \theta}} \sum_{\alpha=1}^{s} \xi_{\alpha}\right] \tag{14}\\
= & \sqrt{1-s \cos ^{2} \theta}\left(-\kappa_{1} T+\kappa_{2} E_{3}\right)
\end{align*}
$$

Using (14), we can write

$$
\begin{equation*}
\left(1+\frac{\kappa_{1} \cos \theta}{\sqrt{1-s \cos ^{2} \theta}}\right)\left(-s \cos \theta T+\sum_{\alpha=1}^{s} \xi_{\alpha}\right)=\kappa_{2} \sqrt{1-s \cos ^{2} \theta} E_{3}, \tag{15}
\end{equation*}
$$

which gives us the following Theorem:

Theorem 7

Let γ be a slant curve in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}, c \neq s$ and $f T \| E_{2}$. Then γ is proper biharmonic if and only if it is one of the following:
i) a Legendre helix with the Frenet frame field

$$
\left\{T, f T, \frac{1}{\sqrt{s}} \sum_{\alpha=1}^{s} \xi_{\alpha}\right\}
$$

and $\kappa_{1}=\sqrt{c-s}$ and $\kappa_{2}=\sqrt{s}$, where $c>s$;
ii) a non-Legendre slant circle with the Frenet frame field

$$
\left\{T, \frac{f T}{\sqrt{1-s \cos ^{2} \theta}}\right\}
$$

and

$$
\kappa_{1}=\frac{-\sqrt{1-s \cos ^{2} \theta}}{\cos \theta}=\sqrt{c-s \cos ^{2} \theta(c-s)} ;
$$

iii) a non-Legendre slant helix with the Frenet frame field

$$
\left\{T, \frac{f T}{\sqrt{1-s \cos ^{2} \theta}}, \frac{1}{\sqrt{s} \sqrt{s \cos ^{2} \theta-\cos (2 \theta)}}\left(\sum_{\alpha=1}^{s} \xi_{\alpha}-s \cos \theta T\right)\right\}
$$

and

$$
\kappa_{1}^{2}+\kappa_{2}^{2}=c-s \cos ^{2} \theta(c-s) .
$$

Thus, we can give the following corollary for Legendre curves:

Corollary 8

Let γ be a Legendre Frenet curve in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}, c \neq s$ and $f T \| E_{2}$. Then

$$
\left\{T, f T, \frac{1}{\sqrt{s}} \sum_{\alpha=1}^{s} \xi_{\alpha}\right\}
$$

is the Frenet frame field of γ and γ is proper biharmonic if and only if it is a helix with $\kappa_{1}=\sqrt{c-s}$ and $\kappa_{2}=\sqrt{s}$, where $c>s$. If $c \leq s$, then γ is biharmonic if and only if it is a geodesic [OG - 2014].

Case IV: $c \neq s$, fT $\forall E_{2}$ and $g\left(f T, E_{2}\right) \neq 0$.

Now, let $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be an \mathcal{S}-space form, $\alpha \in\{1, \ldots, s\}$ and $\gamma: I \rightarrow M$ a slant curve of osculating order r, where $4 \leq r \leq 2 m+s$ and $m \geq 2$. If γ is biharmonic, then $f T \in \operatorname{span}\left\{E_{2}, E_{3}, E_{4}\right\}$. Let $\mu(t)$ denote the angle function between $f T$ and E_{2}, that is, $g\left(f T, E_{2}\right)=\sqrt{1-s \cos ^{2} \theta} \cos \mu(t)$. Differentiating $g\left(f T, E_{2}\right)$ along γ and using (1), (3), (7), we find

$$
\begin{align*}
-\sqrt{1-s \cos ^{2} \theta} \mu^{\prime}(t) \sin \mu(t)= & \nabla_{T} g\left(f T, E_{2}\right) \\
= & g\left(\nabla_{T} f T, E_{2}\right)+g\left(f T, \nabla_{T} E_{2}\right) \\
= & g\left(-s \cos \theta T+\sum_{\alpha=1}^{s} \xi_{\alpha}+\kappa_{1} f E_{2}, E_{2}\right) \\
& +g\left(f T,-\kappa_{1} T+\kappa_{2} E_{3}\right) \\
= & \kappa_{2} g\left(f T, E_{3}\right) \tag{16}
\end{align*}
$$

