Kepler Problem and Formally Real Jordan Algebras II

Guowu Meng

Department of Mathematics

Hong Kong University of Science and Technology
$17^{\text {th }}$ International Conference on
Geometry, Integrability and Quantization
Varna, Bulgaria, June 6, 2015

Think deeply of simple things - Arnold Ross

We have learned from the last lecture that there is a family of God-given classical dynamic models (indexed by a real parameter μ) with

- configuration space \mathbb{R}_{*}^{3},
- conserved angular momentum L,
- and an additional conserved vector A.

Moreover, the orbits of these models are either linear or conic. These models are completely integrable in the sense that
the number of functionally independent constants of motion
is equal to
the dimension of the phase space - 1 .

We have learned from the last lecture that there is a family of God-given classical dynamic models (indexed by a real parameter μ) with

- configuration space \mathbb{R}_{*}^{3},
- conserved angular momentum L,
- and an additional conserved vector \mathbf{A}.

Moreover, the orbits of these models are either linear or conic. These models are completely integrable in the sense that
the number of functionally independent constants of motion
is equal to
the dimension of the phase space -1 .

We have learned from the last lecture that there is a family of God-given classical dynamic models (indexed by a real parameter μ) with

- configuration space \mathbb{R}_{*}^{3},
- conserved angular momentum \mathbf{L},
- and an additional conserved vector \mathbf{A}.

Moreover, the orbits of these models are either linear or conic. These models are completely integrable in the sense that
the number of functionally independent constants of motion
is equal to
the dimension of the phase space -1 .

We have learned from the last lecture that there is a family of God-given classical dynamic models (indexed by a real parameter μ) with

- configuration space \mathbb{R}_{*}^{3},
- conserved angular momentum \mathbf{L},
- and an additional conserved vector \mathbf{A}.

Moreover, the orbits of these models are either linear or conic. These models are completely integrable in the sense that
the number of functionally independent constants of motion
is equal to
the dimension of the phase space -1 .

We have learned from the last lecture that there is a family of God-given classical dynamic models (indexed by a real parameter μ) with

- configuration space \mathbb{R}_{*}^{3},
- conserved angular momentum \mathbf{L},
- and an additional conserved vector \mathbf{A}.

Moreover, the orbits of these models are either linear or conic.
models are completely integrable in the sense that
the number of functionally independent constants of motion
is equal to
the dimension of the phase space - 1 .

We have learned from the last lecture that there is a family of God-given classical dynamic models (indexed by a real parameter μ) with

- configuration space \mathbb{R}_{*}^{3},
- conserved angular momentum L,
- and an additional conserved vector \mathbf{A}.

Moreover, the orbits of these models are either linear or conic. These models are completely integrable in the sense that
the number of functionally independent constants of motion
is equal to
the dimension of the phase space -1 .

We also learned that the orbits of these models have very attractive descriptions on the future light cone

$$
\Lambda_{+}:=\left\{x \in \mathbb{R}^{1,3} \mid x^{2}=0, x_{0}>0\right\}
$$

in the Minkowski space $\mathbb{R}^{1,3}:=\left(\mathbb{R} \oplus \mathbb{R}^{3}\right.$, Lorentz inner product $)$ spanned by our ordinary three spatial dimensions and a new mysterious temporal dimension.
one may ask this
Question: Can Kepler problem and its magnetized versions be naturally formulated on that future light cone Λ_{+}?
Answer: Yes, provided that we can employ the more refined Jordan algebra structure behind the Lorentz structure on that Minkowski space $\mathbb{R}^{1,3}$. Since

We also learned that the orbits of these models have very attractive descriptions on the future light cone

$$
\Lambda_{+}:=\left\{x \in \mathbb{R}^{1,3} \mid x^{2}=0, x_{0}>0\right\}
$$

in the Minkowski space $\mathbb{R}^{1,3}:=\left(\mathbb{R} \oplus \mathbb{R}^{3}\right.$, Lorentz inner product) spanned by our ordinary three spatial dimensions and a new mysterious temporal dimension. Is this a coincidence?
one may ask this
Question: Can Kepler problem and its magnetized versions be naturally formulated on that future light cone Λ_{+}?
Answer: Yes, provided that we can employ the more refined Jordan algebra structure behind the Lorentz structure on that Minkowski space $\mathbb{R}^{1,3}$. Since

