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Think deeply of simple things — Arnold Ross



We have learned from the last lecture that there is a family of
God-given classical dynamic models (indexed by a real parameter µ)
with

configuration space R3
∗,

conserved angular momentum L,
and an additional conserved vector A.

Moreover, the orbits of these models are either linear or conic. These
models are completely integrable in the sense that

the number of functionally independent constants of motion

is equal to

the dimension of the phase space - 1.
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We also learned that the orbits of these models have very attractive
descriptions on the future light cone

Λ+ := {x ∈ R1,3|x2 = 0, x0 > 0}

in the Minkowski space R1,3 := (R⊕ R3,Lorentz inner product)
spanned by our ordinary three spatial dimensions and a new
mysterious temporal dimension. Is this a coincidence? More precisely,
one may ask this

Question: Can Kepler problem and its magnetized versions be
naturally formulated on that future light cone Λ+?

Answer: Yes, provided that we can employ the more refined Jordan
algebra structure behind the Lorentz structure on that Minkowski
space R1,3. Since

R3
∗ → Λ+

r 7→ (r , r)

is a diffeomorphism, in hindsight, this may not be a surprise.
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The Jordan algebra structure on R1,3

Write x = (x1, x2, x3), then x = (x0, x1, x2, x3). Write X for x0I + x ·~σ, i.e.

X =

[
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

]
.

Let H2(C) is the set of all complex hermitian matrices of order two.
Note that det X = x2.

The map x 7→ X is an isometry between R1,3 and (H2(C),det).
Under the symmetrized matrix multiplication:

X ◦ Y :=
1
2

(XY + YX ),

H2(C) becomes a real commutative algebra with unit.
This algebra is formally real in the following sense: for A, B in
H2(C), A2 + B2 = 0 =⇒ A = B = 0.

Proof.
For any column vector ~x in C2, let ~x† be its hermitian conjugate. Then
0 = ~x†(A2 + B2)~x = ||A~x ||2 + ||B~x ||2, so A~x = B~x = ~0, so A = 0 and
B = 0.
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Weak associativity
The symmetrized matrix multiplication is

not associative.
weakly associative in the following sense: for X , Y in H2(C), we
have

(X ◦ Y ) ◦ X 2 = X ◦ (Y ◦ X 2).

Here X 2 = X ◦ X = XX .

Proof.

LHS =
1
2

(XY + YX ) ◦ X 2 =
1
4

[(XY + YX )X 2 + X 2(XY + YX )]

=
1
4

[XYX 2 + YXX 2 + X 2XY + X 2YX ]

=
1
4

[XYX 2 + YX 2X + XX 2Y + X 2YX ]

=
1
4

[(YX 2 + X 2Y )X + X (YX 2 + X 2Y )] = X ◦ 1
2

(YX 2 + X 2Y )

= RHS
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The euclidean structure on H2(C)
For any u ∈ H2(C), we let Lu be the endomorphism on H2(C) defined
by v 7→ u ◦ v . Let 〈 , 〉: H2(C)× H2(C)→ R be defined as follows:

〈u, v〉 :=
1
2

tr (u ◦ v) =
1
2

tr (uv) =
1
4

tr Lu◦v .

〈 , 〉 is an inner product on H2(C) such that

σ0 :=

(
1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
form an orthonormal basis. Note that trσ0 = 2 and trσi = 0.
The multiplication law for the real commutative algebra H2(C) with
unit is given by

σi ◦ σj = δijσ0, σ0 is the unit e.

Lu is self-adjoint with respect to 〈 , 〉, i.e., 〈v ,u ◦ w〉 = 〈u ◦ v ,w〉 for
any v ,w ∈ H2(C). Indeed,

LHS =
1
2

tr (v(uw+wu)) =
1
2

tr (vuw+vwu) =
1
2

tr ((uv+vu)w) = RHS.
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Relevance to Kepler problem

The future light cone Λ+ = the set of rank one, semi-positive
elements in H2(C). Indeed, if the rank of X is less than two, then
det X = 0, also, if X 6= 0 is semi-positive, then tr X > 0. So x2 = 0
and x0 > 0.
For the Kepler problem, the potential term is

− 1
〈e, x〉

.