If we write $f T=g\left(f T, E_{2}\right) E_{2}+g\left(f T, E_{3}\right) E_{3}+g\left(f T, E_{4}\right) E_{4}$, Theorem 2 gives us

$$
\begin{gathered}
\kappa_{1}=\text { constant }>0, \\
\kappa_{1}^{2}+\kappa_{2}^{2}=s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right)+\frac{3(c-s)}{4}\left[g\left(f T, E_{2}\right)\right]^{2}, \\
\kappa_{2}^{\prime}+\frac{3(c-s)}{4} g\left(f T, E_{2}\right) g\left(f T, E_{3}\right)=0, \\
\kappa_{2} \kappa_{3}+\frac{3(c-s)}{4} g\left(f T, E_{2}\right) g\left(f T, E_{4}\right)=0 .
\end{gathered}
$$

If we multiply the third equation of the above system with $2 \kappa_{2}$, using (16), we obtain

$$
2 \kappa_{2} \kappa_{2}^{\prime}+\sqrt{1-s \cos ^{2} \theta} \frac{3(c-s)}{4}\left(-2 \mu^{\prime} \cos \mu \sin \mu\right)=0
$$

which is equivalent to

$$
\begin{equation*}
\kappa_{2}^{2}=-\sqrt{1-s \cos ^{2} \theta} \frac{3(c-s)}{4} \cos ^{2} \mu+\omega_{0} \tag{17}
\end{equation*}
$$

where ω_{0} is a constant. If we write (17) in the second equation, we have

$$
\begin{aligned}
\kappa_{1}^{2}= & s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right) \\
& +\frac{3(c-s)}{4}\left(1-s \cos ^{2} \theta+\sqrt{1-s \cos ^{2} \theta}\right) \cos ^{2} \mu+\omega_{0}
\end{aligned}
$$

Thus μ is a constant. From (16) and (17), we find $g\left(f T, E_{3}\right)=0$ and $\kappa_{2}=$ constant >0. Since $\|f T\|=\sqrt{1-s \cos ^{2} \theta}$ and $f T=\sqrt{1-s \cos ^{2} \theta} \cos \mu E_{2}+g\left(f T, E_{4}\right) E_{4}$, we get $g\left(f T, E_{4}\right)=\sqrt{1-s \cos ^{2} \theta} \sin \mu$. From the assumption $f T \nVdash E_{2}$ and $g\left(f T, E_{2}\right) \neq 0$, it is clear that $\mu \in(0,2 \pi) \backslash\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right\}$. Now we can state the following Theorem:

Theorem 9

Let $\gamma: I \rightarrow M$ be a slant curve of osculating order r in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}$, where $r \geq 4, m \geq 2, c \neq s$, $f T \nVdash E_{2}$ and $g\left(f T, E_{2}\right) \neq 0$. Then γ is proper biharmonic if and only if

$$
\begin{aligned}
\kappa_{i}= & \text { constant }>0, i \in\{1,2,3\}, \\
\kappa_{1}^{2}+\kappa_{2}^{2}= & s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right) \\
& +\frac{3(c-s)}{4}\left(1-s \cos ^{2} \theta\right) \cos ^{2} \mu, \\
\kappa_{2} \kappa_{3}= & \frac{3(s-c)}{8}\left(1-s \cos ^{2} \theta\right) \sin 2 \mu,
\end{aligned}
$$

where $f T=\sqrt{1-s \cos ^{2} \theta} \cos \mu E_{2}+\sqrt{1-s \cos ^{2} \theta} \sin \mu E_{4}$, $\mu \in(0,2 \pi) \backslash\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right\}$ is a constant.

