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Introduction

J. S. Kim, M. K. Dwivedi and M. M. Tripathi obtained the Ricci
curvature of integral submanifolds of an S-space form in
[KDT-2007]. On the other hand, D. Fetcu and C. Oniciuc studied
biharmonic Legendre curves in Sasakian space forms in
[Fetcu-2008] and [Fetcu-2009]. We studied biharmonic Legendre
curves of S−space forms in [OG-2014]. J. T. Cho, J. Inoguchi and
J.E. Lee defined and studied slant curves in Sasakian 3-manifolds
in [CIL-2006].

Motivated by these studies, in the present talk, we focus our
interest on biharmonic slant curves in S−space forms. We find
curvature characterizations of these special curves in four cases.

Ş. GÜVENÇ and C. ÖZGÜR Slant Curves in S−Space Forms



Introduction
S−space form and its submanifolds

Biharmonic Slant curves in S-Space Forms
Slant Curves in R

2n+s (−3s)
References

Let (M, g) and (N, h) be two Riemannian manifolds and
φ : (M, g) → (N, h) a smooth map. The energy functional of φ is
defined by

E (φ) =
1

2

∫

M

|dφ|2 υg .

The critical points of the energy functional E (φ) are called
harmonic [Eells-Sampson-1964]. The Euler-Lagrange equation
gives the harmonic map equation

τ(φ) = trace∇dφ = 0,

where τ(φ) is called the tension field of φ .
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The bienergy functional of φ is given by

E2(φ) =
1

2

∫

M

|τ(φ)|2 υg .

A biharmonic map is a critical point of E2(φ). The Euler-Lagrange
equation of E2(φ) gives the biharmonic map equation

τ2(φ) = −Jφ(τ(φ)) = −∆τ(φ)− traceRN(dφ, τ(φ))dφ = 0,

where Jφ is the Jacobi operator of φ. τ2(φ) is called the bitension
field of φ [Jiang-1986].
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The bienergy functional of φ is given by

E2(φ) =
1

2

∫

M

|τ(φ)|2 υg .

A biharmonic map is a critical point of E2(φ). The Euler-Lagrange
equation of E2(φ) gives the biharmonic map equation

τ2(φ) = −Jφ(τ(φ)) = −∆τ(φ)− traceRN(dφ, τ(φ))dφ = 0,

where Jφ is the Jacobi operator of φ. τ2(φ) is called the bitension
field of φ [Jiang-1986].

In a different setting, in [Chen-1996], B.Y. Chen defined a
biharmonic submanifold M ⊂ En of the Euclidean space as its
mean curvature vector field H satisfies ∆H = 0, where ∆ is the
Laplacian.
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S−space form and its submanifolds

Let (M, g) be a (2m + s)-dimensional framed metric manifold
[Yano-Kon-1984] with a framed metric structure (f , ξα, η

α, g),
α ∈ {1, ..., s} , that is, f is a (1, 1) tensor field defining an
f -structure of rank 2m; ξ1, ..., ξs are vector fields; η1, ..., ηs are
1-forms and g is a Riemannian metric on M such that for all
X ,Y ∈ TM and α, β ∈ {1, ..., s},

f 2 = −I + ηα ⊗ ξα, ηα(ξβ) = δαβ , f (ξα) = 0, ηα ◦ f = 0

(1)

g(fX , fY ) = g(X ,Y )−
s
∑

α=1

ηα(X )ηα(Y ), (2)

dηα(X ,Y ) = g(X , fY ) = −dηα(Y ,X ), ηα(X ) = g(X , ξ).
(3)
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(M2m+s , f , ξα, η
α, g) is also called framed f -manifold

[Nakagawa-1966] or almost r -contact metric manifold
[Vanzura-1972].
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(M2m+s , f , ξα, η
α, g) is also called framed f -manifold

[Nakagawa-1966] or almost r -contact metric manifold
[Vanzura-1972].