We also learned that the orbits of these models have very attractive descriptions on the future light cone

$$
\Lambda_{+}:=\left\{x \in \mathbb{R}^{1,3} \mid x^{2}=0, x_{0}>0\right\}
$$

in the Minkowski space $\mathbb{R}^{1,3}:=\left(\mathbb{R} \oplus \mathbb{R}^{3}\right.$, Lorentz inner product) spanned by our ordinary three spatial dimensions and a new mysterious temporal dimension. Is this a coincidence? More precisely, one may ask this

Question: Can Kepler problem and its magnetized versions be naturally formulated on that future light cone Λ_{+}?
Answer: Yes, provided that we can employ the more refined Jordan algebra structure behind the Lorentz structure on that Minkowski space $\mathbb{R}^{1,3}$. Since

We also learned that the orbits of these models have very attractive descriptions on the future light cone

$$
\Lambda_{+}:=\left\{x \in \mathbb{R}^{1,3} \mid x^{2}=0, x_{0}>0\right\}
$$

in the Minkowski space $\mathbb{R}^{1,3}:=\left(\mathbb{R} \oplus \mathbb{R}^{3}\right.$, Lorentz inner product) spanned by our ordinary three spatial dimensions and a new mysterious temporal dimension. Is this a coincidence? More precisely, one may ask this

Question: Can Kepler problem and its magnetized versions be naturally formulated on that future light cone Λ_{+}?
Answer: Yes, provided that we can employ the more refined Jordan algebra structure behind the Lorentz structure on that Minkowski space $\mathbb{R}^{1,3}$.

We also learned that the orbits of these models have very attractive descriptions on the future light cone

$$
\Lambda_{+}:=\left\{x \in \mathbb{R}^{1,3} \mid x^{2}=0, x_{0}>0\right\}
$$

in the Minkowski space $\mathbb{R}^{1,3}:=\left(\mathbb{R} \oplus \mathbb{R}^{3}\right.$, Lorentz inner product $)$ spanned by our ordinary three spatial dimensions and a new mysterious temporal dimension. Is this a coincidence? More precisely, one may ask this
Question: Can Kepler problem and its magnetized versions be naturally formulated on that future light cone Λ_{+}?
Answer: Yes, provided that we can employ the more refined Jordan algebra structure behind the Lorentz structure on that Minkowski space $\mathbb{R}^{1,3}$. Since

$$
\begin{aligned}
\mathbb{R}_{*}^{3} & \rightarrow \Lambda_{+} \\
\mathbf{r} & \mapsto(r, \mathbf{r})
\end{aligned}
$$

is a diffeomorphism, in hindsight, this may not be a surprise.

The Jordan algebra structure on $\mathbb{R}^{1,3}$ Write $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Write X for $x_{0} I+\mathbf{x} \cdot \vec{\sigma}$, i.e.

$$
X=\left[\begin{array}{cc}
x_{0}+x_{3} & x_{1}-\mathrm{i} x_{2} \\
x_{1}+\mathrm{i} x_{2} & x_{0}-x_{3}
\end{array}\right] .
$$

Let $\mathrm{H}_{2}(\mathbb{C})$ is the set of all complex hermitian matrices of order two. Note that $\operatorname{det} X=x^{2}$.

The Jordan algebra structure on $\mathbb{R}^{1,3}$ Write $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Write X for $x_{0} I+\mathbf{x} \cdot \vec{\sigma}$, i.e.

$$
X=\left[\begin{array}{ll}
x_{0}+x_{3} & x_{1}-\mathrm{i} x_{2} \\
x_{1}+\mathrm{i} x_{2} & x_{0}-x_{3}
\end{array}\right] .
$$

Let $\mathrm{H}_{2}(\mathbb{C})$ is the set of all complex hermitian matrices of order two. Note that $\operatorname{det} X=x^{2}$.

- The map $x \mapsto X$ is an isometry between $\mathbb{R}^{1,3}$ and $\left(\mathrm{H}_{2}(\mathbb{C})\right.$, det $)$.