Corollary 10

Let $\gamma: I \rightarrow M$ be a Legendre curve of osculating order r in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}$, where $r \geq 4, m \geq 2, c \neq s$, $g\left(f T, E_{2}\right)$ is not constant 0,1 or -1 . Then γ is proper biharmonic if and only if

$$
\begin{aligned}
\kappa_{i} & =\text { constant }>0, i \in\{1,2,3\} \\
\kappa_{1}^{2}+\kappa_{2}^{2} & =\frac{1}{4}\left[c+3 s+3(c-s) \cos ^{2} \mu\right] \\
\kappa_{2} \kappa_{3} & =\frac{3(s-c) \sin 2 \mu}{8}
\end{aligned}
$$

where $c>-3 s, f T=\cos \mu E_{2}+\sin \mu E_{4}, \mu \in(0,2 \pi) \backslash\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right\}$ is a constant such that $c+3 s+3(c-s) \cos ^{2} \mu>0$ and $3(s-c) \sin 2 \mu>0$. If $c \leq-3 s$, then γ is biharmonic if and only if it is a geodesic [OG-2014].

Slant Curves in $\mathbb{R}^{2 n+s}(-3 s)$

Let us consider $M=\mathbb{R}^{2 n+s}$ with coordinate functions $\left\{x_{1}, \ldots x_{n}, y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{s}\right\}$ and define

$$
\begin{gathered}
\xi_{\alpha}=2 \frac{\partial}{\partial z_{\alpha}}, \alpha=1, \ldots, s, \\
\eta^{\alpha}=\frac{1}{2}\left(d z_{\alpha}-\sum_{i=1}^{n} y_{i} d x_{i}\right), \alpha=1, \ldots, s, \\
f X=\sum_{i=1}^{n} Y_{i} \frac{\partial}{\partial x_{i}}-\sum_{i=1}^{n} X_{i} \frac{\partial}{\partial y_{i}}+\left(\sum_{i=1}^{n} Y_{i} y_{i}\right)\left(\sum_{\alpha=1}^{s} \frac{\partial}{\partial z_{\alpha}}\right),
\end{gathered}
$$

$$
g=\sum_{\alpha=1}^{s} \eta^{\alpha} \otimes \eta^{\alpha}+\frac{1}{4} \sum_{i=1}^{n}\left(d x_{i} \otimes d x_{i}+d y_{i} \otimes d y_{i}\right)
$$

where

$$
X=\sum_{i=1}^{n}\left(X_{i} \frac{\partial}{\partial x_{i}}+Y_{i} \frac{\partial}{\partial y_{i}}\right)+\sum_{\alpha=1}^{s}\left(Z_{\alpha} \frac{\partial}{\partial z_{\alpha}}\right) \in \chi(M)
$$

It is known that $\left(\mathbb{R}^{2 n+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is an \mathcal{S}-space form with constant f-sectional curvature $c=-3 s$ and it is denoted by $\mathbb{R}^{2 n+s}(-3 s)$ [Hasegawa-1986].

The vector fields

$$
X_{i}=2 \frac{\partial}{\partial y_{i}}, \quad X_{n+i}=f X_{i}=2\left(\frac{\partial}{\partial x_{i}}+y_{i} \sum_{\alpha=1}^{s} \frac{\partial}{\partial z_{\alpha}}\right), \xi_{\alpha}=2 \frac{\partial}{\partial z_{\alpha}}
$$

form a g-orthonormal basis and the Levi-Civita connection is calculated as

$$
\begin{gathered}
\nabla X_{i} X_{j}=\nabla X_{n+i} X_{n+j}=0, \nabla_{X_{i}} X_{n+j}=\delta_{i j} \sum_{\alpha=1}^{s} \xi_{\alpha}, \nabla_{X_{n+i}} X_{j}=-\delta_{i j} \sum_{\alpha=1}^{s} \xi_{\alpha} \\
\nabla X_{i} \xi_{\alpha}=\nabla_{\xi_{\alpha}} X_{i}=-X_{n+i}, \nabla_{X_{n+i}} \xi_{\alpha}=\nabla_{\xi_{\alpha}} X_{n+i}=X_{i}
\end{gathered}
$$

(see [Hasegawa-1986]).

