Transverse conformal Killing forms on foliated manifolds

Seoung Dal Jung

Jeju National University. Korea

XVII International Conference "Geometry, Integrability and Quantization" June 5 - 10, 2015 Varna, Bulgaria

Seoung Dal Jung Transverse conformal Killing forms on foliated manifolds

伺 ト イヨ ト イヨ ト

Abstract

We study transverse Killing vector, forms on foliations and prove some vanishing theorem for foliations.

Keyword

Transverse Killing vector field, Transverse coformal vector field, Transverse Killing form, Transverse conformal form

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Seoung Dal Jung Transverse conformal Killing forms on foliated manifolds

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ▲□ > ▲□ >

Definition

A codimension q foliation ${\mathcal F}$ on M is given by an open cover (U_j) , submersion $f_j: U_j \to N$ over a q-dimensional transverse manifold N and, for $U_i \cap U_j \neq \varnothing$, a diffeomorphism $\gamma_{ij}: f_i(U_i \cap U_j) \subset N \to f_j(U_i \cap U_j) \subset N$ satisfying

$$f_j(x) = \gamma_{ij} \circ f_i(x) \quad x \in U_i \cap U_j.$$

We say that $\{U_j, f_j, N, \gamma_{ij}\}$ is a **foliated cocycle** defining \mathcal{F} .

 Roughly speaking, a foliation corresponds to a decomposition of a manifold into a union of connected submanifolds, which are called leaves.

イロト 不得 トイヨト イヨト 二日

Examples

(1)
$$M = \mathbb{R}^2 - \{0\}$$
 and $L_r = \{(x, y) | x^2 + y^2 = r^2\}$. Then $\mathcal{F} = \{L_f\}$.

(2)
$$M = \mathbb{R}^2$$
 and $L_a = \{(x, y) | y = x^2 + a\}.$

(3) $M = \mathbb{R}^2$ and $L_a = \{(x, y) | y = ln | sec x| + a\}$ together with the vertical lines cos x = 0. Equivalently, the solution of $\frac{dy}{dx} = tan x$ is a foliation L_a .

・ 同 ト ・ ヨ ト ・ ヨ ト

(4) Let $M=D^2\times S^1$ $(D^2=\{(x,y)|x^2+y^2\leqslant 1\})$ and for $0\leqslant \alpha<1,$

$$\begin{aligned} \mathsf{L}_{\mathfrak{a}} &= \{(\mathsf{x}, e^{\mathsf{i} 2\pi (\mathfrak{a} + \mathsf{f}(|\mathsf{x}|))}) | \mathsf{x} \in \mathsf{Int}(\mathsf{D}^2)\}, \\ \mathfrak{d}(\mathsf{D}^2 \times \mathsf{S}^1) &= \mathsf{S}^1 \times \mathsf{S}^1 = \mathsf{T}^2. \end{aligned}$$

Then $\mathcal{F} \equiv \{L_{\alpha}, T^2\}$ is a codimension 1 foliation of $D^2 \times S^1$. In this case, L_{α} is diffeomorphic to \mathbb{R}^2 and T^2 is the only compact leaf. This is called a **Reeb foliation** of the solid torus $D^2 \times S^1$.

(5) Let $S^3=\{(z,w)\in\mathbb{C}^2||z|^2+|w|^2=1\}.$ Let two solid torus be

$$\begin{split} S^{3}_{+} &= \{(z,w) \in S^{3} ||z|^{2} \geqslant \frac{1}{2}\} \cong D^{2} \times S^{1}, \\ S^{3}_{-} &= \{(z,w) \in S^{3} ||z|^{2} \leqslant \frac{1}{2}\} \cong D^{2} \times S^{1}. \end{split}$$

Then $S^3 = S^3_+ \cup S^3_- \cong (D^2 \times S^1) \cup (D^2 \times S^1)$ by pasting the boundaries $\partial(D^2 \times S^1)$. And $S^3_+ \cap S^3_- = T^2$. A foliation on S^3 is obtained from **Reeb foliations** $\{L_a\}$ in (9) and one compact leaf T^2 .