The Jordan algebra structure on $\mathbb{R}^{1,3}$

 Write $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Write X for $x_{0} I+\mathbf{x} \cdot \vec{\sigma}$, i.e.$$
X=\left[\begin{array}{cc}
x_{0}+x_{3} & x_{1}-\mathrm{i} x_{2} \\
x_{1}+\mathrm{i} x_{2} & x_{0}-x_{3}
\end{array}\right] .
$$

Let $\mathrm{H}_{2}(\mathbb{C})$ is the set of all complex hermitian matrices of order two. Note that $\operatorname{det} X=x^{2}$.

- The map $x \mapsto X$ is an isometry between $\mathbb{R}^{1,3}$ and $\left(\mathrm{H}_{2}(\mathbb{C})\right.$, det $)$.
- Under the symmetrized matrix multiplication:

$$
X \circ Y:=\frac{1}{2}(X Y+Y X),
$$

$\mathrm{H}_{2}(\mathbb{C})$ becomes a real commutative algebra with unit.
$\mathrm{H}_{2}(\mathbb{C}), A^{2}+B^{2}=0 \Longrightarrow A=B=0$.

The Jordan algebra structure on $\mathbb{R}^{1,3}$

 Write $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Write X for $x_{0} I+\mathbf{x} \cdot \vec{\sigma}$, i.e.$$
X=\left[\begin{array}{ll}
x_{0}+x_{3} & x_{1}-\mathrm{i} x_{2} \\
x_{1}+\mathrm{i} x_{2} & x_{0}-x_{3}
\end{array}\right] .
$$

Let $\mathrm{H}_{2}(\mathbb{C})$ is the set of all complex hermitian matrices of order two. Note that $\operatorname{det} X=x^{2}$.

- The map $x \mapsto X$ is an isometry between $\mathbb{R}^{1,3}$ and $\left(\mathrm{H}_{2}(\mathbb{C})\right.$, det $)$.
- Under the symmetrized matrix multiplication:

$$
X \circ Y:=\frac{1}{2}(X Y+Y X),
$$

$\mathrm{H}_{2}(\mathbb{C})$ becomes a real commutative algebra with unit.

- This algebra is formally real in the following sense: for A, B in $\mathrm{H}_{2}(\mathbb{C}), A^{2}+B^{2}=0 \Longrightarrow A=B=0$.

The Jordan algebra structure on $\mathbb{R}^{1,3}$

 Write $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Write X for $x_{0} I+\mathbf{x} \cdot \vec{\sigma}$, i.e.$$
X=\left[\begin{array}{ll}
x_{0}+x_{3} & x_{1}-\mathrm{i} x_{2} \\
x_{1}+\mathrm{i} x_{2} & x_{0}-x_{3}
\end{array}\right] .
$$

Let $\mathrm{H}_{2}(\mathbb{C})$ is the set of all complex hermitian matrices of order two. Note that $\operatorname{det} X=x^{2}$.

- The map $x \mapsto X$ is an isometry between $\mathbb{R}^{1,3}$ and $\left(\mathrm{H}_{2}(\mathbb{C})\right.$, det $)$.
- Under the symmetrized matrix multiplication:

$$
X \circ Y:=\frac{1}{2}(X Y+Y X),
$$

$\mathrm{H}_{2}(\mathbb{C})$ becomes a real commutative algebra with unit.

- This algebra is formally real in the following sense: for A, B in $\mathrm{H}_{2}(\mathbb{C}), A^{2}+B^{2}=0 \Longrightarrow A=B=0$.

Proof.

For any column vector \vec{x} in \mathbb{C}^{2}, let \vec{x}^{\dagger} be its hermitian conjugate. Then $0=\vec{x}^{\dagger}\left(A^{2}+B^{2}\right) \vec{x}=\|A \vec{x}\|^{2}+\|B \vec{x}\|^{2}$, so $A \vec{x}=B \vec{x}=\overrightarrow{0}$, so $A=0$ and

Weak associativity

The symmetrized matrix multiplication is

- not associative.
- weakly associative in the following sense: for X, Y in $\mathrm{H}_{2}(\mathbb{C})$, we have

Here $X^{2}=X \circ X=X X$.

Weak associativity

The symmetrized matrix multiplication is

- not associative.
- weakly associative in the following sense: for X, Y in $\mathrm{H}_{2}(\mathbb{C})$, we have

$$
(X \circ Y) \circ X^{2}=X \circ\left(Y \circ X^{2}\right)
$$

Here $X^{2}=X \circ X=X X$.