Let $\gamma: I \rightarrow \mathbb{R}^{2 n+s}(-3 s)$ be a slant curve with contact angle θ. Let us denote

$$
\gamma(t)=\left(\gamma_{1}(t), \ldots, \gamma_{n}(t), \gamma_{n+1}(t), \ldots, \gamma_{2 n}(t), \gamma_{2 n+1}(t), \ldots, \gamma_{2 n+s}(t)\right),
$$

where t is the arc-length parameter. The tangent vector field of γ is

$$
\begin{aligned}
T= & \gamma_{1}^{\prime} \frac{\partial}{\partial x_{1}}+\ldots+\gamma_{n}^{\prime} \frac{\partial}{\partial x_{n}}+\gamma_{n+1}^{\prime} \frac{\partial}{\partial y_{1}}+\ldots+\gamma_{2 n}^{\prime} \frac{\partial}{\partial y_{n}} \\
& +\gamma_{2 n+1}^{\prime} \frac{\partial}{\partial z_{1}}+\ldots+\gamma_{2 n+s}^{\prime} \frac{\partial}{\partial z_{\alpha}}
\end{aligned}
$$

In terms of the g-orthonormal basis, T can be written as

$$
\begin{gathered}
T=\frac{1}{2}\left[\gamma_{n+1}^{\prime} X_{1}+\ldots+\gamma_{2 n}^{\prime} X_{n}+\gamma_{1}^{\prime} X_{n+1}+\ldots+\gamma_{n}^{\prime} X_{2 n}\right. \\
\\
+\left(\gamma_{2 n+1}^{\prime}-\gamma_{1}^{\prime} \gamma_{n+1}-\ldots-\gamma_{n}^{\prime} \gamma_{2 n}\right) \xi_{1}+\ldots \\
\\
\left.+\left(\gamma_{2 n+s}^{\prime}-\gamma_{1}^{\prime} \gamma_{n+1}-\ldots-\gamma_{n}^{\prime} \gamma_{2 n}\right) \xi_{s}\right] .
\end{gathered}
$$

In terms of the g-orthonormal basis, T can be written as

$$
\begin{gathered}
T=\frac{1}{2}\left[\gamma_{n+1}^{\prime} X_{1}+\ldots+\gamma_{2 n}^{\prime} X_{n}+\gamma_{1}^{\prime} X_{n+1}+\ldots+\gamma_{n}^{\prime} X_{2 n}\right. \\
+\left(\gamma_{2 n+1}^{\prime}-\gamma_{1}^{\prime} \gamma_{n+1}-\ldots-\gamma_{n}^{\prime} \gamma_{2 n}\right) \xi_{1}+\ldots \\
\\
\left.+\left(\gamma_{2 n+s}^{\prime}-\gamma_{1}^{\prime} \gamma_{n+1}-\ldots-\gamma_{n}^{\prime} \gamma_{2 n}\right) \xi_{s}\right] .
\end{gathered}
$$

Since γ is slant, we obtain

$$
\eta^{\alpha}(T)=\frac{1}{2}\left(\gamma_{2 n+\alpha}^{\prime}-\gamma_{1}^{\prime} \gamma_{n+1}-\ldots-\gamma_{n}^{\prime} \gamma_{2 n}\right)=\cos \theta
$$

for all $\alpha=1, \ldots, s$. Thus, we have

$$
\gamma_{2 n+1}^{\prime}=\ldots=\gamma_{2 n+s}^{\prime}=\gamma_{1}^{\prime} \gamma_{n+1}+\ldots+\gamma_{n}^{\prime} \gamma_{2 n}+2 \cos \theta .
$$

Since γ is a unit-speed curve, we can write

$$
\left(\gamma_{1}^{\prime}\right)^{2}+\ldots+\left(\gamma_{2 n}^{\prime}\right)^{2}=4\left(1-s \cos ^{2} \theta\right) .
$$

Now we can give the following examples:

Since γ is a unit-speed curve, we can write

$$
\left(\gamma_{1}^{\prime}\right)^{2}+\ldots+\left(\gamma_{2 n}^{\prime}\right)^{2}=4\left(1-s \cos ^{2} \theta\right) .
$$

Now we can give the following examples:

Example 1

Let $n=1$ and $s=2$. Then, $\gamma: I \rightarrow \mathbb{R}^{4}(-6), \gamma(t)=(\sqrt{2} t, 0, t, t)$ is a slant circle with contact angle $\frac{\pi}{3}$.