(6) (**Submersion**) A smooth submersion $f : M \to B$ is a map of manifolds with a surjective derivative map at every point of M.

(7) An ordinary manifold can be considered as a foliated manifold with the point foliation.

伺 と く き と く き と … き

- A nowhere zero differential 1-form ω defines a codimension one foliation on M if L is integrable, where L_x = Kerω_x, i.e. ω ∧ dω = 0 (integrable condition). (For example, Level hypersurfaces)
- Any compact manifold M admits a one dimensional foliation if and only if the Euler characteristic χ(M) = 0.
- Every closed manifold M with $\chi(M) = 0$ admits a codimension one foliation (Thurston,1974).

伺 と く ヨ と く ヨ と 二 ヨ

Leaf space

- Define $x \sim y$ in $M \iff x$ and y are in the same leaf.
- Then M/𝔅 := M/ ∼, endowed with the quotient topology. This is called as the leaf space of 𝔅.
- Generally, M/F is not a manifold. But we can define on M/F many geometrical objects like functions, differential forms, differential operators etc. They correspond to their analogues on M invariant along the leaves.
- The **tangential geometry** is infinitesimally modeled by the leaves. And the **transversal geometry** is infinitesimally modeled by the leaf space, which plays a central role in the current research.

イロト 不得 とくき とくき とうせい

• Let TF be the tangent bundle of F and Q = TM/TF the normal bundle of F. Then we have the exact sequence of vector bundles

$$0 \to \mathsf{T}\mathcal{F} \to \mathsf{T}\mathsf{M} \xrightarrow{\pi} Q \to 0. \tag{1}$$

- \mathcal{F} is a **Riemannian foliation** if there exists a metric g_Q on Q satisfying $\overset{\circ}{\nabla}_X g_Q = 0$ for any $X \in T\mathcal{F}$. where $\overset{\circ}{\nabla}$ is the partial Bott connection in Q.
- The property \mathcal{F} is Riemannian means that the leaf space M/\mathcal{F} is a Riemannian manifold even if M/\mathcal{F} does not support any differentiable structure.

(4月) (4日) (4日) 日

Bundle-like metric

- Let (M, g_M, F) be a Riemannian manifold with a foliation F of codimension q and a Riemannian metric g_M.
- g_M is a **bundle-like metric** \iff All geodesics orthogonal to a leaf at one point are orthogonal to each leaf at every point.
- A Riemannian foliation admits a bundle-like metric.
- Let M be a foliated manifold and complete in a bundle-like metric. Let \mathcal{F} be a codimension 1-foliation. If one leaf is compact, then every leaf is compact.
- Not all foliations have bundle-like metrics.

伺 と く き と く き と … き

Transversal vector fields

- A vector field Y on M is an transversal infinitesimal automorphism if its flow preserves the leaves. That is, [Y, Z] ∈ T𝔅 for all Z ∈ T𝔅.
- An infinitesimal automorphism Y is called a transversal Killing field (or transversal conformal field) if Y satisfies θ(Y)g_Q = 0 (or θ(Y)g_Q = 2f_Yg_Q for a basic function f_Y depending on Y).
- A transversal Killing (or conformal) field Y preserves the transverse metric, i.e., transversally isometric (or the conformal class of the transverse metric).

・ 同下 ・ 日下 ・ 日下 - 日

• A differential form $\omega \in \Omega^{r}(M)$ is **basic**, if

$$i(X)\omega = 0, \ \theta(X)\omega = 0 \ \forall X \in \Gamma L.$$

• Let $\Omega_B^*(\mathcal{F})$ be the space of all basic forms on M. Then $d:\Omega_B^r\to \Omega_B^{r+1}$ and $d^2=0.$ So the **basic cohomology** is given by

$$\mathsf{H}^{\mathsf{r}}_{\mathsf{B}}(\mathcal{F}) = \mathsf{H}(\Omega_{\mathsf{B}}(\mathcal{F}), \mathsf{d}_{\mathsf{B}}), \quad \mathsf{d}_{\mathsf{B}} = \mathsf{d}|_{\Omega_{\mathsf{B}}}.$$

- $H^1_B(\mathfrak{F}) \to H^1_{DR}(M)$: injective (Tondeur, 1977).
- The basic cohomology plays the role of the De Rham cohomology of the leaf space of the foliation.

