Kepler Problem and Formally Real Jordan Algebras I
 Kepler problem and Lorentz transformations
 Based on [G. Meng, J. Math. Phys. 53, 052901(2012)]

Guowu Meng

Department of Mathematics
Hong Kong University of Science and Technology
$17^{\text {th }}$ International Conference on
Geometry, Integrability and Quantization
Varna, Bulgaria, June 5, 2015

God is a mathematician of a very high order - P. Dirac

What is Kepler Problem?

- It is a mathematical model for the simplest solar system.
- I. Newton introduced and solved it in 1678, and that leads to a good explanation for Kepler's three laws of planetary motion.
- It is also a mathematical model for the simplest atom (i.e. the hydrogen atom).
- E. Schrödinger introduced and solved it (at the quantum level) in 1925, and that leads to a good explanation for the spectral lines of the hydrogen gas and Mendeleev's periodic table for elements as well.
- It is a classical example of combining beauty, simplicity and truth all in one.

What is Kepler Problem?

- It is a mathematical model for the simplest solar system.
- I. Newton introduced and solved it in 1678, and that leads to a good explanation for Kepler's three laws of planetary motion.
- It is also a mathematical model for the simplest atom (i.e. the hydrogen atom).
- E. Schrödinger introduced and solved it (at the quantum level) in 1925, and that leads to a good explanation for the spectral lines of the hydrogen gas and Mendeleev's periodic table for elements as well.
- It is a classical example of combining beauty, simplicity and truth all in one.

What is Kepler Problem?

- It is a mathematical model for the simplest solar system.
- I. Newton introduced and solved it in 1678, and that leads to a good explanation for Kepler's three laws of planetary motion.
- It is also a mathematical model for the simplest atom (i.e. the hydrogen atom).
- E. Schrödinger introduced and solved it (at the quantum level) in 1925, and that leads to a good explanation for the spectral lines of the hydrogen gas and Mendeleev's periodic table for elements as well.
- It is a classical example of combining beauty, simplicity and truth
all in one.

What is Kepler Problem?

- It is a mathematical model for the simplest solar system.
- I. Newton introduced and solved it in 1678, and that leads to a good explanation for Kepler's three laws of planetary motion.
- It is also a mathematical model for the simplest atom (i.e. the hydrogen atom).
- E. Schrödinger introduced and solved it (at the quantum level) in 1925, and that leads to a good explanation for the spectral lines of the hydrogen gas and Mendeleev's periodic table for elements as well.
all in one.

What is Kepler Problem?

- It is a mathematical model for the simplest solar system.
- I. Newton introduced and solved it in 1678, and that leads to a good explanation for Kepler's three laws of planetary motion.
- It is also a mathematical model for the simplest atom (i.e. the hydrogen atom).
- E. Schrödinger introduced and solved it (at the quantum level) in 1925, and that leads to a good explanation for the spectral lines of the hydrogen gas and Mendeleev's periodic table for elements as well.
- It is a classical example of combining beauty, simplicity and truth all in one.

The

core of beauty is simplicity.

- Paulo Coehlo

Simplicity is the seal of
 truth!

meetville.com

What are Lorentz Transformations?

- They are the linear transformations of the form

$$
t=\gamma\left(t^{\prime}+\frac{v x^{\prime}}{c^{2}}\right), x=\gamma\left(x^{\prime}+v t^{\prime}\right), y=y^{\prime}, z=z^{\prime}
$$

for the time and (rectangular) space coordinates in two inertial frames:

Here c is the speed of light and $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$.

- They are the correction to the Galileo transformations:
- They leave $c^{2} t^{2}-x^{2}-y^{2}-z^{2}$ invariant

What are Lorentz Transformations?

- They are the linear transformations of the form

$$
t=\gamma\left(t^{\prime}+\frac{v x^{\prime}}{c^{2}}\right), x=\gamma\left(x^{\prime}+v t^{\prime}\right), y=y^{\prime}, z=z^{\prime}
$$

for the time and (rectangular) space coordinates in two inertial frames:

Fixed frame

Moving frame

Here c is the speed of light and $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$.

- They are the correction to the Galileo transformations:

$$
t=t^{\prime}, x=x^{\prime}+v t^{\prime}, y=y^{\prime}, z=z^{\prime} .
$$

- They leave $c^{2} t^{2}-x^{2}-y^{2}-z^{2}$ invariant

What are Lorentz Transformations?

