Submanifolds and Gauss map related to some differential operators

Young Ho Kim

Varna, Bulgaria Kyungpook National University, Taegu 702-701, Korea

June, 2015

同 ト イ ヨ ト イ ヨ ト

• Contents

1 Gauss map

3 Ruled Submanifold

- B-scroll
- Generalized B-scroll
- BS-ruled submanifold

4 Recent Works

5 References

A I > A I > A

Abstract & Keyword

• Abstract Gauss map is one of interesting smooth maps on a submanifolds of Euclidean and pseudo-Euclidean space, which describes how the immersion behaves in the ambient space. In this talk, we introduce how the Gauss map plays a role to classify or characterize ruled submanifolds in Euclidean space or Minkowski space related to the Laplace operator and the Cheng-Yau operator.

Gauss map Cheng-Yau operator Ruled Submanifold Recent W

Gauss map of a submanifold in Euclidean space

- M : an n-dimensional submanifold of Euclidean space \mathbb{E}^m .
- G: M → G(n, m), G(p) = (e₁ ∧ e₂ ∧ ... ∧ e_n)(p), G(n, m): the Grassmannian manifold consisting of all oriented n-planes through the origin of E^m and e₁, ..., e_n, e_{n+1}, ..., e_m an adapted local orthonormal frame field in E^m.
- G(n, m): a unit hypersphere in \mathbf{E}^N , $N = {}_mC_n$.

In particular, if M is a hypersurface of \mathbb{E}^m , the Gauss map G is obviously identified with a unit normal vector field on M.

Gauss map Cheng-Yau operator Ruled Submanifold Recent W

Gauss map of a hypersurface in Euclidean space

• M: an n-dimensional oriented hypersurface of Euclidean space \mathbb{E}^{n+1} . $\Delta G = ||A_G||^2 G + n \nabla H$. (U. Dursun, Taiwanese J. Math. (2007))

L_k-operator

- M : an n-dimensional oriented hypersurface of Euclidean space \mathbb{E}^{n+1} .
- A: the shape operator of M and κ₁, κ₂, ..., κ_n the principal curvatures
- $\sigma_k: \mathbb{R}^n \rightarrow \mathbb{R}$ the elementary symmetric function defined by

$$\sigma_k(x_1,...,x_n) = \sum_{i_1 < \cdots < i_k} x_{i_1} \cdots x_{i_k}$$

• Hk: the k-th mean curvature defined by

$$\begin{pmatrix} n \\ k \end{pmatrix} H_k = s_k$$

 $(0\leqslant k\leqslant n)$, where $s_0=1$.

- If $k=1,\;H_1=1/n\sum_{i=1}^n\kappa_i=H$
- When k is even, H_k is intrinsic.

L_k-operator

•
$$P_k : \chi(M) \to \chi(m), p_0 = I,$$

 $P_k = s_k I - S \circ P_{k-1} = \begin{pmatrix} n \\ k \end{pmatrix} H_k I - S \circ P_{k-1}, k = 1, 2, ..., n.$

•
$$P_k = \sum_{j=0}^k (-1)^j s_{k-j} S^j = \sum_{j=0}^k (-1)^j (\begin{array}{c} n \\ k \end{array}) H_{k-j} S^j.$$

• $L_k: C^\infty(\mathcal{M}) \to C^\infty(\mathcal{M})$ defined by

$$L_k(f) = trace(P_k \circ \nabla^2 f).$$

•
$$L_1 = \Box$$
 : Cheng-Yau operator

• $\Box G = -\nabla K - nHKG$.