Basic Laplacian

- Let δ_B the formal adjoint of $d_B = d|_{\Omega_B}$. Generally, $\delta_B \neq \delta|_{\Omega_B}$, but for any $\phi \in \Omega_B^1$, $\delta_B \phi = \delta \phi$.
- The **basic Laplacian** is given by $\Delta_B = d_B \delta_B + \delta_B d_B$.
- (El Kacimi-Hector-Sergiescu, 1985) Let M be a closed manifold. Then

 $\Omega^r_B(\mathfrak{F}) \cong \mathfrak{H}^r_B \oplus \mathsf{imd}_B \oplus \mathsf{imd}_B,$

with finite dimensional $\mathcal{H}^r_B=\{\varphi\in\Omega^r_B|\Delta_B\varphi=0\}.$

• (Kamber-Tondeur, 1997) $H^r_B(\mathfrak{F}) \cong \mathfrak{H}^r_B$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Transverse conformal Killing forms

 A basic r-form φ is said to be a transverse conformal Killing form if

$$\nabla_{\mathbf{X}} \phi = \frac{1}{r+1} \mathfrak{i}(\mathbf{X}) d_{\mathbf{B}} \phi - \frac{1}{q-r+1} \mathbf{X}^* \wedge \delta_{\mathbf{T}} \phi$$
(2)

for any $X\in T\mathfrak{F}^{\perp},$ where $\delta_T=\delta_B-\mathfrak{i}(\kappa^{\sharp}).$

A basic r-form φ is a transverse Killing form if

$$\nabla_{X}\phi = \frac{1}{r+1}i(X)d_{B}\phi$$
(3)

for any $X \in T\mathcal{F}^{\perp}$.

- 4 同 ト 4 ヨ ト - ヨ - わえで

- Note that a transverse conformal Killing 1-form (or Killing 1-form) is a dual form of a transversal conformal (or Killing) vector field.
- Also, on a transverse spin foliation, transverse conformal Killing forms (or Killing forms) are related to transversal twistor spinors, i.e., ∇_Xψ = -¹/_qX · D_bψ (or Killing spinors, i.e., ∇_Xψ = μX · ψ). Here D_b is a basic Dirac operator on (M, 𝔅).

伺 と く ヨ と く ヨ と 二 ヨ

The curvature operator

Let F be the curvature endomorphism, which is defined by

$$F(\varphi) = \sum_{a,b=1}^{q} \theta^{a} \wedge i(E_{b}) R^{Q}(E_{b}, E_{a}) \varphi, \qquad (4)$$

where R^Q is the curvature tensor on $\Omega^r_B(\mathfrak{F})$ induced by the connection on Q.

- For any basic 1-form ϕ , $F(\phi)^{\sharp} = Ric^{Q}(\phi^{\sharp})$.
- The operator A_Y is defined by

$$A_{Y}\phi = \theta(Y)\phi - \nabla_{Y}\phi.$$
 (5)

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Generalized Weitzenbock formula

• The generalized Weitzenböck formula is given by

$$\Delta_{\rm B} \varphi = \nabla_{\rm tr}^* \nabla_{\rm tr} \varphi + F(\varphi) + A_{\kappa^{\sharp}} \varphi, \qquad (6)$$

where $\nabla_{tr}^* \nabla_{tr} = -\sum_{\alpha=1}^q \nabla_{E_{\alpha},E_{\alpha}}^2 + \nabla_{\kappa^{\sharp}}$ and κ is the mean curvature form of \mathcal{F} .