If the Nijenhuis tensor of f equals −2dηα ⊗ ξα for all
α ∈ {1, ..., s} , then (f , ξα, η

α, g) is called S-structure [Blair-1970].
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(M2m+s , f , ξα, η
α, g) is also called framed f -manifold

[Nakagawa-1966] or almost r -contact metric manifold
[Vanzura-1972].

If the Nijenhuis tensor of f equals −2dηα ⊗ ξα for all
α ∈ {1, ..., s} , then (f , ξα, η

α, g) is called S-structure [Blair-1970].

If a framed metric structure on M is an S-structure, then the
following equations hold [Blair-1970]:

(∇X f )Y =
s
∑

α=1

{

g(fX , fY )ξα + ηα(Y )f 2X
}

, (4)

∇ξα = −f , α ∈ {1, ..., s} . (5)
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A plane section in TpM is an f -section if there exist a vector
X ∈ TpM orthogonal to ξ1, ..., ξs such that {X , fX} span the
section. The sectional curvature of an f -section is called an
f -sectional curvature. In an S-manifold of constant f -sectional
curvature, the curvature tensor R of M is of the form

R(X ,Y )Z =
∑

α,β

{

ηα(X )ηβ(Z )f 2Y − ηα(Y )ηβ(Z )f 2X

−g(fX , fZ )ηα(Y )ξβ + g(fY , fZ )ηα(X )ξβ}
+ c+3s

4

{

−g(fY , fZ )f 2X + g(fX , fZ )f 2Y
}

c−s
4 {g(X , fZ )fY − g(Y , fZ )fX + 2g(X , fY )fZ} ,

(6)

for all X ,Y ,Z ∈ TM [CFF-1993]. An S-manifold of constant
f -sectional curvature c is called an S-space form which is denoted
by M(c).
When s = 1, an S-space form becomes a Sasakian space form
[Blair-2002].
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A submanifold of an S-manifold is called an integral submanifold if
ηα(X ) = 0, α = 1, ..., s, for every tangent vector X [KDT-2007].
We call a 1-dimensional integral submanifold of an S-space form
(M2m+s , f , ξα, η

α, g) a Legendre curve of M. In other words, a
curve γ : I → M = (M2m+s , f , ξα, η

α, g) is called a Legendre curve
if ηα(T ) = 0, for every α = 1, ...s, where T is the tangent vector
field of γ.

Let γ be a unit-speed curve in an S-manifold (M2m+s , f , ξα, η
α, g).

We call γ a slant curve, if there exists a constant angle θ such that
ηα(T ) = cos θ, for all α = 1, ...s. Here, θ is called the contact
angle of γ. Every Legendre curve is slant with contact angle π

2 .
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We can give the following essential proposition for slant curves:

Proposition 1

Let M = (M2m+s , f , ξα, η
α, g) be an S-manifold. If θ is the

contact angle of a non-geodesic unit-speed slant curve in M, then

−1√
s
< cos θ <

1√
s
.
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Biharmonic Slant curves in S-Space Forms

Let γ : I → M be a curve parametrized by arc length in an
n-dimensional Riemannian manifold (M, g). If there exists
orthonormal vector fields E1,E2, ...,Er along γ such that

E1 = γ′ = T ,

∇TE1 = κ1E2,

∇TE2 = −κ1E1 + κ2E3, (7)

...

∇TEr = −κr−1Er−1,

then γ is called a Frenet curve of osculating order r , where
κ1, ..., κr−1 are positive functions on I and 1 ≤ r ≤ n.
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A Frenet curve of osculating order 1 is a geodesic; a Frenet curve
of osculating order 2 is called a circle if κ1 is a non-zero positive
constant; a Frenet curve of osculating order r ≥ 3 is called a helix
of order r if κ1, ..., κr−1 are non-zero positive constants; a helix of
order 3 is shortly called a helix.
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Now let (M2m+s , f , ξα, η
α, g) be an S-space form and γ : I → M a

slant curve of osculating order r . Differentiating

ηα(T ) = cos θ (8)

and using (7), we find

ηα(E2) = 0, α ∈ {1, ..., s} . (9)