<ロ> <同> <同> < 回> < 回> < 回< = :</p>

Ruled submanifold

Definition

A submanifold M of the Minkowski space \mathbb{L}^m is ruled if M is foliated by codimension one totally geodesic submanifolds of \mathbb{L}^m over a curve, i.e.,

$$\mathbf{x} = \mathbf{x}(s, \mathbf{t}_1, \mathbf{t}_2, \dots \mathbf{t}_r) = \mathbf{\alpha}(s) + \sum_{i=1}^r \mathbf{t}_i \mathbf{e}_i(s), \quad s \in \mathbf{I}, \quad \mathbf{t}_i \in \mathbf{I}_i$$

where I_i are some open intervals for i=1,2,...,r and Span{ $\mathbf{e}_1,\mathbf{e}_2,...,\mathbf{e}_r\}=E(s,r)$ which is the linear span of linearly independent vector fields $\mathbf{e}_1(s),\mathbf{e}_2(s),...,\mathbf{e}_r(s)$ along the curve α , where E(s,r) is either non-degenerate or degenerate for each s along α . We call E(s,r) the ruling and α the base curve of the ruled submanifold M.

- 4 同 2 4 日 2 4 H

Ruled submanifold

If the base curve α is null, then E(s, r) is degenerate for each s ∈ I so that the defined ruled submanifold M is non-degenerate. Such a ruled submanifold M is called a ruled submanifold of the null scroll type or simply a NS-ruled submanifold.

Definition

$$lpha(s)$$
 : a null curve in \mathbb{L}^3 with $\dot{lpha} = A(s)$ satisfying

$$\langle A, A \rangle = \langle B, B \rangle = 0$$
, $\langle A, B \rangle = -1$, $\langle C, C \rangle = 1$, $\langle A, C \rangle = \langle B, C \rangle = 0$

and $\dot{x} = A$, $\dot{A} = k(s)C$, $\dot{B} = w_0C$ (w_0 :a nonzero constant), $\dot{C} = w_0A + k(s)B$. ({A, B, C} : Cartan frame along γ .) $\mathbf{x}(s, t) = \alpha(s) + tB(s)$ defines <u>B-scroll</u> of \mathbb{L}^3 .

Remark

B-scroll is flat **iff** $k \equiv 0$.

・ 同 ト ・ ヨ ト ・ 一 目 ト …

• In 1979, L.K.Graves, *Math.Ann.* $i: \mathbb{L}^2 \longrightarrow \mathbb{L}^3$ isometric immersion, $T_0(x) = \text{Ker}(A_x) = \{X \in T_x M | (AX)_x = 0\},$ A_x : the shape operator at x (the relative nullity space at x).

Theorem (Graves)

Let $i:\mathbb{L}^2\to\mathbb{L}^3$ be an isometric immersion and $T_0(x)$ be degenerate. Then, i is a B-scroll immersion. There are various types of B-scrolls which are flat or non-flat.

Theorem (Alias, Ferrandez, Moreno, 2002)

Let M be a null scroll in \mathbb{L}^3 satisfying $\Delta G = AG$ for some 3×3 -matrix A. Then, M is part of a B-scroll.

• In 1979, L.K.Graves, *Math.Ann.* $i: \mathbb{L}^2 \longrightarrow \mathbb{L}^3$ isometric immersion, $T_0(x) = \text{Ker}(A_x) = \{X \in T_x M | (AX)_x = 0\},$ A_x : the shape operator at x (the relative nullity space at x).

Theorem (Graves)

Let $i:\mathbb{L}^2\to\mathbb{L}^3$ be an isometric immersion and $T_0(x)$ be degenerate. Then, i is a B-scroll immersion. There are various types of B-scrolls which are flat or non-flat.

Theorem (Alias, Ferrandez, Moreno, 2002)

Let M be a null scroll in \mathbb{L}^3 satisfying $\Delta G = AG$ for some 3×3 -matrix A. Then, M is part of a B-scroll.

Theorem (Kim - Kim, *2003*)

Let M be a null 2-type timelike surface in a Lorentz space form. Suppose there is a point p of M such that the shape operator A is not diagonalizable at x. Then, M is locally a B-scroll.

• Complex circle of radius κ $c + id = \kappa \in \mathbb{C}$ with $c^2 - d^2 = -1$. $\mathbb{C}^2 \simeq \mathbb{E}_2^4$ with $(x_1 + ix_3, x_2 + ix_4) \mapsto (x_1, x_2, x_3, x_4)$, $ds^2 = dx_1^2 + dx_2^2 - dx_3^2 - dx_4^2$. Define $x : \mathbb{C} \to \mathbb{C}^2$ by $z \mapsto \kappa(\cos z, \sin z)$ where $z = u_1 + iu_2$ $= (u_1, u_2)$, x defines a non-minimal flat timelike surface into \mathbb{H}_1^3 (anti-de Sitter space-time).

