Gauss map of real hypersurfaces in complex projective space and submanifolds in complex 2-plane Grassmannians

Makoto Kimura(Ibaraki University, Japan)

17th International Conference, Geometry, Integrability and Quantization

June 5-10, 2015, Varna, Bulgaria

• For an immersion $x: M^n o S^{n+1} \subset \mathbb{R}^{n+1}$,

- For an immersion $x: M^n o S^{n+1} \subset \mathbb{R}^{n+1}$,
- let $x(p) \in S^{n+1} \subset \mathbb{R}^{n+2}$ be the position vector at $p \in M$, and

- For an immersion $x: M^n o S^{n+1} \subset \mathbb{R}^{n+1}$,
- let $x(p) \in S^{n+1} \subset \mathbb{R}^{n+2}$ be the position vector at $p \in M$, and
- let N_p be a unit normal vector of oriented hypersurface $M \subset S^{n+1}$ at $p \in M$.

- For an immersion $x: M^n o S^{n+1} \subset \mathbb{R}^{n+1}$,
- let $x(p) \in S^{n+1} \subset \mathbb{R}^{n+2}$ be the position vector at $p \in M$, and
- let N_p be a unit normal vector of oriented hypersurface $M \subset S^{n+1}$ at $p \in M$.
- ullet Then the Gauss map $\gamma: M o \widetilde{G}_2(\mathbb{R}^{n+2}) \cong Q^n$ is defined by

- For an immersion $x: M^n o S^{n+1} \subset \mathbb{R}^{n+1}$,
- let $x(p) \in S^{n+1} \subset \mathbb{R}^{n+2}$ be the position vector at $p \in M$, and
- let N_p be a unit normal vector of oriented hypersurface $M \subset S^{n+1}$ at $p \in M$.
- Then the Gauss map $\gamma: M o \widetilde{G}_2(\mathbb{R}^{n+2}) \cong Q^n$ is defined by
- $\gamma(p) = x(p) \wedge N_p$ (B. Palmer, 1997).

• Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric Q^n .

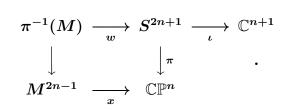
- Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric Q^n .
- Moreover, if $M^n \subset S^{n+1}$ is either isoparametric or austere, then $\gamma(M) \subset Q^n$ is a minimal Lagrangian submanifold.

- Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric Q^n .
- Moreover, if $M^n \subset S^{n+1}$ is either isoparametric or austere, then $\gamma(M) \subset Q^n$ is a minimal Lagrangian submanifold.
- Also for parallel hypersurface $M_r:=\cos rx+\sin rN$ $(r\in\mathbb{R})$ of M, the Gauss image is not changed: $\gamma(M)=\gamma(M_r).$

- Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric Q^n .
- Moreover, if $M^n \subset S^{n+1}$ is either isoparametric or austere, then $\gamma(M) \subset Q^n$ is a minimal Lagrangian submanifold.
- Also for parallel hypersurface $M_r:=\cos rx+\sin rN$ $(r\in\mathbb{R})$ of M, the Gauss image is not changed: $\gamma(M)=\gamma(M_r).$
- We define Gauss map $\gamma: M^{2n-1} \to \mathbb{G}_2(\mathbb{C}^{n+1})$ for real hypersurface M^{2n-1} in \mathbb{CP}^n .

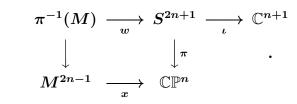
• For a real hypersurface M^{2n-1} in \mathbb{CP}^n , we consider the following diagram:

• For a real hypersurface M^{2n-1} in \mathbb{CP}^n , we consider the following diagram:



• For a real hypersurface M^{2n-1} in \mathbb{CP}^n , we consider the following diagram:

۲



• For $p \in M$, take a point $z_p \in \pi^{-1}(p) \subset \pi^{-1}(M)$ and let N'_p be a holizontal lift of unit normal of $M \subset \mathbb{CP}^n$ at z_p .

• If we put $\gamma(p) = \operatorname{span}_{\mathbb{C}} \{z_p, N'_p\}$, then the map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ is well-defined.