Then, (1) and (9) give us

f 2E2 = −E2. (10)
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By the use of (1), (2), (3), (6), (7), (9) and (10), it can be seen
that

∇T∇TT = −κ21E1 + κ′1E2 + κ1κ2E3,

∇T∇T∇TT = −3κ1κ
′

1E1 +
(

κ′′1 − κ31 − κ1κ
2
2

)

E2

+
(

2κ′1κ2 + κ1κ
′

2

)

E3 + κ1κ2κ3E4,

R(T ,∇TT )T = −κ1

[

s2 cos2 θ +
c + 3s

4
(1− s cos2 θ)

]

E2

−3κ1
(c − s)

4
g(fT ,E2)fT .
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So we have

τ2(γ) = ∇T∇T∇TT − R(T ,∇TT )T

= −3κ1κ
′

1E1

+
{

κ′′1 − κ31 − κ1κ
2
2 (11)

+ κ1

[

s2 cos2 θ +
c + 3s

4
(1− s cos2 θ)

]}

E2

+(2κ′1κ2 + κ1κ
′

2)E3 + κ1κ2κ3E4

+3κ1
(c − s)

4
g(fT ,E2)fT .
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So we have

τ2(γ) = ∇T∇T∇TT − R(T ,∇TT )T

= −3κ1κ
′

1E1

+
{

κ′′1 − κ31 − κ1κ
2
2 (11)

+ κ1

[

s2 cos2 θ +
c + 3s

4
(1− s cos2 θ)

]}

E2

+(2κ′1κ2 + κ1κ
′

2)E3 + κ1κ2κ3E4

+3κ1
(c − s)

4
g(fT ,E2)fT .

Let k = min {r , 4}. From (11), the curve γ is proper biharmonic if
and only if κ1 > 0 and
(1) c = s or fT ⊥ E2 or fT ∈ span {E2, ...,Ek}; and
(2) g(τ2(γ),Ei ) = 0, for any i = 1, ..., k .
So we can state the following theorem:
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Theorem 2

Let γ be a slant curve of osculating order r in an S-space form
(M2m+s , f , ξα, η

α, g), α ∈ {1, ..., s} and k = min {r , 4}. Then γ is
proper biharmonic if and only if

(1) c = s or fT ⊥ E2 or fT ∈ span {E2, ...,Ek}; and
(2) the first k of the following equations are satisfied (replacing
κk = 0):

κ1 = constant > 0,

κ21 + κ22 = s2 cos2 θ + c+3s
4 (1− s cos2 θ) + 3(c−s)

4 [g(fT ,E2)]
2 ,

κ′2 +
3(c−s)

4 g(fT ,E2)g(fT ,E3) = 0,

κ2κ3 +
3(c−s)

4 g(fT ,E2)g(fT ,E4) = 0.
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Theorem 2

Let γ be a slant curve of osculating order r in an S-space form
(M2m+s , f , ξα, η

α, g), α ∈ {1, ..., s} and k = min {r , 4}. Then γ is
proper biharmonic if and only if

(1) c = s or fT ⊥ E2 or fT ∈ span {E2, ...,Ek}; and
(2) the first k of the following equations are satisfied (replacing
κk = 0):

κ1 = constant > 0,

κ21 + κ22 = s2 cos2 θ + c+3s
4 (1− s cos2 θ) + 3(c−s)

4 [g(fT ,E2)]
2 ,

κ′2 +
3(c−s)

4 g(fT ,E2)g(fT ,E3) = 0,

κ2κ3 +
3(c−s)

4 g(fT ,E2)g(fT ,E4) = 0.

Now we give the interpretations of Theorem 2.
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Case I: c = s.

In this case γ is proper biharmonic if and only if

κ1 = constant > 0,
κ21 + κ22 = s,
κ2 = constant,

κ2κ3 = 0.

Theorem 3

Let γ be a slant curve in an S-space form (M2m+s , f , ξα, η
α, g),

α ∈ {1, ..., s} , c = s. Then γ is proper biharmonic if and only if
either γ is a circle with κ1 =

√
s, or a helix with κ21 + κ22 = s.