- They are the linear transformations of the form

$$
t=\gamma\left(t^{\prime}+\frac{v x^{\prime}}{c^{2}}\right), x=\gamma\left(x^{\prime}+v t^{\prime}\right), y=y^{\prime}, z=z^{\prime}
$$

for the time and (rectangular) space coordinates in two inertial frames:

Fixed frame

Moving frame

Here c is the speed of light and $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$.

- They are the correction to the Galileo transformations:

$$
t=t^{\prime}, x=x^{\prime}+v t^{\prime}, y=y^{\prime}, z=z^{\prime} .
$$

- They leave $c^{2} t^{2}-x^{2}-y^{2}-z^{2}$ invariant .
- They (not Galileo transformations) leave invariant of the form of Maxwell equations for electromagnetism.

```
The attempt to understand their geometric/physical meaning led to
the relativity revolution in the early 20th century, including, among
other things, the relativistic correction to Newtonian mechanics as
well as various relativistic corrections to the Universal Gravitation
Law, with Einstein's General Theory of Relativity being the favorite
one.
- First published by Joseph Larmor in1897 and independently again
by Hendrik Antoon Lorentz in 1899.
In mathematics, any linear transformation }T:\mp@subsup{\mathbb{R}}{}{4}->\mp@subsup{\mathbb{R}}{}{4}\mathrm{ that
preserves the Lorentz inner product:
```


is called a Lorentz transformation. Then Lorentz transformations
form a group, i.e., the Lie group $\mathrm{O}(1,3)$. For simplicity, we shall
write x for $\left(x_{0}, \mathbf{x}\right)$, x^{2} for $x \cdot x$. So $x^{2}=x_{0}^{2}-\mathbf{x} \cdot \mathbf{x}$.

- They (not Galileo transformations) leave invariant of the form of Maxwell equations for electromagnetism.
- The attempt to understand their geometric/physical meaning led to the relativity revolution in the early 20th century, including, among other things, the relativistic correction to Newtonian mechanics as well as various relativistic corrections to the Universal Gravitation Law, with Einstein's General Theory of Relativity being the favorite one.
- First published by Joseph Larmor in1897 and independently again by Hendrik Antoon Lorentz in 1899.
- In mathematics, any linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ that preserves the Lorentz inner product:
is called a Lorentz transformation. Then Lorentz transformations form a group, i.e., the Lie group $\mathrm{O}(1,3)$. For simplicity, we shall
- They (not Galileo transformations) leave invariant of the form of Maxwell equations for electromagnetism.
- The attempt to understand their geometric/physical meaning led to the relativity revolution in the early 20th century, including, among other things, the relativistic correction to Newtonian mechanics as well as various relativistic corrections to the Universal Gravitation Law, with Einstein's General Theory of Relativity being the favorite one.
- First published by Joseph Larmor in1897 and independently again by Hendrik Antoon Lorentz in 1899.
preserves the Lorentz inner product:
is called a Lorentz transformation. Then Lorentz transformations form a group, i.e., the Lie group $\mathrm{O}(1,3)$. For simplicity, we shall
- They (not Galileo transformations) leave invariant of the form of Maxwell equations for electromagnetism.
- The attempt to understand their geometric/physical meaning led to the relativity revolution in the early 20th century, including, among other things, the relativistic correction to Newtonian mechanics as well as various relativistic corrections to the Universal Gravitation Law, with Einstein's General Theory of Relativity being the favorite one.
- First published by Joseph Larmor in1897 and independently again by Hendrik Antoon Lorentz in 1899.
- In mathematics, any linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ that preserves the Lorentz inner product:

$$
\left(x_{0}, \mathbf{x}\right) \cdot\left(y_{0}, \mathbf{y}\right)=x_{0} y_{0}-\mathbf{x} \cdot \mathbf{y}
$$

is called a Lorentz transformation. Then Lorentz transformations form a group, i.e., the Lie group O(1,3). For simplicity, we shall write x for $\left(x_{0}, \mathbf{x}\right), x^{2}$ for $x \cdot x$. So $x^{2}=x_{0}^{2}-\mathbf{x} \cdot \mathbf{x}$.