The Kinetic term for the the Kepler problem (or rather the
Riemannian metric on Λ+), angular momentum, and Lenz vector
can all be naturally expressed in terms of Jordan algebra structure
as well.

For details, we have to study Formally Real Jordan algebras.
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Formally real Jordan algebras [J.Faraut and A.Koranyi, Analysis on Symmetric Cones]

Jordan algebras are the unfavored cousins of Lie algebras, and
Formally real Jordan algebras are the unfavored cousins of compact
real Lie algebras. Having H2(C) in mind, we have

Definition (P. Jordan, 1933)
A finite dimensional Formally real Jordan algebra is a finite
dimensional real algebra V with unit e such that, for any elements a, b
in V , we have
1) ab = ba (symmetry),
2) a(ba2) = (ab)a2 (weakly associative),
3) a2 + b2 = 0 =⇒ a = b = 0 (formally real).

The simplest example is R, the other example is H2(C). We use La:
V → V to denote the multiplication by a. Then 2) says that [La,La2 ] = 0
(Jordan Identity) and 3) can be replaced by

3´ ) The “Killing form” 〈a | b〉 = 1
dim V tr Lab is positive definite. Note that

〈b | ac〉 = 〈ab | c〉. Formally real Jordan algebras are also called
Euclidean Jordan algebras.
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The classification theorem
Theorem (Jordan, von Neumann and Wigner, 1934)
Euclidean Jordan algebras are semi-simple, and the simple ones
consist of four infinity families and one exceptional:
R.
Γ(n) := R⊕ Rn, n ≥ 2.
Hn(R), n ≥ 3.
Hn(C), n ≥ 3.
Hn(H), n ≥ 3.
H3(O).

Remark.
Γ(0) ∼= R, Γ(1) ∼= R⊕ R, Γ(2) ∼= H2(R), Γ(3) ∼= H2(C),
Γ(5) ∼= H2(H), Γ(9) ∼= H2(O).
Each but the exceptional one is associated with an associative
algebra.
R, Γ(3), and H3(O) are somewhat special.
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The structure algebra

For a, b in V , we let

Sab := [La,Lb] + Lab, {abc} := Sab(c)

and str be the span of {Sab | a,b ∈ V} over R. Since

[Sab,Scd ] = S{abc}d − Sc{bad},

str becomes a real Lie algebra — the structure algebra of V . For
example, (1) str ∼= R for V = R, (2) str ∼= so(1,3)⊕ R for V = Γ(3).

This Lie algebra is not simple, actually not even semi-simple, because
it has a non-trivial central element: See. Note that Lu = Sue.

The good news is that this algebra can be extended to a simple real
Lie algebra provided that V is a simple Euclidean Jordan algebra.
From hereon V is assumed to be a simple Euclidean Jordan algebra .
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The conformal algebra
Write z ∈ V as Xz and 〈w | 〉 ∈ V ∗ as Yw .

Definition (J. Tits, M. Koecher, I.L. Kantor, 1960’s)
The conformal algebra co is a Lie algebra whose underlying real
vector space is V ⊕ str⊕ V ∗, and the commutation relations are

[Xu,Xv ] = 0, [Yu,Yv ] = 0, [Xu,Yv ] = −2Suv ,

[Suv ,Xz ] = X{uvz}, [Suv ,Yz ] = −Y{vuz},

[Suv ,Szw ] = S{uvz}w − Sz{vuw}

(1)

for u, v , z, w in V .

When V = Γ(3), str = so(3,1)⊕ R, co = so(4,2). When V = R,
str = R, co = sl(2,R). In general, co is the Lie algebra of the bi
holomorphic automorphism group of the complex domain
V ⊕ iV+ ⊂ V ⊗R C.
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After spending so much effort on the basic facts on Euclidean Jordan
algebras, an impatient audience may ask this

Question: How could the Euclidean Jordan algebra H2(C) (or Γ(3)) be
relevant to the Kepler problem?

Well, the answer will become clear after we review the Lenz algebra for
the Kepler problem.
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Lenz algebra for the Kepler problem
The phase space for the Kepler problem, i.e., T ∗R3

∗, is a Poisson
manifold. In terms of the standard canonical coordinates
x1, x2, x3,p1,p2,p3, the Poisson structure can be described by the
following basic Poisson bracket relations:

{x i , x j} = 0, {x i ,pj} = δi
j , {pi ,pj} = 0.