- If we put $\gamma(p) = \operatorname{span}_{\mathbb{C}} \{z_p, N'_p\}$, then the map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ is well-defined.
- We call γ as the Gauss map of real hypersurface M in $\mathbb{CP}^n.$

- If we put $\gamma(p) = \operatorname{span}_{\mathbb{C}} \{z_p, N'_p\}$, then the map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ is well-defined.
- We call γ as the Gauss map of real hypersurface M in $\mathbb{CP}^n.$
- Note that for parallel hypersurface $M_r := \pi(\cos r z_p + \sin r N'_p)$ of M,image of the Gauss map $\gamma: M^{2n-1} \to \mathbb{CP}^n$ is not changed: $\gamma(M) = \gamma(M_r)$.

Hopf hypersurfaces in Kähler manifold

• For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n, J) and a unit normal vector N,

Hopf hypersurfaces in Kähler manifold

- For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n, J) and a unit normal vector N,
- a vector $\xi := -JN$ tangent to M is called the structure vector of M.

Hopf hypersurfaces in Kähler manifold

- For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n, J) and a unit normal vector N,
- a vector $\xi := -JN$ tangent to M is called the structure vector of M.
- And when ξ is an eigenvector of the shape operator A of M, we call M a Hopf hypersurface in \widetilde{M} .

A real hypersurface which lies on a tube over a complex submanifold Σ in CPⁿ is Hopf.

- A real hypersurface which lies on a tube over a complex submanifold Σ in CPⁿ is Hopf.
- Conversely, if a Hopf hypersurface M in $\mathbb{CP}^n(4)$ satisfies $A\xi = \mu\xi$ (μ is necessarily constant), and for $r \in (0, \pi/2)$ with $\mu = 2 \cot 2r$, $r \in (0, \pi/2)$, if rank of the focal map $\phi_r : M \to \mathbb{CP}^n$ is constant, then

- A real hypersurface which lies on a tube over a complex submanifold Σ in CPⁿ is Hopf.
- Conversely, if a Hopf hypersurface M in $\mathbb{CP}^n(4)$ satisfies $A\xi = \mu\xi$ (μ is necessarily constant), and for $r \in (0, \pi/2)$ with $\mu = 2 \cot 2r$, $r \in (0, \pi/2)$, if rank of the focal map $\phi_r : M \to \mathbb{CP}^n$ is constant, then
- $\phi_r(M)$ is a complex submanifold of $\mathbb{CP}^n(4)$ and M lies on a tube over $\phi_r(M)$. (Cecil-Ryan, 1982).

 After that, Borisenko(2001) obtained some results concerning Hopf hypersurfaces in CPⁿ without assumption of rank about the focal map.

- After that, Borisenko(2001) obtained some results concerning Hopf hypersurfaces in CPⁿ without assumption of rank about the focal map.
- For example, he showed that compact embedded Hopf hypersurface in CPⁿ lies on a tube over an algebraic variety.

- After that, Borisenko(2001) obtained some results concerning Hopf hypersurfaces in CPⁿ without assumption of rank about the focal map.
- For example, he showed that compact embedded Hopf hypersurface in CPⁿ lies on a tube over an algebraic variety.
- In this talk, we will give a characterization of Hopf hypersurface M in \mathbb{CP}^n by using the Gauss map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+2}).$

- Here, \tilde{g} is a Riemannian metric of M, Q is a subbundle of End $T\widetilde{M}$ with rank 3, satisfying:

- Here, \tilde{g} is a Riemannian metric of M, Q is a subbundle of End $T\widetilde{M}$ with rank 3, satisfying:
- For each $p \in M$, there exists a neighborhood $U \ni p$, such that there exists local frame field $\{\tilde{I}_1, \tilde{I}_2, \tilde{I}_3\}$ of Q.

Quaternionic Kähler manifold

$$egin{array}{lll} ilde{I}_1^2 = ilde{I}_2^2 = ilde{I}_3^2 = -1, & ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, & ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = ilde{I}_2. \end{array}$$

Quaternionic Kähler manifold

$$egin{array}{lll} ilde{I}_1^2 = ilde{I}_2^2 = ilde{I}_3^2 = -1, & ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, & ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = ilde{I}_2. \end{array}$$

• For each
$$L \in Q_p$$
, \tilde{g} is invariant, i.e.,
 $\tilde{g}_p(LX,Y) + \tilde{g}_p(X,LY) = 0$ for $X,Y \in T_p\widetilde{M}$,
 $p \in \widetilde{M}$.