(四) (日) (日) (日)

Let $\alpha(s)$ be a null curve in \mathbb{L}^m . Consider a null frame $\{A(s), B(s), C_1(s), \cdots, C_{m-2}\}$ along α such that

$$\begin{split} \langle A,A\rangle &= \langle B,B\rangle = \langle A,C_i\rangle = \langle B,C_i\rangle = 0,\\ \langle A,B\rangle &= -1, \langle C_i,C_j\rangle = \delta^i_j = 0. \end{split}$$

$$\begin{split} X(s) &= \left(A(s)B(s)C_1(s)\cdots C_{\mathfrak{m}-2}(s)\right) \text{ : a square matrix of degree } \mathfrak{m} \\ \text{displayed as column vectors of } A,\cdots,C_{\mathfrak{m}-2}. \text{ Then,} \end{split}$$

$$\begin{split} X^{\tau}(s) E X(s) &= \mathsf{T} \\ \end{split}$$
 where E = $\begin{pmatrix} -1 & \mathbf{0} \\ \mathbf{0} & \mathrm{I}_{m-1} \end{pmatrix}$, T = $\begin{pmatrix} 0 & -1 & \mathbf{0} \\ -1 & 0 \\ \mathbf{0} & \mathrm{I}_{m-2} \end{pmatrix}$.

(四) (日) (日) (日)

B-scroll Generalized B-scroll BS-ruled submanifold

Generalized B-scroll (Kim, Kim, Yoon)

Consider a system of O.D.E

$$\dot{X} = XM$$

where

$$M = \begin{pmatrix} 0 & 0 & -a & 0 & \cdots & 0 \\ 0 & 0 & -k_1(s) & -k_2(s) & \cdots & -km - 2(s) \\ -k_1(s) & -a & \omega_2(s) & 0 & -z_{23} & \cdots & -z_{2,m-2}(s) \\ -k_2(s) & 0 & \omega_3(s) & z_{23} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 & \ddots & 0 \\ -k_{m-2}(s) & 0 & \omega_{m-2}(s) & z_{2,m-2} & & \mathbf{O}_1 \end{pmatrix}$$

 $a \in \mathbb{R}, k_1, \cdots, k_{m-2}, \omega_1, \cdots, \omega_{m-2}$, and $z_{ii}(2 \leq i \leq m-3, 3 \leq j \leq m-2)$ are some functions, and \mathbf{O}_{1} a zero matrix of degree $l \in \{1, 2, \cdots, m-3\}$.

< ロ > < 同 > < 回 > < 回 > .

Given a initial condition

$$X(0) = (A(0)B(0)C_1(0)\cdots C_{m-2}(0))$$

satisfying $X^t(0)EX(0) = T$, there exists a unique solution X(s) to $\dot{X} = XM$. Since T is symmetric and MT is skew-symmetric, $\frac{d}{ds}(X^tEX) = 0$ and so $X^t(s)EX(s) = T$. Using such solution, we define

$$M : x(s,t) = \alpha(s) + tB(s).$$

Then, M is a timelike surface which is called a <u>generalized B-scroll</u> in \mathbb{L}^m .

In particular, M is called an <u>extended B-scroll</u> if $z_{ij} = \omega_i \equiv 0$.

- (目) (日) (1

Remark

 By choosing appropriate unit spacelike vector fields C₂(s), · · · , C_{m-2}(s), we may assume z_{ij} ≡ 0.
 Let G be a Gauss map of a generalized B-scroll. Then, Δ²G = 2a²ΔG, ΔG ≠ 0.

Theorem (Kim, Kim, Yoon, *2002*)

Let M be a null scroll in \mathbb{L}^m . Then, M has finite type Gauss map iff G is 1-type or null 2-type, that is, M is an extended B-scroll or a generalized B-scroll.