Recall that the Hamiltonian, angular momentum, and Lenz vector are

H =
1
2

p2 − 1
r
, L = r× p, A = L× p +

r
r

respectively. In terms of Poisson bracket, the fact that L and A are
constants of motion can be restated as

{L,H} = 0, {A,H} = 0.

To show that, we first note that Li (the i-th component of L) is the
infinitesimal generator of the rotation about the i-th axis. For example,
since L3 = x1p2 − x2p1, we have

{L3, x1} = −x2{p1, x1} = x2, {L3, x2} = −x1, {L3, x3} = 0.
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Similarly, we have

{L3,p1} = p2, {L3,p2} = −p1, {L3,p3} = 0.

Then, it is clear that {L,H} = 0; moreover,

{A,H} = L× {p,H}+ { r
r
,H}

= L× {p,−1
r
}+ { r

r
,
1
2

p2}

= L×∇1
r

+
∑

i

{ r
r
,pi}pi

= −L× r
r3 +

∑
i

pi∂x i
r
r

= −(r× p)× r
r3 +

p
r
− r · p

r3 r
= 0.
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In fact, it is fairly routine to verify this

Theorem
Let Li (resp. Ai ) be the i-th component of L (resp. A). Then

{Li ,H} = 0 ,
{Ai ,H} = 0 ,
{Li ,Lj} = εijkLk ,
{Li ,Aj} = εijkAk ,
{Ai ,Aj} = −2HεijkLk .

(2)

Here εijk = 1 (resp. −1) if ijk is an even (resp. odd) permutation of 123,
and equals to 0 otherwise. A summation over the repeated index k is
assumed. So we have {L1,L2} = L3, {L2,A3} = A1, and so on.

The real associated algebra with generators H, L1,L2,L3,A1,A2,A3
and relations in Eq. (2) is called the Lenz algebra.

With this in mind, we are now ready to introduce the Universal Kepler
Problem.
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Universal Kepler problem
[Based on [G. Meng, “The Universal Kepler Problems”, JGSP 36 (2014) 47-57]] Let T KK be the
complexified universal enveloping algebra for the conformal algebra,
but with Ye being formally inverted.

Definition
The universal angular momentum is

L : V × V → T KK
(u, v) 7→ Lu,v := [Lu,Lv ] (3)

The universal Hamiltonian is

H :=
1
2

Y−1
e Xe − (iYe)−1 (4)

The universal Lenz vector is

A : V → T KK
u 7→ Au := (iYe)−1[Lu, (iYe)2H] (5)
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Universal Lenz algebra
Via the commutation relation for the conformal algebra, one can verify

Theorem
For u, v, z and w in V ,

[Lu,v ,H] = 0 ,
[Au,H] = 0 ,
[Lu,v ,Lz,w ] = LLu,v z,w + Lz,Lu,v w ,

[Lu,v ,Az ] = ALu,v z ,

[Au,Av ] = −2HLu,v .

(6)

Proof. Since Suv = Lu,v + Luv , part of the commutation relations for
the conformal algebra can be rewritten as

[Lu,v ,Xz ] = XLu,v z , [Lu,v ,Yz ] = YLu,v z ,

[Lu,v ,Lz ] = LLu,v z , [Lu,v ,Lz,w ] = LLu,v z,w + Lz,Lu,v w .

Then we have [Lu,v ,Xe] = [Lu,v ,Ye] = 0, so [Lu,v ,H] = 0.
Guowu Meng (HKUST) Lecture II-III

Varna, Bulgaria, June 6-8, 2015 17 /
22



Universal Lenz algebra
Via the commutation relation for the conformal algebra, one can verify

Theorem
For u, v, z and w in V ,

[Lu,v ,H] = 0 ,
[Au,H] = 0 ,
[Lu,v ,Lz,w ] = LLu,v z,w + Lz,Lu,v w ,

[Lu,v ,Az ] = ALu,v z ,

[Au,Av ] = −2HLu,v .