Moreover, if γ is Legendre, then 2m + s > 3.
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Remark 4

If 2m + s = 3, then m = s = 1. So M is a 3-dimensional Sasakian
space form. Since a Legendre curve in a Sasakian 3-manifold has
torsion 1 (see [CB − 1994]), we can write κ1 > 0 and κ2 = 1,
which contradicts κ21 + κ22 = s = 1. Hence γ cannot be proper
biharmonic.
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Case II: c 6= s, fT ⊥ E2.

In this case, g(fT ,E2) = 0. From the main Theorem, we obtain

κ1 = constant > 0,
κ21 + κ22 = s2 cos2 θ + c+3s

4 (1− s cos2 θ),
κ2 = constant,

κ2κ3 = 0.

(12)
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Case II: c 6= s, fT ⊥ E2.

In this case, g(fT ,E2) = 0. From the main Theorem, we obtain

κ1 = constant > 0,
κ21 + κ22 = s2 cos2 θ + c+3s

4 (1− s cos2 θ),
κ2 = constant,

κ2κ3 = 0.

(12)

Firstly, we give the following proposition:
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Case II: c 6= s, fT ⊥ E2.

In this case, g(fT ,E2) = 0. From the main Theorem, we obtain

κ1 = constant > 0,
κ21 + κ22 = s2 cos2 θ + c+3s

4 (1− s cos2 θ),
κ2 = constant,

κ2κ3 = 0.

(12)

Firstly, we give the following proposition:

Proposition 5

Let γ be a slant curve of osculating order 3 in an S-space form
(M2m+s , f , ξα, η

α, g), α ∈ {1, ..., s} and fT ⊥ E2. Then
{T = E1,E2,E3, fT ,∇T fT , ξ1, ..., ξs} is linearly independent at
any point of γ. Therefore m ≥ 3.
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Now we can state the following Theorem:

Theorem 6

Let γ be a slant curve in an S-space form (M2m+s , f , ξα, η
α, g),

α ∈ {1, ..., s} , c 6= s and fT ⊥ E2. Then γ is proper biharmonic if
and only if either
(1) m ≥ 2 and γ is a circle with κ1 =

1
2

√

c + 3s − (c − s)s cos2 θ,
where c > −3s + (c − s)s cos2 θ and {T = E1,E2, fT ,∇T fT ,
ξ1, ..., ξs} is linearly independent; or

(2) m ≥ 3 and γ is a helix with κ21 + κ22 =
c+3s−(c−s)s cos2 θ

4 ,
where c > −3s + (c − s)s cos2 θ and {T = E1,E2,E3, fT ,∇T fT ,
ξ1, ..., ξs} is linearly independent.
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Case III: c 6= s, fT ‖ E2

In this case, fT = ±
√
1− s cos2 θE2, g(fT ,E2) = ±(1− s cos2 θ),

g(fT ,E3) = 0 and g(fT ,E4) = 0. From Theorem 2, γ is
biharmonic if and only if

κ1 = constant > 0,
κ21 + κ22 = c − s cos2 θ(c − s),

κ2 = constant,
κ2κ3 = 0.
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Case III: c 6= s, fT ‖ E2

In this case, fT = ±
√
1− s cos2 θE2, g(fT ,E2) = ±(1− s cos2 θ),

g(fT ,E3) = 0 and g(fT ,E4) = 0. From Theorem 2, γ is
biharmonic if and only if

κ1 = constant > 0,
κ21 + κ22 = c − s cos2 θ(c − s),

κ2 = constant,
κ2κ3 = 0.

We can assume that fT =
√
1− s cos2 θE2. From equation (1), we

get

√

1− s cos2 θfE2 = f 2T = −T +
s
∑

α=1

ηα(T )ξα = −T +cos θ
s
∑

α=1

ξα.