Quaternionic Kähler manifold

$$egin{array}{lll} ilde{I}_1^2 = ilde{I}_2^2 = ilde{I}_3^2 = -1, & ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, & ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = ilde{I}_2. \end{array}$$

- For each $L \in Q_p$, \tilde{g} is invariant, i.e., $\tilde{g}_p(LX, Y) + \tilde{g}_p(X, LY) = 0$ for $X, Y \in T_p\widetilde{M}$, $p \in \widetilde{M}$.
- Vector bundle Q is parallel with respect to the Levi-Civita connection of ğ at End TM.

• A submanifold M^{2m} in quaternionic Kähler manifold \widetilde{M} is called almost Hermitian submanifold, if there exists a section \tilde{I} of vector bundle $Q|_M$ over M such that

• A submanifold M^{2m} in quaternionic Kähler manifold \widetilde{M} is called almost Hermitian submanifold, if there exists a section \tilde{I} of vector bundle $Q|_M$ over M such that

• (1)
$$ilde{I}^2 = -1$$
, and (2) $ilde{I}TM = TM$.

• A submanifold M^{2m} in quaternionic Kähler manifold \widetilde{M} is called almost Hermitian submanifold, if there exists a section \tilde{I} of vector bundle $Q|_M$ over M such that

• (1)
$$ilde{I}^2 = -1$$
, and (2) $ilde{I}TM = TM$.

ullet if we write the almost complex structure on M which is induced by \tilde{I} as I , then

• A submanifold M^{2m} in quaternionic Kähler manifold \widetilde{M} is called almost Hermitian submanifold, if there exists a section \tilde{I} of vector bundle $Q|_M$ over M such that

• (1)
$$ilde{I}^2 = -1$$
, and (2) $ilde{I}TM = TM$.

- ullet if we write the almost complex structure on M which is induced by \tilde{I} as I, then
- with respect to the induced metric, (M, I) is an almost Hermitian manifold.

Totally complex submanifold of Q.K. manifold

• In particular, when almost Hermitian submanifold (M, \overline{g}, I) is Kähler, we call M a Kähler submanifold of quaternionic Kähler manifold \widetilde{M} .

Totally complex submanifold of Q.K. manifold

- In particular, when almost Hermitian submanifold

 (M, g, I) is Kähler, we call M a Kähler submanifold of
 quaternionic Kähler manifold M
- Similarly, an almost Hermitian submanifold (M, \bar{g}, I) is called totally complex submanifold if at each point $p \in M$, with respect to $\tilde{L} \in Q_p$ which anti-commute with \tilde{I}_p , $\tilde{L}T_pM \perp T_pM$ hold.

Totally complex submanifold of Q.K. manifold

- In particular, when almost Hermitian submanifold

 (M, g, I) is Kähler, we call M a Kähler submanifold of
 quaternionic Kähler manifold M
- Similarly, an almost Hermitian submanifold (M, \bar{g}, I) is called totally complex submanifold if at each point $p \in M$, with respect to $\tilde{L} \in Q_p$ which anti-commute with \tilde{I}_p , $\tilde{L}T_pM \perp T_pM$ hold.
- In quaternionic K\u00e4hler manifold, a submanifold is totally complex if and only if it is K\u00e4hler (Alekseevsky-Marchiafava, 2001).

• Theorem (K., Diff. Geom. Appl. 2014) Let M^{2n-1} be a real hypersurface in complex projective space \mathbb{CP}^n , and let $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be the Gauss map.

- Theorem (K., Diff. Geom. Appl. 2014) Let M^{2n-1} be a real hypersurface in complex projective space \mathbb{CP}^n , and let $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be the Gauss map.
- If M is not Hopf, then the Gauss map γ is an immersion.

- Theorem (K., Diff. Geom. Appl. 2014) Let M^{2n-1} be a real hypersurface in complex projective space \mathbb{CP}^n , and let $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be the Gauss map.
- If M is not Hopf, then the Gauss map γ is an immersion.
- If M is a Hopf hypersurface, then the image $\gamma(M)$ is a half-dimensional totally complex submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1})$.

- Theorem (K., Diff. Geom. Appl. 2014) Let M²ⁿ⁻¹ be a real hypersurface in complex projective space CPⁿ, and let γ : M → G₂(Cⁿ⁺¹) be the Gauss map.
- If M is not Hopf, then the Gauss map γ is an immersion.
- If M is a Hopf hypersurface, then the image $\gamma(M)$ is a half-dimensional totally complex submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- And a Hopf hypersurface M in CPⁿ is a total space of a circle bundle over a Kähler manifold such that the fibration is nothing but the Gauss map γ : M → γ(M).

 Let φ : Σⁿ⁻¹ → G₂(Cⁿ⁺¹) be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.