Plan

- A brief review of the Kepler problem
- Magnetized Kepler problems
- A new description of the orbits
- The future light cone
- Kepler problem and Lorentz transformations

Plan

- A brief review of the Kepler problem
- Magnetized Kepler problems
- A new description of the orbits
- The future light cone
- Kepler problem and Lorentz transformations

Plan

- A brief review of the Kepler problem
- Magnetized Kepler problems
- A new description of the orbits
- The future light cone
- Kepler problem and Lorentz transformations

Plan

- A brief review of the Kepler problem
- Magnetized Kepler problems
- A new description of the orbits
- The future light cone
- Kepler problem and Lorentz transformations

Plan

- A brief review of the Kepler problem
- Magnetized Kepler problems
- A new description of the orbits
- The future light cone
- Kepler problem and Lorentz transformations

A brief review of the Kepler problem

- Confuguration space: $\mathbb{R}_{*}^{3}:=\mathbb{R}^{3} \backslash\{\mathbf{0}\}$.
- Equation of Motion:

$$
\mathbf{r}^{\prime \prime}=-\frac{\mathbf{r}}{r^{3}}
$$

- Angular Momentum $\mathrm{L}:=\mathrm{r} \times \mathrm{r}^{\prime}$ is conserved:

A brief review of the Kepler problem

- Confuguration space: $\mathbb{R}_{*}^{3}:=\mathbb{R}^{3} \backslash\{\mathbf{0}\}$.
- Equation of Motion:

$$
\begin{equation*}
\mathbf{r}^{\prime \prime}=-\frac{\mathbf{r}}{r^{3}} \tag{1}
\end{equation*}
$$

- Angular Momentum $\mathbf{L}:=\mathbf{r} \times \mathbf{r}^{\prime}$ is conserved:

A brief review of the Kepler problem

- Confuguration space: $\mathbb{R}_{*}^{3}:=\mathbb{R}^{3} \backslash\{\mathbf{0}\}$.
- Equation of Motion:

$$
\begin{equation*}
\mathbf{r}^{\prime \prime}=-\frac{\mathbf{r}}{r^{3}} \tag{1}
\end{equation*}
$$

- Angular Momentum $\mathbf{L}:=\mathbf{r} \times \mathbf{r}^{\prime}$ is conserved:

$$
\mathbf{L}^{\prime}=\mathbf{r}^{\prime} \times \mathbf{r}^{\prime}+\mathbf{r} \times \mathbf{r}^{\prime \prime}=\mathbf{r} \times\left(-\frac{\mathbf{r}}{r^{3}}\right)=\mathbf{0}
$$

- Lenz vector $\mathbf{A}:=\mathbf{L} \times \mathbf{r}^{\prime}+\frac{\mathbf{r}}{r}$ is conserved:

- Lenz vector $\mathbf{A}:=\mathbf{L} \times \mathbf{r}^{\prime}+\frac{\mathbf{r}}{r}$ is conserved:

$$
\begin{aligned}
\mathbf{A}^{\prime} & =\mathbf{L} \times \mathbf{r}^{\prime \prime}+\left(\frac{\mathbf{r}}{r}\right)^{\prime}=-\left(\mathbf{r} \times \mathbf{r}^{\prime}\right) \times \frac{\mathbf{r}}{r^{3}}+\left(\frac{\mathbf{r}}{r}\right)^{\prime} \\
& =-\frac{r^{2} \mathbf{r}^{\prime}-r r^{\prime} \mathbf{r}}{r^{3}}+\left(\frac{\mathbf{r}}{r}\right)^{\prime}=\mathbf{0}
\end{aligned}
$$

- Orbits. Since $\mathbf{L}=\mathbf{r} \times \mathbf{r}^{\prime}, \quad \mathbf{A}=\mathbf{L} \times \mathbf{r}^{\prime}+\frac{\mathbf{r}}{r}$, we have $L \cdot A=0$

and

$$
\begin{equation*}
\mathbf{L} \cdot \mathbf{r}=0, \quad r-\mathbf{A} \cdot \mathbf{r}=|\mathbf{L}|^{2}, \tag{2}
\end{equation*}
$$

So a non-colliding orbit is a conic with eccentricity e equal to $|\mathbf{A}|$:

- Orbits. Since $\mathbf{L}=\mathbf{r} \times \mathbf{r}^{\prime}, \quad \mathbf{A}=\mathbf{L} \times \mathbf{r}^{\prime}+\frac{\mathbf{r}}{r}$, we have $\mathbf{L} \cdot \mathbf{A}=0$

and

$$
\begin{equation*}
\mathbf{L} \cdot \mathbf{r}=0, \quad r-\mathbf{A} \cdot \mathbf{r}=|\mathbf{L}|^{2}, \tag{2}
\end{equation*}
$$