Example 2

The curve $\gamma: I \rightarrow \mathbb{R}^{4}(-6), \gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t), \gamma_{4}(t)\right)$ is a slant curve with contact angle θ, where

$$
\begin{gathered}
\gamma_{1}(t)=c_{1}+2 \sqrt{-\cos 2 \theta} \int_{t_{0}}^{t} \cos u(p) d p, \\
\gamma_{2}(t)=c_{2}+2 \sqrt{-\cos 2 \theta} \int_{t_{0}}^{t} \sin u(p) d p, \\
\gamma_{3}(t)=\gamma_{4}(t)+c_{3}=c_{4}+2 t \cos \theta \\
+2 \sqrt{-\cos 2 \theta} \int_{t_{0}}^{t} \cos u(q)\left(c_{2}+2 \sqrt{-\cos 2 \theta} \int_{t_{0}}^{q} \sin u(p) d p\right) d q, \\
\cos \theta \in(-1 / \sqrt{2}, 1 / \sqrt{2}),
\end{gathered}
$$

$t_{0} \in I, c_{1}, c_{2}, c_{3}$ and c_{4} are arbitrary constants.

References

[Blair-1970] Blair, D. E.: Geometry of manifolds with structural group $\mathcal{U}(n) \times \mathcal{O}(s)$. J. Differential Geometry 4, 155-167 (1970). [Blair-2002] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Boston. Birkhauser 2002.
[BB-1994] Baikoussis, C., Blair, D. E.: On Legendre curves in contact 3-manifolds. Geom. Dedicata 49, no. 2, 135-142 (1994). [CFF-1993] Cabrerizo, J. L., Fernandez, L. M., Fernandez M.: The curvature of submanifolds of an S-space form. Acta Math. Hungar. 62, no. 3-4, 373-383 (1993).
[Chen-1996] Chen, B.Y.: A report on submanifolds of finite type. Soochow J. Math. 22, 117-337 (1996).
[CIL-2006] Cho, J. T., Inoguchi, J., Lee, J.E.: On slant curves in Sasakian 3-manifolds. Bull. Austral. Math. Soc. 74, no. 3, 359-367 (2006).
[Eells-Sampson-1964] Eells, Jr. J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109-160 (1964).
[Fetcu-2008] Fetcu, D.: Biharmonic Legendre curves in Sasakian space forms. J. Korean Math. Soc. 45, 393-404 (2008). [Fetcu-2009] Fetcu, D., Oniciuc, C.: Explicit formulas for biharmonic submanifolds in Sasakian space forms. Pacific J. Math. 240, 85-107 (2009).
[Hasegawa-1986] Hasegawa, I., Okuyama, Y., Abe, T.: On p-th Sasakian manifolds. J. Hokkaido Univ. Ed. Sect. II A, 37, no. 1, 1-16, (1986).
[Jiang-1986] Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A, 7, 389-402 (1986).
[KDT-2007] Kim, J. S., Dwivedi, M. K., Tripathi, M. M.: Ricci curvature of integral submanifolds of an \mathcal{S}-space form. Bull. Korean Math. Soc. 44 , no. 3, 395-406 (2007).
[Nakagawa-1966] Nakagawa, H.: On framed f-manifolds. Kodai Math. Sem. Rep. 18, 293-306 (1966).
[OG-2014] Özgür, C., Güvenç, Ş.: On biharmonic Legendre curves in \mathcal{S}-space forms. Turkish J. Math. 38, no. 3, 454-461 (2014). [Vanzura-1972] Vanzura, J.: Almost r-contact structures. Ann. Scuola Norm. Sup. Pisa (3) 26, 97-115 (1972).
[Yano-Kon-1984] Yano, K., Kon, M.: Structures on Manifolds.
Series in Pure Mathematics, 3. Singapore. World Scientific Publishing Co. 1984.

Thank you...