- Let φ : Σⁿ⁻¹ → G₂(Cⁿ⁺¹) be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.
- Then, for each point p in Σ , if we assign $ilde{I}_p \in Q_{arphi(p)}$,

- Let φ : Σⁿ⁻¹ → G₂(Cⁿ⁺¹) be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.
- Then, for each point p in Σ , if we assign $ilde{I}_p \in Q_{arphi(p)}$,
- then we have a submanifold $\tilde{I}(\Sigma)$ of the twistor space $\mathcal{Z} = \{\tilde{I} \in Q | \ \tilde{I}^2 = -1\}$ of $\mathbb{G}_2(\mathbb{C}^{n+1})$ (natural lift).

- Let φ : Σⁿ⁻¹ → G₂(Cⁿ⁺¹) be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.
- Then, for each point p in Σ , if we assign $ilde{I}_p \in Q_{arphi(p)}$,
- then we have a submanifold $\tilde{I}(\Sigma)$ of the twistor space $\mathcal{Z} = \{ \tilde{I} \in Q | \ \tilde{I}^2 = -1 \}$ of $\mathbb{G}_2(\mathbb{C}^{n+1})$ (natural lift).
- Since Σ is a totally complex submanifold of G₂(Cⁿ⁺¹), *Ĩ*(Σ) is a Legendrian submanifold of the twistor space Z with respect to a complex contact structure (Alekseevsky-Marchiafava, 2004).

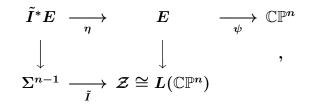
• Twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is naturally identified with the space $L(\mathbb{CP}^n)$ of oriented geodesics in \mathbb{CP}^n .

- Twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is naturally identified with the space $L(\mathbb{CP}^n)$ of oriented geodesics in \mathbb{CP}^n .
- Let E be the quotient space of complex Steifel manifold $V_2(\mathbb{C}^{n+1})$ under diagonal action of S^1 . Then E is S^1 -bundle over $\mathcal{Z} \cong L(\mathbb{CP}^n)$ and each fiber is identified with oriented geodesic in \mathbb{CP}^n .

- Twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is naturally identified with the space $L(\mathbb{CP}^n)$ of oriented geodesics in \mathbb{CP}^n .
- Let E be the quotient space of complex Steifel manifold $V_2(\mathbb{C}^{n+1})$ under diagonal action of S^1 . Then E is S^1 -bundle over $\mathcal{Z} \cong L(\mathbb{CP}^n)$ and each fiber is identified with oriented geodesic in \mathbb{CP}^n .
- With respect to the following diagram:

- Twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is naturally identified with the space $L(\mathbb{CP}^n)$ of oriented geodesics in \mathbb{CP}^n .
- Let E be the quotient space of complex Steifel manifold $V_2(\mathbb{C}^{n+1})$ under diagonal action of S^1 . Then E is S^1 -bundle over $\mathcal{Z} \cong L(\mathbb{CP}^n)$ and each fiber is identified with oriented geodesic in \mathbb{CP}^n .
- With respect to the following diagram:

٥



• The map $\Phi := \psi \circ \eta : \tilde{I}^*E \to \mathbb{CP}^n$ gives Hopf hypersurface with $A\xi = 0$ (on open subset of regular points of $M = \tilde{I}^*E$), and

- The map $\Phi := \psi \circ \eta : \tilde{I}^*E \to \mathbb{CP}^n$ gives Hopf hypersurface with $A\xi = 0$ (on open subset of regular points of $M = \tilde{I}^*E$), and
- its parallel hypersurface $\phi_r(\tilde{I}^*E)$ gives Hopf hypersurface with $A\xi = 2 \tan 2r\xi$ (on open subset of regular points of $M = \tilde{I}^*E$).

Remarks

Recently K. Tsukada proved that conormal bundle of any complex submanifold in CPⁿ is realized as a half dimensional totally complex submanifold in G₂(Cⁿ⁺¹).

Remarks

- Recently K. Tsukada proved that conormal bundle of any complex submanifold in CPⁿ is realized as a half dimensional totally complex submanifold in G₂(Cⁿ⁺¹).
- For real hypersurfaces in complex hyperbolic space \mathbb{CH}^n , we define Gauss map $\gamma: M \to \mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$, and

Remarks

- Recently K. Tsukada proved that conormal bundle of any complex submanifold in CPⁿ is realized as a half dimensional totally complex submanifold in G₂(Cⁿ⁺¹).
- For real hypersurfaces in complex hyperbolic space \mathbb{CH}^n , we define Gauss map $\gamma: M \to \mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$, and
- we obtain similar results for Hopf hypersurfaces in CHⁿ by using para-quaternionic Kähler structure (J.T. Cho and M.K., Topol. Appl. 2015).