So a non-colliding orbit is a conic with eccentricity e equal to $|\mathbf{A}|$:

- Orbits. Since $\mathbf{L}=\mathbf{r} \times \mathbf{r}^{\prime}, \quad \mathbf{A}=\mathbf{L} \times \mathbf{r}^{\prime}+\frac{\mathbf{r}}{r}$, we have $\mathbf{L} \cdot \mathbf{A}=0$

and

$$
\begin{equation*}
\mathbf{L} \cdot \mathbf{r}=0, \quad r-\mathbf{A} \cdot \mathbf{r}=|\mathbf{L}|^{2}, \tag{2}
\end{equation*}
$$

So a non-colliding orbit is a conic with eccentricity e equal to $|\mathbf{A}|$:

- Total energy. Assume the orbit is non-colliding (i.e. $\mathbf{L} \neq \mathbf{0}$), then the total energy $E:=\frac{1}{2}\left|\mathbf{r}^{\prime}\right|^{2}-\frac{1}{r}$ can be expressed in terms of \mathbf{L} and \mathbf{A} :

$$
\begin{equation*}
E=-\frac{1-|\mathbf{A}|^{2}}{2|\mathbf{L}|^{2}} \tag{3}
\end{equation*}
$$

- Total energy. Assume the orbit is non-colliding (i.e. $\mathbf{L} \neq \mathbf{0}$), then the total energy $E:=\frac{1}{2}\left|\mathbf{r}^{\prime}\right|^{2}-\frac{1}{r}$ can be expressed in terms of \mathbf{L} and \mathbf{A} :

$$
\begin{equation*}
E=-\frac{1-|\mathbf{A}|^{2}}{2|\mathbf{L}|^{2}} . \tag{3}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
|\mathbf{A}|^{2} & =\left|\mathbf{L} \times \mathbf{r}^{\prime}\right|^{2}+2 \frac{\mathbf{r} \cdot\left(\mathbf{L} \times \mathbf{r}^{\prime}\right)}{r}+1 \\
& =|\mathbf{L}|^{2}\left|\mathbf{r}^{\prime}\right|^{2}-2 \frac{|\mathbf{L}|^{2}}{r}+1 \\
& =2|\mathbf{L}|^{2} E+1
\end{aligned}
$$

So $E=-\frac{1-|\mathbf{A}|^{2}}{2|\mathbf{L}|^{2}}$.

Magnetized Kepler Problems

- Magnetized Kepler problems were introduced towards the end of 1960s, by H. McIntosh and A. Cisneros, and independently by D. Zwanziger, so they are called MICZ-Kepler problems.
- They are the mathematical models for the hypothetical hydrogen atoms for which the nucleus carries magnetic charge as well. - Their configuration spaces are all the same: $\mathbb{R}_{*}^{3}:=\mathbb{R}^{3} \backslash\{\mathbf{0}$
- For the hypothetical hydrogen atom whose nucleus carries magnetic charge μ, its equation of motion is

Conserved quantities are angular momentum $\mathbf{L}:=\mathbf{r} \times \mathbf{r}^{\prime}+\mu \frac{\mathbf{r}}{r}$ and Lenz vector $\mathbf{A}:=\mathbf{L}$

- The Kepler problem is the MICZ-Kepler problem with magnetic charge zero.

Magnetized Kepler Problems

- Magnetized Kepler problems were introduced towards the end of 1960s, by H. McIntosh and A. Cisneros, and independently by D. Zwanziger, so they are called MICZ-Kepler problems.
- They are the mathematical models for the hypothetical hydrogen atoms for which the nucleus carries magnetic charge as well.
- For the hypothetical hydrogen atom whose nucleus carries magnetic charge μ, its equation of motion is

Conserved quantities are angular momentum L Lenz vector $\mathbf{A}:=\mathbf{L}$

- The Kepler problem is the MICZ-Kepler problem with magnetic charge zero.

Magnetized Kepler Problems

- Magnetized Kepler problems were introduced towards the end of 1960s, by H. McIntosh and A. Cisneros, and independently by D. Zwanziger, so they are called MICZ-Kepler problems.
- They are the mathematical models for the hypothetical hydrogen atoms for which the nucleus carries magnetic charge as well.
- Their configuration spaces are all the same: $\mathbb{R}_{*}^{3}:=\mathbb{R}^{3} \backslash\{\mathbf{0}\}$.
- For the hypothetical hydrogen atom whose nucleus carries magnetic charge μ, its equation of motion is Conserved quantities are angular momentum $\mathbf{L}:=\mathbf{r} \times \mathbf{r}^{\prime}+\mu \frac{\mathbf{r}}{\mathbf{r}}$ and
- The Kepler problem is the MICZ-Kepler problem with magnetic charge zero.