Weak associativity

The symmetrized matrix multiplication is

- not associative.
- weakly associative in the following sense: for X, Y in $\mathrm{H}_{2}(\mathbb{C})$, we have

$$
(X \circ Y) \circ X^{2}=X \circ\left(Y \circ X^{2}\right)
$$

Here $X^{2}=X \circ X=X X$.

Proof.

$$
\begin{aligned}
\text { LHS } & =\frac{1}{2}(X Y+Y X) \circ X^{2}=\frac{1}{4}\left[(X Y+Y X) X^{2}+X^{2}(X Y+Y X)\right] \\
& =\frac{1}{4}\left[X Y X^{2}+Y X X^{2}+X^{2} X Y+X^{2} Y X\right] \\
& =\frac{1}{4}\left[X Y X^{2}+Y X^{2} X+X X^{2} Y+X^{2} Y X\right] \\
& =\frac{1}{4}\left[\left(Y X^{2}+X^{2} Y\right) X+X\left(Y X^{2}+X^{2} Y\right)\right]=X \circ \frac{1}{2}\left(Y X^{2}+X^{2} Y\right) \\
& =R H S
\end{aligned}
$$

The euclidean structure on $\mathrm{H}_{2}(\mathbb{C})$

For any $u \in \mathrm{H}_{2}(\mathbb{C})$, we let L_{u} be the endomorphism on $\mathrm{H}_{2}(\mathbb{C})$ defined by $v \mapsto u \circ v$. Let $\langle\rangle:, \mathrm{H}_{2}(\mathbb{C}) \times \mathrm{H}_{2}(\mathbb{C}) \rightarrow \mathbb{R}$ be defined as follows:

$$
\langle u, v\rangle:=\frac{1}{2} \operatorname{tr}(u \circ v)=\frac{1}{2} \operatorname{tr}(u v)=\frac{1}{4} \operatorname{tr} L_{u o v} .
$$

- \langle,$\rangle is an inner product on \mathrm{H}_{2}(\mathbb{C})$ such that

$$
\sigma_{0}:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}:=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

form an orthonormal basis. Note that $\operatorname{tr} \sigma_{0}=2$ and $\operatorname{tr} \sigma_{i}=0$.

- The multiplication law for the real commutative algebra $\mathrm{H}_{2}(\mathbb{C})$ with unit is given by

$$
\sigma_{i} \circ \sigma_{j}=\delta_{i j} \sigma_{0}, \quad \sigma_{0} \text { is the unit } e .
$$

- L_{u} is self-adjoint with respect to \langle,$\rangle , i.e., \langle v, u \circ w\rangle=\langle u \circ v, w\rangle$ for any $v, w \in H_{2}(\mathbb{C})$. Indeed,
LHS $=\frac{1}{2} \operatorname{tr}(v(u w+w u))=\frac{1}{2} \operatorname{tr}(v u w+v w u)=\frac{1}{2} \operatorname{tr}((u v+v u) w)_{\equiv}=$ RHS

Relevance to Kepler problem

- The future light cone $\Lambda_{+}=$the set of rank one, semi-positive elements in $\mathrm{H}_{2}(\mathbb{C})$. Indeed, if the rank of X is less than two, then $\operatorname{det} X=0$, also, if $X \neq 0$ is semi-positive, then $\operatorname{tr} X>0$. So $x^{2}=0$ and $x_{0}>0$.
- For the Kepler problem, the potential term is

- The Kinetic term for the the Kepler problem (or rather the Riemannian metric on Λ_{+}), angular momentum, and Lenz vector can all be naturally expressed in terms of Jordan algebra structure as well.

For details, we have to study Formally Real Jordan algebras.

Relevance to Kepler problem

- The future light cone $\Lambda_{+}=$the set of rank one, semi-positive elements in $\mathrm{H}_{2}(\mathbb{C})$. Indeed, if the rank of X is less than two, then $\operatorname{det} X=0$, also, if $X \neq 0$ is semi-positive, then $\operatorname{tr} X>0$. So $x^{2}=0$ and $x_{0}>0$.
- For the Kepler problem, the potential term is

$$
-\frac{1}{\langle e, x\rangle}
$$

- The Kinetic term for the the Kepler problem (or rather the

Riemannian metric on Λ_{+}), angular momentum, and Lenz vector can all be naturally expressed in terms of Jordan algebra structure as well.