Split-quaternions

•
$$\widetilde{\mathbb{H}} = C(2,0) = C(1,1)$$
, Split-quaternions (or
coquaternions, para-quaternions):
 $q = q_0 + iq_1 + jq_2 + kq_3$, $i^2 = -1$, $j^2 = k^2 = 1$,
 $ij = -ji = -k$, $jk = -kj = i$, $ki = -ik = -j$,
 $|q|^2 = q_0^2 + q_1^2 - q_2^2 - q_3^2$, \exists zero divisors,

Split-quaternions

•
$$\widetilde{\mathbb{H}} = C(2,0) = C(1,1)$$
, Split-quaternions (or
coquaternions, para-quaternions):
 $q = q_0 + iq_1 + jq_2 + kq_3$, $i^2 = -1$, $j^2 = k^2 = 1$,
 $ij = -ji = -k$, $jk = -kj = i$, $ki = -ik = -j$,
 $|q|^2 = q_0^2 + q_1^2 - q_2^2 - q_3^2$, \exists zero divisors,

• http://en.wikipedia.org/wiki/Split-quaternion

Split-quaternions

•
$$\widetilde{\mathbb{H}} = C(2,0) = C(1,1)$$
, Split-quaternions (or
coquaternions, para-quaternions):
 $q = q_0 + iq_1 + jq_2 + kq_3$, $i^2 = -1$, $j^2 = k^2 = 1$,
 $ij = -ji = -k$, $jk = -kj = i$, $ki = -ik = -j$,
 $|q|^2 = q_0^2 + q_1^2 - q_2^2 - q_3^2$, \exists zero divisors,

- http://en.wikipedia.org/wiki/Split-quaternion
- Introduced by James Cockle in 1849.

Para-quaternionic structure

• $\{I_1, I_2, I_3\}$, $I_1^2 = -1$, $I_2^2 = I_3^2 = 1$, $I_1I_2 = -I_2I_1 = -I_3$, $I_2I_3 = -I_3I_2 = I_1$, $I_3I_1 = -I_1I_3 = -I_2$ gives para-quaternionic structure,

Para-quaternionic structure

•
$$\{I_1, I_2, I_3\}, I_1^2 = -1, I_2^2 = I_3^2 = 1, I_1I_2 = -I_2I_1 = -I_3, I_2I_3 = -I_3I_2 = I_1, I_3I_1 = -I_1I_3 = -I_2$$
 gives para-quaternionic structure,
• $\tilde{V} = \{aI_1 + bI_2 + cI_3 | a, b, c \in \mathbb{R}\} \cong \mathfrak{su}(1, 1) \cong \mathbb{R}^3_1, and$

Para-quaternionic structure

- $\{I_1, I_2, I_3\}, I_1^2 = -1, I_2^2 = I_3^2 = 1, I_1 I_2 = -I_2 I_1 = -I_3, I_2 I_3 = -I_3 I_2 = I_1, I_3 I_1 = -I_1 I_3 = -I_2$ gives para-quaternionic structure,
- $ilde{V}=\{aI_1+bI_2+cI_3|~a,b,c\in\mathbb{R}\}\cong\mathfrak{su}(1,1)\cong\mathbb{R}^3_1,$ and
- $Q_+ = \{I \in \tilde{V} | I^2 = 1\} \cong S_1^2$: de-Sitter space, $Q_- = \{I \in \tilde{V} | I^2 = -1\} \cong H^2$: hyperbolic space, $Q_0 = \{I \in \tilde{V} | I^2 = 0, I \neq 0\} \cong$ lightcone.

• Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and

- Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and
- let $g: M \to \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.

- Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and
- let $g: M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.
- Suppose M is a Hopf hypersurface with $|\mu| > 2$ (resp. $0 \le |\mu| < 2$).