• Assume that F is positive definite. Then

$$H^r_B(\mathcal{F}) = 0.$$

• Assume that the transversal Ricci curvature Ric^Q is positive definite. Then $H^1_B(\mathcal{F}) = 0$.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q (や

 \bullet Let φ be a transverse conformal Killing r-form. Then

$$F(\varphi) = \frac{r}{r+1} \delta_{T} d_{B} \varphi + \frac{r^{*}}{r^{*}+1} d_{B} \delta_{T} \varphi, \qquad (7)$$

where $r^* = q - r$.

 $\bullet~$ If φ is a transverse Killing r-form, then

$$F(\phi) = \frac{r}{r+1} \delta_{T} d_{B} \phi, \qquad (8)$$

or

$$\Delta_{\rm B} \phi = \frac{r+1}{r} F(\phi) + \theta(\kappa^{\sharp}) \phi.$$
(9)

Theorem(Jung-Richardson, 2012)

Let (M, g_M, \mathcal{F}) be a closed, connected Riemannian manifold. (i) Assume that $F \leq 0$. Then any transverse conformal Killing r $(1 \leq r \leq q-1)$ -forms are parallel. (ii) In addition, if F < 0 at some point, then there are no transverse conformal Killing r-forms on M.

Corollary. Assume the transversal Ricci curvature Ric^Q is negative definite. Then there are no transversal conformal fields (of course, Killing fields) on M.

(日本) (日本) (日本) 日

Kahler foliation

- Kähler foliation F satisfies the following three conditions;
 (i) F is Riemannian,
 - (ii) there is an almost complex structure $J: Q \rightarrow Q$ such that

$$g_Q(JX, JY) = g_Q(X, Y) \ \forall X, Y \in Q. \tag{10}$$

(iii) $\nabla J = 0$.

Examples. (1) Sasakian manifold (M^{2n+1}, g) is a Kähler foliation with one dimensional foliation generated by the structure vector.

(2) The generalized Hopf-fiberation $S^{2n+1} \to \mathbb{C}P^n$ is an example of a Kähler foliation with constant (transversal) holomorphic sectional curvature.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Note that

$$\Omega(X, Y) = g_Q(X, JY)$$
(11)

defines a basic Kähler 2-form Ω , which is closed as a consequence of $\nabla g_Q = 0$ and $\nabla J = 0$.

• Then Ω is given by

$$\Omega = \sum_{k=1}^{n} \theta^{2k-1} \wedge \theta^{2k} = -\frac{1}{2} \sum_{k=1}^{2n} \theta^{k} \wedge J \theta^{k}, \qquad (12)$$

where θ^{α} is a g_Q -dual 1-form to E_{α} on M.

Operators on Kähler foliation

• Let
$$L: \Omega_B^r \to \Omega_B^{r+2}$$
 and $\Lambda: \Omega_B^r \to \Omega_B^{r-2}$ be given by

$$L(\varphi) = \Omega \land \varphi, \quad \Lambda(\varphi) = -\frac{1}{2} \sum_{\alpha=1}^{2m} i(JE_\alpha)i(E_\alpha)\varphi.$$
(13)

 \bullet Let $J:\Omega^r_B\to\Omega^r_B$ and $S:\Omega^r_B\to\Omega^r_B$ be

$$J(\phi) = \sum_{\alpha=1}^{2m} J\theta^{\alpha} \wedge i(E_{\alpha})\phi, \qquad (14)$$

$$S(\phi) = \sum_{\alpha=1}^{2m} J\theta^{\alpha} \wedge i(\operatorname{Ric}^{Q}(E_{\alpha}))\phi. \qquad (15)$$

• $[J, L] = [J, \Lambda] = [F, J] = [F, \Lambda] = [S, J] = [S, \Lambda] = [S, L] = 0.$

< □ > < □ > < 三 > < 三 > < 三 > のへで

Lemmas on Kähler foliations (Jung, 2015)

• On a Kähler foliation (\mathcal{F} , J), a transverse conformal Killing form ϕ satisfies

$$(q + r2 - qr)S(\phi) = F(J\phi), \qquad (16)$$

$$(q+r^2-qr)S(\varphi)=(1-r)F(J\varphi). \tag{17}$$

• On a Kähler foliation $(\mathcal{F},J),$ if φ is a transverse conformal Killing form, then

$$F(J\phi) = 0 \tag{18}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Vanishing theorem (Killing forms)