Magnetized Kepler Problems

- Magnetized Kepler problems were introduced towards the end of 1960s, by H. McIntosh and A. Cisneros, and independently by D. Zwanziger, so they are called MICZ-Kepler problems.
- They are the mathematical models for the hypothetical hydrogen atoms for which the nucleus carries magnetic charge as well.
- Their configuration spaces are all the same: $\mathbb{R}_{*}^{3}:=\mathbb{R}^{3} \backslash\{\mathbf{0}\}$.
- For the hypothetical hydrogen atom whose nucleus carries magnetic charge μ, its equation of motion is

$$
\begin{equation*}
\mathbf{r}^{\prime \prime}=-\frac{\mathbf{r}}{r^{3}}-\mathbf{r}^{\prime} \times \mu \frac{\mathbf{r}}{r^{3}}+\frac{\mu^{2}}{r^{4}} \mathbf{r} \tag{4}
\end{equation*}
$$

Conserved quantities are angular momentum $\mathbf{L}:=\mathbf{r} \times \mathbf{r}^{\prime}+\mu \frac{\mathbf{r}}{r}$ and Lenz vector $\mathbf{A}:=\mathbf{L} \times \mathbf{r}^{\prime}+\frac{\mathbf{r}}{r}$.

Magnetized Kepler Problems

- Magnetized Kepler problems were introduced towards the end of 1960s, by H. McIntosh and A. Cisneros, and independently by D. Zwanziger, so they are called MICZ-Kepler problems.
- They are the mathematical models for the hypothetical hydrogen atoms for which the nucleus carries magnetic charge as well.
- Their configuration spaces are all the same: $\mathbb{R}_{*}^{3}:=\mathbb{R}^{3} \backslash\{0\}$.
- For the hypothetical hydrogen atom whose nucleus carries magnetic charge μ, its equation of motion is

$$
\begin{equation*}
\mathbf{r}^{\prime \prime}=-\frac{\mathbf{r}}{r^{3}}-\mathbf{r}^{\prime} \times \mu \frac{\mathbf{r}}{r^{3}}+\frac{\mu^{2}}{r^{4}} \mathbf{r} \tag{4}
\end{equation*}
$$

Conserved quantities are angular momentum $\mathbf{L}:=\mathbf{r} \times \mathbf{r}^{\prime}+\mu \frac{\mathbf{r}}{r}$ and Lenz vector $\mathbf{A}:=\mathbf{L} \times \mathbf{r}^{\prime}+\frac{\mathbf{r}}{r}$.

- The Kepler problem is the MICZ-Kepler problem with magnetic charge zero.
- It is easy to see that $\mathbf{L} \cdot \mathbf{A}=\mu$, and

$$
\begin{equation*}
\mathbf{L} \cdot \mathbf{r}=\mu \mathbf{r}, \quad r-\mathbf{A} \cdot \mathbf{r}=|\mathbf{L}|^{2}-\mu^{2} . \tag{5}
\end{equation*}
$$

- Eq. (5) gives an algebraic description for the orbits, from which, we deduce that there are four types of orbits: linear, elliptic, parabolic, and hyperbolic.

- It is easy to see that $\mathbf{L} \cdot \mathbf{A}=\mu$, and

$$
\begin{equation*}
\mathbf{L} \cdot \mathbf{r}=\mu \mathbf{r}, \quad r-\mathbf{A} \cdot \mathbf{r}=|\mathbf{L}|^{2}-\mu^{2} . \tag{5}
\end{equation*}
$$

- Eq. (5) gives an algebraic description for the orbits, from which, we deduce that there are four types of orbits: linear, elliptic, parabolic, and hyperbolic.