(13)
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From (13), we find

∇T fT = −s cos θT +

s
∑

α=1

ξα

+κ1

[

−1√
1− s cos2 θ

T +
cos θ√

1− s cos2 θ

s
∑

α=1

ξα

]

(14)

=
√

1− s cos2 θ(−κ1T + κ2E3).
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From (13), we find

∇T fT = −s cos θT +

s
∑

α=1

ξα

+κ1

[

−1√
1− s cos2 θ

T +
cos θ√

1− s cos2 θ

s
∑

α=1

ξα

]

(14)

=
√

1− s cos2 θ(−κ1T + κ2E3).

Using (14), we can write

(

1 +
κ1 cos θ√
1− s cos2 θ

)

(

−s cos θT +
s
∑

α=1

ξα

)

= κ2
√

1− s cos2 θE3,

(15)
which gives us the following Theorem:
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Theorem 7

Let γ be a slant curve in an S-space form (M2m+s , f , ξα, η
α, g),

α ∈ {1, ..., s} , c 6= s and fT ‖ E2. Then γ is proper biharmonic if
and only if it is one of the following:
i) a Legendre helix with the Frenet frame field

{

T , fT ,
1√
s

s
∑

α=1

ξα

}

and κ1 =
√
c − s and κ2 =

√
s, where c > s;
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ii) a non-Legendre slant circle with the Frenet frame field

{

T ,
fT√

1− s cos2 θ

}

and

κ1 =
−
√
1− s cos2 θ

cos θ
=
√

c − s cos2 θ(c − s);

iii) a non-Legendre slant helix with the Frenet frame field

{

T ,
fT√

1− s cos2 θ
,

1
√
s
√

s cos2 θ − cos(2θ)

(

s
∑

α=1

ξα − s cos θT

)}

and
κ21 + κ22 = c − s cos2 θ(c − s).
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Thus, we can give the following corollary for Legendre curves:

Corollary 8

Let γ be a Legendre Frenet curve in an S-space form
(M2m+s , f , ξα, η

α, g), α ∈ {1, ..., s} , c 6= s and fT ‖ E2. Then

{

T , fT ,
1√
s

s
∑

α=1

ξα

}

is the Frenet frame field of γ and γ is proper biharmonic if and
only if it is a helix with κ1 =

√
c − s and κ2 =

√
s, where c > s. If

c ≤ s, then γ is biharmonic if and only if it is a geodesic
[OG − 2014].
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Case IV: c 6= s, fT ∦ E2 and g(fT ,E2) 6= 0.

Now, let (M2m+s , f , ξα, η
α, g) be an S-space form, α ∈ {1, ..., s}

and γ : I → M a slant curve of osculating order r , where
4 ≤ r ≤ 2m + s and m ≥ 2. If γ is biharmonic, then
fT ∈ span {E2,E3,E4} . Let µ(t) denote the angle function
between fT and E2, that is, g(fT ,E2) =

√
1− s cos2 θ cosµ(t).

Differentiating g(fT ,E2) along γ and using (1), (3), (7), we find

−
√

1− s cos2 θµ′(t) sinµ(t) = ∇Tg(fT ,E2)

= g(∇T fT ,E2) + g(fT ,∇TE2)

= g(−s cos θT +
s
∑

α=1

ξα + κ1fE2,E2)

+g(fT ,−κ1T + κ2E3)

= κ2g(fT ,E3). (16)
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If we write fT = g(fT ,E2)E2 + g(fT ,E3)E3 + g(fT ,E4)E4,
Theorem 2 gives us

κ1 = constant > 0,

κ21 + κ22 = s2 cos2 θ + c+3s
4 (1− s cos2 θ) + 3(c−s)

4 [g(fT ,E2)]
2 ,

κ′2 +
3(c−s)

4 g(fT ,E2)g(fT ,E3) = 0,

κ2κ3 +
3(c−s)

4 g(fT ,E2)g(fT ,E4) = 0.
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If we multiply the third equation of the above system with 2κ2,
using (16), we obtain

2κ2κ
′

2 +
√

1− s cos2 θ
3(c − s)

4
(−2µ′ cosµ sinµ) = 0,

which is equivalent to

κ22 = −
√

1− s cos2 θ
3(c − s)

4
cos2 µ+ ω0, (17)

where ω0 is a constant. If we write (17) in the second equation, we
have

κ21 = s2 cos2 θ +
c + 3s

4
(1− s cos2 θ)

+
3(c − s)

4

(

1− s cos2 θ +
√

1− s cos2 θ
)

cos2 µ+ ω0.