▲ 聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Remark

 By choosing appropriate unit spacelike vector fields C₂(s), · · · , C_{m-2}(s), we may assume z_{ij} ≡ 0.
 Let G be a Gauss map of a generalized B-scroll. Then, Δ²G = 2a²ΔG, ΔG ≠ 0.

Theorem (Kim, Kim, Yoon, 2002)

Let M be a null scroll in \mathbb{L}^m . Then, M has finite type Gauss map iff G is 1-type or null 2-type, that is, M is an extended B-scroll or a generalized B-scroll.

・ 同 ト ・ ヨ ト ・ - ヨ ト …

BS-ruled submanifold

• Let $\alpha = \alpha(s)$ be a null curve in \mathbb{L}^m and let $A(s), B(s), C_1(s), \cdots, C_{m-2}(s)$ be a null frame along α satisfying

$$\begin{split} \langle A,A\rangle &= \langle B,B\rangle = \langle A,C_i\rangle = \langle B,C_i\rangle = 0,\\ \langle A,B\rangle &= -1, \qquad \langle C_i,C_j\rangle = \delta_{ij}, \qquad \alpha'(s) = A(s) \end{split} \\ \text{for } 1 \leqslant i,j \leqslant m-2. \text{ Let } X(s) \text{ be the matrix}\\ (A(s) \quad B(s) \quad C_1(s) \quad \cdots \quad C_{m-2}(s)) \text{ consisting of column} \\ \text{vectors of } A(s),B(s),C_1(s),\cdots,C_{m-2}(s) \text{ with respect to the standard coordinate system in } \mathbb{L}^m. \end{split}$$

۲

$$X^{t}(s)EX(s) = T.$$

BS-ruled submanifold

X'(s) = X(s)M(s),

where M(s) =

(0	0	v_2	v_3	• • •	v_{r}	0	• • •	0
	0	0	\mathfrak{u}_2	u ₃	• • •	ur	\mathfrak{u}_{r+1}	• • •	$\mathfrak{u}_{\mathfrak{m}-1}$
	\mathfrak{u}_2	v_2	0	0	• • •	0	$z_{2,r+1}$	• • •	$z_{2,m-1}$
	u3	v_3	0	0	• • •	0	$z_{3,r+1}$	• • •	z _{3,m-1}
	÷	÷	÷	÷		÷	÷	÷	
	ur	ν_{r}	0	0		0	$z_{r,r+1}$	• • •	$z_{r,m-1}$
	\mathfrak{u}_{r+1}	0	$-z_{2,r+1}$	$-z_{3,r+1}$	• • •	$-z_{r,r+1}$	0	• • •	0
	\mathfrak{u}_{r+2}	0	$-z_{2,r+2}$	$-z_{3,r+2}$	• • •	$-z_{r,r+2}$	0	• • •	0
	÷	:	÷	÷		:	:		:
	$\mathfrak{u}_{\mathfrak{m}-1}$	0	$-z_{2,m-1}$	$-z_{3,m-1}$		$-z_{r,m-1}$	0		0

Young Ho Kim

Submanifolds and Gauss map related to some differential operator

< 同 > < 回 > < 回 >

Э

G-kind ruled submanifold

If one of $v_2, ...v_r$ is nonzero constant, we define

Definition

```
(BS-kind Ruled submanifold)
```

$$\mathbf{x}(s, \mathbf{t}, \mathbf{t}_2, \cdots, \mathbf{t}_r) = \alpha(s) + \mathbf{t}\mathbf{B}(s) + \sum_{i=2}^r \mathbf{t}_i \mathbf{C}_i,$$

where
$$2 \leq r \leq m - 2$$
.

Definition

(G-kind Ruled submanifold)

$$\mathbf{x}(s, t, t_2, \cdots, t_r) = \alpha(s) + \mathbf{tB}(s) + \sum_{i=2}^r \mathbf{t}_i C_i,$$

where $2 \leq r \leq m - 2$.

Definition

 $M \subset \mathbb{L}^m$ is said to have *pointwise* 1-*type Gauss map* if $\Delta G = f(G + C)$ for some smooth function f and a constant vector C. In particular, if C = 0, then it is said to be of pointwise 1-type Gauss map of the first kind. Otherwise, it is said to be of the second kind.