A new description for the orbits

The preceding set of algebraic equations can be rewritten as

$$
\begin{equation*}
\mu \mathbf{r}-\mathbf{L} \cdot \mathbf{r}=0, \quad r-\mathbf{A} \cdot \mathbf{r}=|\mathbf{L}|^{2}-\mu^{2} . \tag{6}
\end{equation*}
$$

Assume that the orbit is non-collding, i.e. $|\mathrm{L}|^{2}-\mu^{2}=\left|\mathbf{r} \times \mathbf{r}^{\prime}\right|^{2}>0$.
Then, we can introduce 4-D Lorentz vectors

so that Eq. (6) can be rewritten as

$$
\begin{equation*}
1 \cdot x=0, \quad a \cdot x=1 . \tag{8}
\end{equation*}
$$

It is easy to see that $l^{2}=-1, l \cdot a=0, a_{0}>0$, and

A new description for the orbits

The preceding set of algebraic equations can be rewritten as

$$
\begin{equation*}
\mu r-\mathbf{L} \cdot \mathbf{r}=0, \quad r-\mathbf{A} \cdot \mathbf{r}=|\mathbf{L}|^{2}-\mu^{2} . \tag{6}
\end{equation*}
$$

Assume that the orbit is non-collding, i.e. $|\mathbf{L}|^{2}-\mu^{2}=\left|\mathbf{r} \times \mathbf{r}^{\prime}\right|^{2}>0$.

so that Eq. (6) can be rewritten as

$$
\begin{equation*}
1 \cdot x=0, \quad a \cdot x=1 \tag{8}
\end{equation*}
$$

It is easy to see that $l^{2}=-1, l \cdot a=0, a_{0}>0$, and

A new description for the orbits

The preceding set of algebraic equations can be rewritten as

$$
\begin{equation*}
\mu r-\mathbf{L} \cdot \mathbf{r}=0, \quad r-\mathbf{A} \cdot \mathbf{r}=|\mathbf{L}|^{2}-\mu^{2} \tag{6}
\end{equation*}
$$

Assume that the orbit is non-collding, i.e. $|\mathbf{L}|^{2}-\mu^{2}=\left|\mathbf{r} \times \mathbf{r}^{\prime}\right|^{2}>0$. Then, we can introduce 4-D Lorentz vectors

$$
\begin{equation*}
I=\frac{1}{\sqrt{|\mathbf{L}|^{2}-\mu^{2}}}(\mu, \mathbf{L}), \quad a=\frac{1}{|\mathbf{L}|^{2}-\mu^{2}}(1, \mathbf{A}), \quad x=(r, \mathbf{r}) \tag{7}
\end{equation*}
$$

so that Eq. (6) can be rewritten as

$$
l \cdot x=0, \quad a \cdot x=1
$$

It is easy to see that $l^{2}=-1, l \cdot a=0, a_{0}>0$, and

A new description for the orbits

The preceding set of algebraic equations can be rewritten as

$$
\begin{equation*}
\mu r-\mathbf{L} \cdot \mathbf{r}=0, \quad r-\mathbf{A} \cdot \mathbf{r}=|\mathbf{L}|^{2}-\mu^{2} \tag{6}
\end{equation*}
$$

Assume that the orbit is non-collding, i.e. $|\mathbf{L}|^{2}-\mu^{2}=\left|\mathbf{r} \times \mathbf{r}^{\prime}\right|^{2}>0$. Then, we can introduce 4-D Lorentz vectors

$$
\begin{equation*}
I=\frac{1}{\sqrt{|\mathbf{L}|^{2}-\mu^{2}}}(\mu, \mathbf{L}), \quad a=\frac{1}{|\mathbf{L}|^{2}-\mu^{2}}(1, \mathbf{A}), \quad x=(r, \mathbf{r}) \tag{7}
\end{equation*}
$$

so that Eq. (6) can be rewritten as

$$
\begin{equation*}
I \cdot x=0, \quad a \cdot x=1 \tag{8}
\end{equation*}
$$

It is easy to see that $l^{2}=-1, l \cdot a=0, a_{0}>0$, and

A new description for the orbits

The preceding set of algebraic equations can be rewritten as

$$
\begin{equation*}
\mu r-\mathbf{L} \cdot \mathbf{r}=0, \quad r-\mathbf{A} \cdot \mathbf{r}=|\mathbf{L}|^{2}-\mu^{2} \tag{6}
\end{equation*}
$$