Ş. GÜVENÇ and C. ÖZGÜR Slant Curves in S−Space Forms



Introduction
S−space form and its submanifolds

Biharmonic Slant curves in S-Space Forms
Slant Curves in R

2n+s (−3s)
References

Thus µ is a constant. From (16) and (17), we find g(fT ,E3) = 0
and κ2 =constant> 0. Since ‖fT‖ =

√
1− s cos2 θ and

fT =
√
1− s cos2 θ cosµE2 + g(fT ,E4)E4, we get

g(fT ,E4) =
√
1− s cos2 θ sinµ. From the assumption fT ∦ E2 and

g(fT ,E2) 6= 0, it is clear that µ ∈ (0, 2π)\
{

π
2 , π,

3π
2

}

. Now we
can state the following Theorem:
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Theorem 9

Let γ : I → M be a slant curve of osculating order r in an S-space form
(M2m+s , f , ξα, η

α, g), α ∈ {1, ..., s} , where r ≥ 4, m ≥ 2, c 6= s ,
fT ∦ E2 and g(fT ,E2) 6= 0. Then γ is proper biharmonic if and only if

κi = constant > 0, i ∈ {1, 2, 3} ,

κ2
1 + κ2

2 = s2 cos2 θ +
c + 3s

4
(1− s cos2 θ)

+
3(c − s)

4
(1− s cos2 θ) cos2 µ,

κ2κ3 =
3(s − c)

8
(1− s cos2 θ) sin 2µ,

where fT =
√
1− s cos2 θ cosµE2 +

√
1− s cos2 θ sinµE4,

µ ∈ (0, 2π)\
{

π

2 , π,
3π
2

}

is a constant.
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Corollary 10

Let γ : I → M be a Legendre curve of osculating order r in an S-space
form (M2m+s , f , ξα, η

α, g), α ∈ {1, ..., s} , where r ≥ 4, m ≥ 2, c 6= s ,
g(fT ,E2) is not constant 0, 1 or −1. Then γ is proper biharmonic if and
only if

κi = constant > 0, i ∈ {1, 2, 3} ,

κ2
1 + κ2

2 =
1

4

[

c + 3s + 3(c − s) cos2 µ
]

,

κ2κ3 =
3(s − c) sin 2µ

8
,

where c > −3s, fT = cosµE2 + sinµE4, µ ∈ (0, 2π)\
{

π

2 , π,
3π
2

}

is a
constant such that c + 3s + 3(c − s) cos2 µ > 0 and 3(s − c) sin 2µ > 0.
If c ≤ −3s, then γ is biharmonic if and only if it is a geodesic [OG-2014].
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Slant Curves in R2n+s(−3s)

Let us consider M = R2n+s with coordinate functions
{x1, ...xn, y1, ..., yn, z1, ..., zs} and define

ξα = 2
∂

∂zα
, α = 1, ..., s,

ηα =
1

2

(

dzα −
n
∑

i=1

yidxi

)

, α = 1, ..., s,

fX =
n
∑

i=1

Yi

∂

∂xi
−

n
∑

i=1

Xi

∂

∂yi
+

(

n
∑

i=1

Yiyi

)(

s
∑

α=1

∂

∂zα

)

,
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g =
s
∑

α=1

ηα ⊗ ηα +
1

4

n
∑

i=1

(dxi ⊗ dxi + dyi ⊗ dyi ) ,

where

X =
n
∑

i=1

(

Xi

∂

∂xi
+ Yi

∂

∂yi

)

+
s
∑

α=1

(

Zα
∂

∂zα

)

∈ χ(M).