For details, we have to study Formally Real Jordan algebras.

Relevance to Kepler problem

- The future light cone $\Lambda_{+}=$the set of rank one, semi-positive elements in $\mathrm{H}_{2}(\mathbb{C})$. Indeed, if the rank of X is less than two, then $\operatorname{det} X=0$, also, if $X \neq 0$ is semi-positive, then $\operatorname{tr} X>0$. So $x^{2}=0$ and $x_{0}>0$.
- For the Kepler problem, the potential term is

$$
-\frac{1}{\langle e, x\rangle}
$$

- The Kinetic term for the the Kepler problem (or rather the Riemannian metric on Λ_{+}), angular momentum, and Lenz vector can all be naturally expressed in terms of Jordan algebra structure as well.

For details, we have to study Formally Real Jordan algebras.

Relevance to Kepler problem

- The future light cone $\Lambda_{+}=$the set of rank one, semi-positive elements in $\mathrm{H}_{2}(\mathbb{C})$. Indeed, if the rank of X is less than two, then $\operatorname{det} X=0$, also, if $X \neq 0$ is semi-positive, then $\operatorname{tr} X>0$. So $x^{2}=0$ and $x_{0}>0$.
- For the Kepler problem, the potential term is

$$
-\frac{1}{\langle e, x\rangle}
$$

- The Kinetic term for the the Kepler problem (or rather the Riemannian metric on Λ_{+}), angular momentum, and Lenz vector can all be naturally expressed in terms of Jordan algebra structure as well.

For details, we have to study Formally Real Jordan algebras.

Formally real Jordan algebras

 Jordan algebras are the unfavored cousins of Lie algebras, and Formally real Jordan algebras are the unfavored cousins of compact real Lie algebras. Having $\mathrm{H}_{2}(\mathbb{C})$ in mind, we have

Formally real Jordan algebras

 Jordan algebras are the unfavored cousins of Lie algebras, and Formally real Jordan algebras are the unfavored cousins of compact real Lie algebras. Having $\mathrm{H}_{2}(\mathbb{C})$ in mind, we have
Definition (P. Jordan, 1933)

A finite dimensional Formally real Jordan algebra is a finite dimensional real algebra V with unit e such that, for any elements a, b in V, we have

1) $a b=b a$ (symmetry),
2) $a\left(b a^{2}\right)=(a b) a^{2}$ (weakly associative),
3) $a^{2}+b^{2}=0 \Longrightarrow a=b=0$ (formally real).

Formally real Jordan algebras

 Jordan algebras are the unfavored cousins of Lie algebras, and Formally real Jordan algebras are the unfavored cousins of compact real Lie algebras. Having $\mathrm{H}_{2}(\mathbb{C})$ in mind, we have
Definition (P. Jordan, 1933)

A finite dimensional Formally real Jordan algebra is a finite dimensional real algebra V with unit e such that, for any elements a, b in V, we have

1) $a b=b a$ (symmetry),
2) $a\left(b a^{2}\right)=(a b) a^{2}$ (weakly associative),
3) $a^{2}+b^{2}=0 \Longrightarrow a=b=0$ (formally real).

The simplest example is \mathbb{R}, the other example is $\mathrm{H}_{2}(\mathbb{C})$. We use L_{a} : $V \rightarrow V$ to denote the multiplication by a. Then 2) says that $\left[L_{a}, L_{a^{2}}\right]=0$ (Jordan Identity) and 3) can be replaced by
$\left.3^{\prime}\right)$ The "Killing form" $\langle a, b\rangle=\frac{1}{\operatorname{dim} v} \operatorname{tr} L_{a b}$ is positive definite. Note that $\langle b, a c\rangle=\langle a b, c\rangle$. Formally real Jordan algebras are also called

The classification theorem

Theorem (Jordan, von Neumann and Wigner, 1934)
Euclidean Jordan algebras are semi-simple, and the simple ones consist of four infinity families and one exceptional:
\mathbb{R}.
$\Gamma(n):=\mathbb{R} \oplus \mathbb{R}^{n}, n \geq 2$.
$\mathrm{H}_{n}(\mathbb{R}), n \geq 3$.
$\mathrm{H}_{n}(\mathbb{C}), n \geq 3$.
$\mathrm{H}_{n}(\mathbb{H}), n \geq 3$.
$\mathrm{H}_{3}(\mathbb{O})$.
Remark.