Assume that the orbit is non-collding, i.e. $|\mathbf{L}|^{2}-\mu^{2}=\left|\mathbf{r} \times \mathbf{r}^{\prime}\right|^{2}>0$. Then, we can introduce 4-D Lorentz vectors

$$
\begin{equation*}
I=\frac{1}{\sqrt{|\mathbf{L}|^{2}-\mu^{2}}}(\mu, \mathbf{L}), \quad a=\frac{1}{|\mathbf{L}|^{2}-\mu^{2}}(1, \mathbf{A}), \quad x=(r, \mathbf{r}) \tag{7}
\end{equation*}
$$

so that Eq. (6) can be rewritten as

$$
\begin{equation*}
l \cdot x=0, \quad a \cdot x=1 \tag{8}
\end{equation*}
$$

It is easy to see that $l^{2}=-1, l \cdot a=0, a_{0}>0$, and

$$
E=-\frac{a^{2}}{2 a_{0}}
$$

A new description for the orbits

The preceding set of algebraic equations can be rewritten as

$$
\begin{equation*}
\mu r-\mathbf{L} \cdot \mathbf{r}=0, \quad r-\mathbf{A} \cdot \mathbf{r}=|\mathbf{L}|^{2}-\mu^{2} \tag{6}
\end{equation*}
$$

Assume that the orbit is non-collding, i.e. $|\mathbf{L}|^{2}-\mu^{2}=\left|\mathbf{r} \times \mathbf{r}^{\prime}\right|^{2}>0$. Then, we can introduce 4-D Lorentz vectors

$$
\begin{equation*}
I=\frac{1}{\sqrt{|\mathbf{L}|^{2}-\mu^{2}}}(\mu, \mathbf{L}), \quad a=\frac{1}{|\mathbf{L}|^{2}-\mu^{2}}(1, \mathbf{A}), \quad x=(r, \mathbf{r}) \tag{7}
\end{equation*}
$$

so that Eq. (6) can be rewritten as

$$
\begin{equation*}
l \cdot x=0, \quad a \cdot x=1 \tag{8}
\end{equation*}
$$

It is easy to see that $l^{2}=-1, l \cdot a=0, a_{0}>0$, and

$$
E=-\frac{a^{2}}{2 a_{0}}
$$

Remark: Eq. (8) is for $\mathbf{r} \in \mathbb{R}_{*}^{3}$,

A new description for the orbits

The preceding set of algebraic equations can be rewritten as

$$
\begin{equation*}
\mu r-\mathbf{L} \cdot \mathbf{r}=0, \quad r-\mathbf{A} \cdot \mathbf{r}=|\mathbf{L}|^{2}-\mu^{2} \tag{6}
\end{equation*}
$$

Assume that the orbit is non-collding, i.e. $|\mathbf{L}|^{2}-\mu^{2}=\left|\mathbf{r} \times \mathbf{r}^{\prime}\right|^{2}>0$. Then, we can introduce 4-D Lorentz vectors

$$
\begin{equation*}
I=\frac{1}{\sqrt{|\mathbf{L}|^{2}-\mu^{2}}}(\mu, \mathbf{L}), \quad a=\frac{1}{|\mathbf{L}|^{2}-\mu^{2}}(1, \mathbf{A}), \quad x=(r, \mathbf{r}) \tag{7}
\end{equation*}
$$

so that Eq. (6) can be rewritten as

$$
\begin{equation*}
l \cdot x=0, \quad a \cdot x=1 \tag{8}
\end{equation*}
$$

It is easy to see that $l^{2}=-1, l \cdot a=0, a_{0}>0$, and

$$
E=-\frac{a^{2}}{2 a_{0}}
$$

Remark: Eq. (8) is for $\mathbf{r} \in \mathbb{R}_{*}^{3}$, but it is also for $x \in \mathbb{R}^{4}$ provided that x is on the future light cone.

Future light cone in the 3-D Lorentz space

Kepler Problem and Lorentz Transformations

 MICZ-Kepler orbit - a non-colliding orbit in a MICZ-Kepler problem. There are three types: elliptic, parabolic, and hyperbolic.

Remark. 1) A second temporal dimension (i.e. x_{0}) appears naturally.
2) The magnetic charge μ is relative.

Kepler Problem and Lorentz Transformations

 MICZ-Kepler orbit - a non-colliding orbit in a MICZ-Kepler problem. There are three types: elliptic, parabolic, and hyperbolic. small Lorentz transformation - a small linear transformation T from \mathbb{R}^{4} to \mathbb{R}^{4} which preserves the Lorentz inner product. Here "small" means that T can be continuously deformed to the identity map on \mathbb{R}^{4}.scaling transformation positive real number.
\square

1) Any two oriented parabolic MICZ-Kepler orbits can be transformed
from one to the other via a little Lorentz transformation.
2) Any two oriented elliptic MICZ-Kepler orbits can be transformed
from one to the other via a little Lorentz transformation together with a scaling transformation.