It is known that
(

R2n+s , f , ξα, η
α, g

)

is an S-space form with
constant f -sectional curvature c = −3s and it is denoted by
R2n+s(−3s) [Hasegawa-1986].
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The vector fields

Xi = 2
∂

∂yi
, Xn+i = fXi = 2(

∂

∂xi
+ yi

s
∑

α=1

∂

∂zα
), ξα = 2

∂

∂zα

form a g -orthonormal basis and the Levi-Civita connection is
calculated as

∇Xi
Xj = ∇Xn+i

Xn+j = 0,∇Xi
Xn+j = δij

s
∑

α=1

ξα,∇Xn+i
Xj = −δij

s
∑

α=1

ξα,

∇Xi
ξα = ∇ξαXi = −Xn+i ,∇Xn+i

ξα = ∇ξαXn+i = Xi .

(see [Hasegawa-1986]).
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Let γ : I → R2n+s(−3s) be a slant curve with contact angle θ. Let
us denote

γ(t) = (γ1(t), ..., γn(t), γn+1(t), ..., γ2n(t), γ2n+1(t), ..., γ2n+s(t)) ,

where t is the arc-length parameter. The tangent vector field of γ
is

T = γ′1
∂

∂x1
+ ...+ γ′n

∂

∂xn
+ γ′n+1

∂

∂y1
+ ...+ γ′2n

∂

∂yn

+γ′2n+1

∂

∂z1
+ ...+ γ′2n+s

∂

∂zα
.
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In terms of the g -orthonormal basis, T can be written as

T =
1

2

[

γ′n+1X1 + ...+ γ′2nXn + γ′1Xn+1 + ...+ γ′nX2n

+
(

γ′2n+1 − γ′1γn+1 − ...− γ′nγ2n
)

ξ1 + ...

+
(

γ′2n+s − γ′1γn+1 − ...− γ′nγ2n
)

ξs
]

.
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In terms of the g -orthonormal basis, T can be written as

T =
1

2

[

γ′n+1X1 + ...+ γ′2nXn + γ′1Xn+1 + ...+ γ′nX2n

+
(

γ′2n+1 − γ′1γn+1 − ...− γ′nγ2n
)

ξ1 + ...

+
(

γ′2n+s − γ′1γn+1 − ...− γ′nγ2n
)

ξs
]

.

Since γ is slant, we obtain

ηα(T ) =
1

2

(

γ′2n+α − γ′1γn+1 − ...− γ′nγ2n
)

= cos θ

for all α = 1, ..., s. Thus, we have

γ′2n+1 = ... = γ′2n+s = γ′1γn+1 + ...+ γ′nγ2n + 2 cos θ.
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Since γ is a unit-speed curve, we can write

(

γ′1
)2

+ ...+
(

γ′2n
)2

= 4
(

1− s cos2 θ
)

.

Now we can give the following examples:
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Since γ is a unit-speed curve, we can write

(

γ′1
)2

+ ...+
(

γ′2n
)2

= 4
(

1− s cos2 θ
)

.

Now we can give the following examples: 

Example 1

Let n = 1 and s = 2. Then, γ : I → R4(−6), γ(t) =
(√

2t, 0, t, t
)

is a slant circle with contact angle π
3 .
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Example 2
The curve γ : I → R4(−6), γ(t) = (γ1(t), γ2(t), γ3(t), γ4(t)) is a slant
curve with contact angle θ, where

γ1(t) = c1 + 2
√
− cos 2θ

∫ t

t0

cos u(p)dp,

γ2(t) = c2 + 2
√
− cos 2θ

∫ t

t0

sin u(p)dp,

γ3(t) = γ4(t) + c3 = c4 + 2t cos θ

+ 2
√
− cos 2θ

∫ t

t0

cos u(q)

(

c2 + 2
√
− cos 2θ

∫ q

t0

sin u(p)dp

)

dq,

cos θ ∈
(

−1/
√
2, 1/

√
2
)

,

t0 ∈ I , c1, c2, c3 and c4 are arbitrary constants.
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Thank you...
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