• If κ^{\sharp} is transversally holomorphic, i.e., $\theta(\kappa)J=0,$ then

$$[\Delta_{B},\Lambda] = [A_{\kappa^{\sharp}},\Lambda] = \delta_{\mathsf{T}}\mathfrak{i}(J\kappa^{\sharp}) + \mathfrak{i}(J\kappa^{\sharp})\delta_{\mathsf{T}}.$$

Theorem (Jung-Jung, 2012)

Let (\mathcal{F}, J) be a Kähler foliation in a compact Riemannian manifold M. Assume that κ^{\sharp} is transversally holomorphic. Then any transverse Killing r-form $(2 \leqslant r \leqslant q)$ is parallel.

- Note that on a Kähler foliation, we prove vanishing theorem without the conditions of the transversal Ricci curvature.
- Open when r = 1.

・ 同下 ・ 日下 ・ 日下 - 日

Theorem (Jung, 2015)

Let (\mathcal{F}, J) be a Kähler foliation with a codimension q = 2m in a closed, connected Riemanian manifold M. Let ϕ be a transverse conformal Killing $\frac{q}{2}$ -form. Then (i) If $q \neq 4$, then J ϕ is parallel. (ii) If q = 4 and \mathcal{F} is minimal, then J ϕ is parallel.

Proof. (i) If $q \neq 4$ or $m \neq 2$, then

 $\Delta_{\rm B} J \varphi = \theta(\kappa) J \varphi.$

So by the generalized Weitzenbock formula,

$$\frac{1}{2}(\Delta_{\rm B}-\kappa)|J\varphi|^2 = -|\nabla_{\rm tr}J\varphi|^2 \leqslant 0.$$

By the generalized maximum principle, it is proved

(ii) If q = 4, then

$$\Delta_{\rm B} J \phi = -2\delta_{\rm B} \mathfrak{i}(\kappa) L \phi + d\mathfrak{i}(\kappa) J \phi.$$

Hence if $\ensuremath{\mathcal{F}}$ is minimal, then by the generalized Weitzenbock formula,

 $\nabla_{tr}^*\nabla_{tr}J\varphi=0.$

The proof is completed. \Box

Theorem (Jung, 2015)

Let (\mathcal{F}, J) be a minimal Kähler foliation on a compact manifold. Then for a transverse conformal Killing $r \ (2 \leq r \leq q-2)$ -form ϕ , $J\phi$ is parallel.

Proof. First, note that $F(J\Lambda\varphi) = \Lambda F(J\varphi) = 0$. Since \mathcal{F} is minimal, $\Delta_B(J\Lambda\varphi) = 0$. By the generalized Weitzenbock formula,

$$\nabla^*_{tr} \nabla_{tr} J \Lambda \phi = 0,$$

which means that $J\Lambda\phi$ is parallel. Similarly, $JL\phi$ is parallel. Note that $(m-r)J\phi = [\Lambda, L]J\phi$ and $[\nabla, L] = [\nabla, \Lambda] = 0$. Hence if $r \neq m$, then $J\phi$ is parallel. For r = m, see before Theorem. \Box

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Relations between vector fields

- Riemannian manifold
 - Conformal field \Leftarrow Killing field
 - Conformal field and $d(divY) = 0 \Longrightarrow$ Killing field
- Riemannian foliation
 - Transversal conformal field <= Transversal Killing field
 - Transversal conformal field and $d_B(\text{div}_{\nabla}\bar{Y}) = 0;$ $\int \langle A_Y \bar{Y} + A_Y^t \bar{Y}, \kappa \rangle \ge 0 \implies \text{Transversal Killing field}$

Relations between vector fields

- Kähler manifiold
 - Conformal field \iff Killing field
- Kähler foliation
 - Transversal Killing field \implies Transversal conformal field
 - Transversal conformal field and $\sigma^{\nabla} \neq 0$; constant \implies Transversal Killing field.