Kepler Problem and Lorentz Transformations MICZ-Kepler orbit - a non-colliding orbit in a MICZ-Kepler problem. There are three types: elliptic, parabolic, and hyperbolic. small Lorentz transformation - a small linear transformation T from \mathbb{R}^{4} to \mathbb{R}^{4} which preserves the Lorentz inner product. Here "small" means that T can be continuously deformed to the identity map on \mathbb{R}^{4}. scaling transformation - the scalar multiplication of vectors in \mathbb{R}^{4} by a positive real number.

1) Any two oriented parabolic MICZ-Kepler orbits can be transformed
from one to the other via a little Lorentz transformation.
2) Any two oriented' eli'ptic MICZ-Kepler orbit's can be transformed'
from one to the other via a little Lorentz transformation together with a scaling transformation.

Kepler Problem and Lorentz Transformations

 MICZ-Kepler orbit - a non-colliding orbit in a MICZ-Kepler problem. There are three types: elliptic, parabolic, and hyperbolic.small Lorentz transformation - a small linear transformation T from \mathbb{R}^{4} to \mathbb{R}^{4} which preserves the Lorentz inner product. Here "small" means that T can be continuously deformed to the identity map on \mathbb{R}^{4}. scaling transformation - the scalar multiplication of vectors in \mathbb{R}^{4} by a positive real number.
Theorem (G. Meng, J. Math. Phys. 53, 052901(2012))

1) Any two oriented parabolic MICZ-Kepler orbits can be transformed from one to the other via a little Lorentz transformation.

Remark. 1) A second temporal dimension (i.e. x_{0}) appears naturally.

Kepler Problem and Lorentz Transformations

MICZ-Kepler orbit - a non-colliding orbit in a MICZ-Kepler problem. There are three types: elliptic, parabolic, and hyperbolic.
small Lorentz transformation - a small linear transformation T from \mathbb{R}^{4} to \mathbb{R}^{4} which preserves the Lorentz inner product. Here "small" means that T can be continuously deformed to the identity map on \mathbb{R}^{4}. scaling transformation - the scalar multiplication of vectors in \mathbb{R}^{4} by a positive real number.
Theorem (G. Meng, J. Math. Phys. 53, 052901(2012))

1) Any two oriented parabolic MICZ-Kepler orbits can be transformed from one to the other via a little Lorentz transformation.
2) Any two oriented elliptic MICZ-Kepler orbits can be transformed from one to the other via a little Lorentz transformation together with a scaling transformation.

Kepler Problem and Lorentz Transformations

 MICZ-Kepler orbit - a non-colliding orbit in a MICZ-Kepler problem. There are three types: elliptic, parabolic, and hyperbolic.small Lorentz transformation - a small linear transformation T from \mathbb{R}^{4} to \mathbb{R}^{4} which preserves the Lorentz inner product. Here "small" means that T can be continuously deformed to the identity map on \mathbb{R}^{4}. scaling transformation - the scalar multiplication of vectors in \mathbb{R}^{4} by a positive real number.
Theorem (G. Meng, J. Math. Phys. 53, 052901(2012))

1) Any two oriented parabolic MICZ-Kepler orbits can be transformed from one to the other via a little Lorentz transformation.
2) Any two oriented elliptic MICZ-Kepler orbits can be transformed from one to the other via a little Lorentz transformation together with a scaling transformation.

Remark. 1) A second temporal dimension (i.e. x_{0}) appears naturally.

Kepler Problem and Lorentz Transformations

MICZ-Kepler orbit - a non-colliding orbit in a MICZ-Kepler problem. There are three types: elliptic, parabolic, and hyperbolic.
small Lorentz transformation - a small linear transformation T from \mathbb{R}^{4} to \mathbb{R}^{4} which preserves the Lorentz inner product. Here "small" means that T can be continuously deformed to the identity map on \mathbb{R}^{4}. scaling transformation - the scalar multiplication of vectors in \mathbb{R}^{4} by a positive real number.
Theorem (G. Meng, J. Math. Phys. 53, 052901(2012))

1) Any two oriented parabolic MICZ-Kepler orbits can be transformed from one to the other via a little Lorentz transformation.
2) Any two oriented elliptic MICZ-Kepler orbits can be transformed from one to the other via a little Lorentz transformation together with a scaling transformation.

Remark. 1) A second temporal dimension (i.e. x_{0}) appears naturally.
2) The magnetic charge μ is relative.

To be continued

Thanks for your attention!

To be continued

Thanks for your attention!