- $\Gamma(0) \cong \mathbb{R}, \Gamma(1) \cong \mathbb{R} \oplus \mathbb{R}, \Gamma(2) \cong \mathrm{H}_{2}(\mathbb{R}), \Gamma(3) \cong \mathrm{H}_{2}(\mathbb{C})$,
$\Gamma(5) \cong \mathrm{H}_{2}(\mathbb{H}), \Gamma(9) \cong \mathrm{H}_{2}(\mathbb{O})$.
- Each but the exceptional one is associated with an associative algebra.
- $\mathbb{R}, \Gamma(3)$, and $\mathrm{H}_{3}(\mathbb{O})$ are somewhat special.

The structure algebra

For a, b in V, we let

$$
S_{a b}:=\left[L_{a}, L_{b}\right]+L_{a b}, \quad\{a b c\}:=S_{a b}(c)
$$

and $\mathfrak{s t r}$ be the span of $\left\{S_{a b} \mid a, b \in V\right\}$ over \mathbb{R}. Since

$$
\left[S_{a b}, S_{c d}\right]=S_{\{a b c\} d}-S_{c\{b a d\}}
$$

$\mathfrak{s t r}$ becomes a real Lie algebra - the structure algebra of V. For example, (1) $\mathfrak{s t r} \cong \mathbb{R}$ for $V=\mathbb{R}$, (2) $\mathfrak{s t r} \cong \mathfrak{s o}(1,3) \oplus \mathbb{R}$ for $V=\Gamma(3)$.

This Lie algebra is not simple, actually not even semi-simple, because it has a non-trivial central element: $S_{e e}$. Note that $L_{u}=S_{u e}$.

The good news is that this algebra can be extended to a simple real Lie algebra provided that V is a simple Euclidean Jordan algebra. From hereon V is assumed to be a simple Euclidean Jordan algebra

The structure algebra

For a, b in V, we let

$$
S_{a b}:=\left[L_{a}, L_{b}\right]+L_{a b}, \quad\{a b c\}:=S_{a b}(c)
$$

and $\mathfrak{s t r}$ be the span of $\left\{S_{a b} \mid a, b \in V\right\}$ over \mathbb{R}. Since

$$
\left[S_{a b}, S_{c d}\right]=S_{\{a b c\} d}-S_{c\{b a d\}}
$$

$\mathfrak{s t r}$ becomes a real Lie algebra - the structure algebra of V. For example, (1) $\mathfrak{s t r} \cong \mathbb{R}$ for $V=\mathbb{R}$, (2) $\mathfrak{s t r} \cong \mathfrak{s o}(1,3) \oplus \mathbb{R}$ for $V=\Gamma(3)$.

This Lie algebra is not simple, actually not even semi-simple, because it has a non-trivial central element: $S_{e e}$. Note that $L_{u}=S_{u e}$.

The structure algebra

For a, b in V, we let

$$
S_{a b}:=\left[L_{a}, L_{b}\right]+L_{a b}, \quad\{a b c\}:=S_{a b}(c)
$$

and $\mathfrak{s t r}$ be the span of $\left\{S_{a b} \mid a, b \in V\right\}$ over \mathbb{R}. Since

$$
\left[S_{a b}, S_{c d}\right]=S_{\{a b c\} d}-S_{c\{b a d\}}
$$

$\mathfrak{s t r}$ becomes a real Lie algebra - the structure algebra of V. For example, (1) $\mathfrak{s t r} \cong \mathbb{R}$ for $V=\mathbb{R}$, (2) $\mathfrak{s t r} \cong \mathfrak{s o}(1,3) \oplus \mathbb{R}$ for $V=\Gamma(3)$.

This Lie algebra is not simple, actually not even semi-simple, because it has a non-trivial central element: $S_{e e}$. Note that $L_{u}=S_{u e}$.

The good news is that this algebra can be extended to a simple real Lie algebra provided that V is a simple Euclidean Jordan algebra. From hereon V is assumed to be a simple Euclidean Jordan algebra .

The conformal algebra

Write $z \in V$ as X_{z} and $\langle w,\rangle \in V^{*}$ as Y_{w}.