Here σ^{∇} is the transversal scalr curvature of \mathcal{F} .

Vanishing results (Vector fields)

• Riemannian manifold

- If $Ric\leqslant 0$ and Ric<0 at some point, then \nexists Killing vector and conformal vector.

• Riemannian foliation

- If $\text{Ric}^Q \leqslant 0$ and $\text{Ric}^Q < 0$ at some point, then \nexists transversal Killing field.

- If $\textrm{Ric}^Q\leqslant 0$ and Ric<0 at some point and $\delta_B\kappa=0,$ then \nexists transversal conformal field.

向下 イヨト イヨト 三日

General forms on Riemannian case

• Riemannian manifold

If F ≤ 0, then every Killing (conformal) r-forms are parallel.
In addition, if F < 0, then ∄ Killing (conformal) r-forms.

• Riemannian foliation (Jung-Richardson, 2012)

- The results are same in case of transverse Killing forms.

- If $F\leqslant 0$ and $\delta_B\kappa=0,$ then transverse conformal r-forms are parallel.

- In addition, if $\mathsf{F} < 0$ at some point, then \nexists transverse conformal r-forms.

伺 と く き と く き と … き

General forms on Kähler case

• Kähler manifold

- Any Killing r $(2 \leqslant r \leqslant 2m)$ -forms are parallel.
- For any conformal r $(2 \le r \le 2m 2)$ -form ϕ , JA ϕ is parallel. If $r \ne m$, then J ϕ is parallel (Moroianu-Semmelmann, 2003).

• Kähler foliation

- Any transverse Killing r $(2\leqslant r\leqslant q)\text{-forms}$ are parallel (Jung-Jung, 2012).

- For any transverse conformal Killing r $(2 \le r \le q-2)$ -form, if \mathcal{F} is minimal, then J φ is parallel. (Jung, 2015)

- Open when \mathcal{F} is not minimal !!!

(日本)(日本)(日本)(日本)

References

 S. D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys. 39(2001), 253-264.
 S. D. Jung, Transversal twistor spinors on a Riemannian foliation, Foliations 2005, World Scientific, 2006, 215-228.
 S. D. Jung, Transverse conformal Killing forms on Kähler foliations, J. Geom. Phys. 90 (2015), 29-41.
 M. J. Jung and S. D. Jung, Riemannian foliations admitting transversal conformal fields, Geometriae Dedicata 133(2008), 155-168.
 S. D. Jung and K. Richardson, Transverse conformal Killing

[5] S. D. Jung and K. Richardson, *Transverse conformal Killing forms and a Gallot-Meyer theorem for foliations*, Math. Z. 270(2012), 337-350

イロト 不得 トイヨト イヨト 二日

[6] S. D. Jung and M. J. Jung, Transverse Killing forms on a Kahler foliation, Bull. Korean Math. Soc. 49(2012), 445-454
[7] T. Kashiwada, On conformal Killing tensor, Natur. Sci. Rep. Ochanomizu Univ. 19(1968), 67-74.
[8] T. Kashiwada and S. Tachibana, On the integrability of Killing-Yano's equation, J. Math. Soc. Japan 21(1969), 259-265.
[9] S.D. Jung, K. R. Lee and K. Richardson, Generalized Obata theorem and its applications for foliations, J. Math. Anal. Appl.

376(2011), 129-135.

[10] U. Semmelmann, *Conformal Killing forms on Riemannian manifolds*, Math. Z. 245(2003), 503-527.

[11] S. Tachibana, *On conformal Killing tensor in a Riemannian space*, Tôhoku Math. J. 21(1969), 56-64.

[12] S. Tachibana, On Killing tensors in Riemannian manifolds of positive curvature operator, Tôhoku Math. J. 28(1976), 177-184.
[13] Ph. Tondeur, Foliations on Riemannian manifolds, Springer-Verlag, New-York, 1988.

伺 と く ヨ と く ヨ と 二 ヨ

Thank You for your attention