- ullet Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and
- let $g: M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.
- Suppose M is a Hopf hypersurface with $|\mu|>2$ (resp. $0\leq |\mu|<2$).
- Then g(M) is a real (2n-2)-dimensional submanifold of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$, and

• There exist sections $\tilde{I}_{\tilde{1}}$, $\tilde{I}_{\tilde{2}}$ and \tilde{I}_{3} of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that

- There exist sections $\tilde{I}_{\tilde{1}}$, $\tilde{I}_{\tilde{2}}$ and \tilde{I}_{3} of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in\Sigma$ satisfying

- There exist sections $\tilde{I}_{\tilde{1}}$, $\tilde{I}_{\tilde{2}}$ and \tilde{I}_{3} of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in\Sigma$ satisfying

٩

$$(ilde{I}_{ ilde{1}})^2 = -1$$
 (resp. $(ilde{I}_{ ilde{1}})^2 = 1$),
 $(ilde{I}_{ ilde{2}})^2 = 1$ (resp. $(ilde{I}_{ ilde{2}})^2 = -1$) and $(ilde{I}_{ ilde{3}})^2 = 1$,

- There exist sections $\tilde{I}_{\tilde{1}}$, $\tilde{I}_{\tilde{2}}$ and \tilde{I}_{3} of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in\Sigma$ satisfying

٩

$$(ilde{I}_{\tilde{1}})^2 = -1$$
 (resp. $(ilde{I}_{\tilde{1}})^2 = 1$),
 $(ilde{I}_{\tilde{2}})^2 = 1$ (resp. $(ilde{I}_{\tilde{2}})^2 = -1$) and $(ilde{I}_{\tilde{3}})^2 = 1$,

• such that $dg_x(T_xM)$ is invariant under \tilde{I}_1 and $\tilde{I}_2 dg_x(T_xM), \tilde{I}_3 dg_x(T_xM)$ are orthogonal to $dg_x(T_xM)$.

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

٥

$$p = \sum_{|\lambda|>1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\},$$
 $q = \sum_{|\lambda|<1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\}.$

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

$$p = \sum_{|\lambda|>1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\},
onumber \ q = \sum_{|\lambda|<1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\}.$$

• When $|\mu| > 2$, p and q are both even.

٥

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

$$p = \sum_{ert \lambda ert > 1} \dim \{ X ert \ AX = \lambda X, \ X \perp \xi \},$$
 $q = \sum_{ert \lambda ert < 1} \dim \{ X ert \ AX = \lambda X, \ X \perp \xi \}.$

- When $|\mu| > 2$, p and q are both even.
- When $0 \leq |\mu| < 2$, we have p = q.

٥

• Furthermore if p + q = 2n - 2,

- Furthermore if p + q = 2n 2,
- ullet then the induced metric of g(M) is non-degenerate and

- Furthermore if p + q = 2n 2,
- ullet then the induced metric of g(M) is non-degenerate and
- g(M) is a pseudo-Kähler (resp. para-Kähler) submanifold of C_{1,1}(Cⁿ⁺¹).

• Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and

- Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and
- let $g: M \to \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.

- Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and
- let $g: M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.
- Suppose M is a Hopf hypersurface with $|\mu| = 2$.

- Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and
- let $g: M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.
- Suppose M is a Hopf hypersurface with $|\mu| = 2$.
- Then g(M) is a real (2n-2)-dimensional submanifold of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$, and

• There exist sections $\tilde{I}_{ ilde{1}}$ and $\tilde{I}_{ ilde{2}}$ of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that

- There exist sections $\tilde{I}_{ ilde{1}}$ and $\tilde{I}_{ ilde{2}}$ of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in\Sigma$ satisfying

- There exist sections $\tilde{I}_{\tilde{1}}$ and $\tilde{I}_{\tilde{2}}$ of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in\Sigma$ satisfying

٥

$(\tilde{I}_{\tilde{1}})^2 = 1, \quad (\tilde{I}_{\tilde{2}})^2 = 0$

- There exist sections $\tilde{I}_{\tilde{1}}$ and $\tilde{I}_{\tilde{2}}$ of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in\Sigma$ satisfying

٥

$$(ilde{I}_{ ilde{1}})^2 = 1, \quad (ilde{I}_{ ilde{2}})^2 = 0$$

• such that $ilde{I}_{1}dg_{x}(T_{x}M), ilde{I}_{2}dg_{x}(T_{x}M)$ are orthogonal to $dg_{x}(T_{x}M)$.

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

$$p = \sum_{|\lambda|>1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\},
onumber \ q = \sum_{|\lambda|<1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\},$$

and

۲

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

$$p = \sum_{|\lambda|>1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\},$$
 $q = \sum_{|\lambda|<1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\},$

and

۲

• satisfies $p+q \leq n-1$.