Theorem (Choi-Yoon-Kim), 2009

Let M be a ruled surface in Minkowski 3-space \mathbb{E}_1^3 with pointwise 1-type Gauss map. Then, M is an open part of a Euclidean plane, a Minkowski plane, a hyperbolic cylinder, a Lorentz circular cylinder, a circular cylinder of index 1, a cylinder of an infinite type, a helicoid of the first kind, a helicoid of the second kind, a helicoid of the third kind, the conjugate of Enneper's surface of the second kind, a rotational ruled surface of type I or type II, a transcendental ruled surface, or a B-scroll.

伺 と く ヨ と く ヨ と …

Theorem (Kim-Kim), J.Geom.Phy. 2012

Suppose that M is a minimal ruled submanifold in \mathbb{L}^m with Lorentzian rulings. Then, there exists an orthonormal basis $\{E_1, \cdots, E_m\}$ in \mathbb{L}^m such that M is part of one of the following submanifolds (up to cylinders, built on those submanifolds): (1) an (n + 1)-dimensional Minkowski space \mathbb{L}^{n+1} . (2) $X(s, t_1, t_2, \cdots, t_n) = \sum_{i=1}^n t_i e_i(s) + bsE_{2n+1}$, where $e_1(s) = \sinh a_1sE_1 + \cosh a_1sE_2$ and for $i \ge 2$, $e_i(s) = \sin a_isE_{2i-1} + \cos a_isE_{2i}$. Here E_1 is timelike and E_2, \cdots, E_{2n+1} are spacelike.

- 4 同 2 4 日 2 4 日 2 1 日

Theorem (Kim-Kim-Jung), 2013

Let M be an (r+1)-dimensional non-cylindrical ruled submanifold with non-degenerate rulings in the Minkowski m-space \mathbb{L}^m . Then, M has finite type Gauss map G if and only if either M is part of an (r+1)-dimensional plane or the Gauss map G is of finite rank k for some k $(1 \le k \le r)$.

Theorem (Kim-Kim-Jung), 2013

Let M be a ruled submanifold in \mathbb{L}^m with degenerate rulings. M has finite type Gauss map if and only if M is an open portion of a generalized BS-kind ruled submanifold or a G-kind ruled submanifold.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Kim-Kim-Jung), 2013

Let M be an (r+1)-dimensional non-cylindrical ruled submanifold with non-degenerate rulings in the Minkowski m-space \mathbb{L}^m . Then, M has finite type Gauss map G if and only if either M is part of an (r+1)-dimensional plane or the Gauss map G is of finite rank k for some k $(1 \le k \le r)$.

Theorem (Kim-Kim-Jung), 2013

Let M be a ruled submanifold in \mathbb{L}^m with degenerate rulings. M has finite type Gauss map if and only if M is an open portion of a generalized BS-kind ruled submanifold or a G-kind ruled submanifold.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

An (r+1)-dimensional cylindrical ruled submanifold M is called a generalized circular cylinder $\Sigma_{\alpha}\times \mathbb{E}^{r-1}$ if the base curve α is a circle and the generators of rulings are orthogonal to the plane containing the circle α , where Σ_{α} is a circular cylinder $S^1(\alpha)\times \mathbb{R}$ in $\mathbb{E}^3.$

Definition

Suppose $\beta = \beta(s)$ is a circle on the unit sphere centered at the origin. Let $\mathbf{a}_2, \mathbf{a}_3, ..., \mathbf{a}_r$ be orthonormal constant vectors satisfying $\langle \beta'(s), \mathbf{a}_i \rangle = \langle \beta(s), \mathbf{a}_i \rangle = 0$ for all i = 2, 3, ..., r and s. A ruled submanifold M parametrized by

$$x(s, t_1, t_2, ..., t_r) = t_1 \beta(s) + \sum_{i=2}^r t_i \mathbf{a}_i + D$$
 (1)

is called a generalized right cone $C_{\alpha} \times \mathbb{E}^{r-1}$, where C_{α} is a right cone in \mathbb{E}^3 , D a constant vector and $t_i \in I_i$ for some open intervals I_i and i = 2, 3, ..., r.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (Kim-Turgay, (2013)

Let M be a helicoidal surface in \mathbb{E}^3 . Then, M has \Box -pointwise 1-type Gauss map of the second kind if and only if M is an open part of a plane, a right circular cylinder, a right circular cone or a surface which is locally congruent to the rotational surface satisfying certain differential equations.