Definition (J. Tits, M. Koecher, I.L. Kantor, 1960's)

The conformal algebra $\mathfrak{c o}$ is a Lie algebra whose underlying real vector space is $V \oplus \mathfrak{s t r} \oplus V^{*}$, and the commutation relations are

$$
\begin{gather*}
{\left[X_{u}, X_{v}\right]=0, \quad\left[Y_{u}, Y_{v}\right]=0, \quad\left[X_{u}, Y_{v}\right]=-2 S_{u v},} \\
{\left[S_{u v}, X_{z}\right]=X_{\{u v z\}}, \quad\left[S_{u v}, Y_{z}\right]=-Y_{\{v u z\}},} \tag{1}\\
{\left[S_{u v}, S_{z w}\right]=S_{\{u v z\} w}-S_{z\{v u w\}}}
\end{gather*}
$$

for u, v, z, w in V.
When $V=\Gamma(3), \mathfrak{s t r}=\mathfrak{s o}(3,1) \oplus \mathbb{R}, \mathfrak{c o}=\mathfrak{s o}(4,2)$. When $V=\mathbb{R}$, $\mathfrak{s t r}=\mathbb{R}, \mathfrak{c o}=\mathfrak{s l}(2, \mathbb{R})$. In general, $\mathfrak{c o}$ is the Lie algebra of the bi holomorphic automorphism group of the complex domain $V \oplus \mathrm{i} V_{+} \subset V \otimes_{\mathbb{R}} \mathbb{C}$.

The universal Kepler problem [G. Meng, "The Universal Kepler Problems", JGSP 36 (2014) 47-57] Let $\mathcal{T} \mathcal{K} \mathcal{K}$ be the complexified universal enveloping algebra for the conformal algebra, but with Y_{e} being formally inverted.

Definition

The universal angular momentum is

$$
\begin{align*}
L: V \times V & \rightarrow \mathcal{T} \mathcal{K K} \\
(u, v) & \mapsto L_{u, v}:=\left[L_{u}, L_{v}\right] \tag{2}
\end{align*}
$$

The universal Hamiltonian is

$$
\begin{equation*}
H:=\frac{1}{2} Y_{e}^{-1} X_{e}-\left(\mathrm{i} Y_{e}\right)^{-1} \tag{3}
\end{equation*}
$$

The universal Lenz vector is

$$
\begin{align*}
A: V & \rightarrow \mathcal{T} \mathcal{K} \mathcal{K} \\
u & \mapsto A_{u}:=\left(\mathrm{i} Y_{e}\right)^{-1}\left[L_{u},\left(\mathrm{i} Y_{e}\right)^{2} H\right] \tag{4}
\end{align*}
$$

Universal Lenz algebra

Using the commutation relation for the conformal algebra, one can prove the following

Theorem

For u, v, z and w in V,

$$
\begin{array}{ll}
{\left[L_{u, v}, H\right]} & =0 \\
{\left[A_{u}, H\right]} & =0 \\
{\left[L_{u, v}, L_{z, w}\right]} & =L_{\left[L_{u}, L_{v}\right] z, w}+L_{z,\left[L_{u}, L_{v}\right] w}, \tag{5}\\
{\left[L_{u, v}, A_{z}\right]} & =A_{\left[L_{u}, L_{v}\right] z} \\
{\left[A_{u}, A_{v}\right]} & =-2 H L_{u, v}
\end{array}
$$

A concrete realization of the conformal algebra
a concrete model of the Kepler type

Universal Lenz algebra

Using the commutation relation for the conformal algebra, one can prove the following

Theorem

For u, v, z and w in V,

$$
\begin{array}{ll}
{\left[L_{u, v}, H\right]} & =0, \\
{\left[A_{u}, H\right]} & =0, \\
{\left[L_{u, v}, L_{z, w}\right]} & =L_{\left[L L_{u, L}\right] z, w}+L_{\left.z,\left[L_{u, L}\right]\right]}, \tag{5}\\
{\left[L_{u, v}, A_{z}\right]} & =A_{\left[L_{u}, L / L z\right.}, \\
{\left[A_{u}, A_{v}\right]} & =-2 H L_{u, v} .
\end{array}
$$

A concrete realization of the conformal algebra \Downarrow a concrete model of the Kepler type

To be continued

Thanks for your attention!

To be continued

Thanks for your attention!