Theorem (Kim-Kim-Jung-Yoon), 2014

The only ruled submanifold M of Euclidean space \mathbb{E}^m with pointwise 1-type Gauss map of the first kind is an open part of a generalized circular cylinder or a generalized helicoid.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Kim-Turgay, (2013)

Let M be a helicoidal surface in \mathbb{E}^3 . Then, M has \Box -pointwise 1-type Gauss map of the second kind if and only if M is an open part of a plane, a right circular cylinder, a right circular cone or a surface which is locally congruent to the rotational surface satisfying certain differential equations.

Theorem (Kim-Kim-Jung-Yoon), 2014

The only ruled submanifold M of Euclidean space \mathbb{E}^m with pointwise 1-type Gauss map of the first kind is an open part of a generalized circular cylinder or a generalized helicoid.

References I

- J. M. Barbosa, M. Dajczer and I. P. Jorge, *Minimal ruled submanifolds in spaces of constant curvature*, Indiana Univ. Math. J. 33 (1984), 531-547.
- B.-Y. Chen and P. Piccini, *Submanifolds with finite type Gauss map*, Bull. Austral. Math. Soc. 35(1987), 161-186.
- B.-Y. Chen, D.-S. Kim and Y. H. Kim, *New charactyerization of W-curves*, Publ. Math. Debrecen 69/4 (2006), 457.472
- M. Choi, Y. H. Kim and D. W. Yoon, *Helicoidal surfaces with pointwise 1-type Gauss map*, J. Korean Math. Soc. 46 (2009), 215-223.
- M. Choi, Y. H. Kim and D. W. Yoon, *Ruled surfaces with pointwise 1-type Gauss map in a Minkowski 3-space*, Taiwanese J. Math. 14 (2010), 1297-1308.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References II

- F. Dillen, *Ruled submanifolds of finite type*, Proc. Amer. Math. Soc. 114 (1992), 795-798.
- U-H. Ki, D.-S. Kim, Y. H. Kim and Y.-M. Roh, Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. Soc. 13 (2009), 317-338.
- D.-S. Kim and Y. H. Kim, B-scrolls with non-diagonalizable shape operators, Rocky Mount. J. Math. 33(2003), 175-190.
- D.-S. Kim, Y. H. Kim and D. W. Yoon, Finite type ruled surfaces in Lorentz-Minkowski space, Taiwanese J. Math. 11 (2007), 1-13.
- D.-S. Kim, Y. H. Kim, S. M. Jung and D. W. Yoon, Gauss maps of ruled submanifolds and applications I, submitted for publication.

References III

- D.-S. Kim, Y. H. Kim, S. M. Jung and D. W. Yoon, Gauss maps of ruled submanifolds and applications II, submitted for publication.
- D.-S. Kim, Y. H. Kim and D. W. Yoon, Characterization of generalized B-scrolls and cylinders over finite type curves, Indian J. Pure Appl. Math. 34 (2003), 1523-1532.
- Y. H. Kim and D. W. Yoon, *Ruled surfaces with pointwise 1-type Gauss map*, J. Geom. Phys. 34 (2000), 191-205.
- Y. H. Kim and D. W. Yoon, *On the Gauss map of ruled surfaces in Minkowski space*, Rocky Mountain J. Math. 35 (2005), 1555-1581.

References IV

Y. H. Kim and N¿ C. Turgay, Classifications of helicoidal surfaces with L₁-pointwise 1-type Gauss map, Bull. Korean Math. Soc., 50 (2013), 1345-1356.

伺 と く ヨ と く ヨ と

Thank You!

Young Ho Kim Submanifolds and Gauss map related to some differential operator