(6)

Proof. Since Suv = Lu,v + Luv , part of the commutation relations for
the conformal algebra can be rewritten as

[Lu,v ,Xz ] = XLu,v z , [Lu,v ,Yz ] = YLu,v z ,

[Lu,v ,Lz ] = LLu,v z , [Lu,v ,Lz,w ] = LLu,v z,w + Lz,Lu,v w .

Then we have [Lu,v ,Xe] = [Lu,v ,Ye] = 0, so [Lu,v ,H] = 0.
Guowu Meng (HKUST) Lecture II-III

Varna, Bulgaria, June 6-8, 2015 17 /
22



Universal Lenz algebra
Via the commutation relation for the conformal algebra, one can verify

Theorem
For u, v, z and w in V ,

[Lu,v ,H] = 0 ,
[Au,H] = 0 ,
[Lu,v ,Lz,w ] = LLu,v z,w + Lz,Lu,v w ,

[Lu,v ,Az ] = ALu,v z ,

[Au,Av ] = −2HLu,v .

(6)

Proof. Since Suv = Lu,v + Luv , part of the commutation relations for
the conformal algebra can be rewritten as

[Lu,v ,Xz ] = XLu,v z , [Lu,v ,Yz ] = YLu,v z ,

[Lu,v ,Lz ] = LLu,v z , [Lu,v ,Lz,w ] = LLu,v z,w + Lz,Lu,v w .

Then we have [Lu,v ,Xe] = [Lu,v ,Ye] = 0, so [Lu,v ,H] = 0.
Guowu Meng (HKUST) Lecture II-III

Varna, Bulgaria, June 6-8, 2015 17 /
22



Also, we have

[Lu,v ,Az ] = iY−1
e [Lu,v , [Lz ,Y 2

e H]]

= iY−1
e

(
[[Lu,v ,Lz ],Y 2

e H] + [Lz , [Lu,v ,Y 2
e H]]

)
= iY−1

e [LLu,v z ,Y 2
e H]

= ALu,v z .

The rest of the proof is skipped. �

A concrete realization of the conformal algebra
⇓

a concrete model of the Kepler type

To be more precise, we have

A suitable operator realization =⇒ a quantum model.

A suitable Poisson realization =⇒ a classical model.

Guowu Meng (HKUST) Lecture II-III
Varna, Bulgaria, June 6-8, 2015 18 /

22



Also, we have

[Lu,v ,Az ] = iY−1
e [Lu,v , [Lz ,Y 2

e H]]

= iY−1
e

(
[[Lu,v ,Lz ],Y 2

e H] + [Lz , [Lu,v ,Y 2
e H]]

)
= iY−1

e [LLu,v z ,Y 2
e H]

= ALu,v z .

The rest of the proof is skipped. �

A concrete realization of the conformal algebra
⇓

a concrete model of the Kepler type

To be more precise, we have

A suitable operator realization =⇒ a quantum model.

A suitable Poisson realization =⇒ a classical model.

Guowu Meng (HKUST) Lecture II-III
Varna, Bulgaria, June 6-8, 2015 18 /

22



Also, we have

[Lu,v ,Az ] = iY−1
e [Lu,v , [Lz ,Y 2

e H]]

= iY−1
e

(
[[Lu,v ,Lz ],Y 2

e H] + [Lz , [Lu,v ,Y 2
e H]]

)
= iY−1

e [LLu,v z ,Y 2
e H]

= ALu,v z .

The rest of the proof is skipped. �

A concrete realization of the conformal algebra
⇓

a concrete model of the Kepler type

To be more precise, we have

A suitable operator realization =⇒ a quantum model.

A suitable Poisson realization =⇒ a classical model.

Guowu Meng (HKUST) Lecture II-III
Varna, Bulgaria, June 6-8, 2015 18 /

22



Also, we have

[Lu,v ,Az ] = iY−1
e [Lu,v , [Lz ,Y 2

e H]]

= iY−1
e

(
[[Lu,v ,Lz ],Y 2

e H] + [Lz , [Lu,v ,Y 2
e H]]

)
= iY−1

e [LLu,v z ,Y 2
e H]

= ALu,v z .

The rest of the proof is skipped. �

A concrete realization of the conformal algebra
⇓

a concrete model of the Kepler type

To be more precise, we have

A suitable operator realization =⇒ a quantum model.

A suitable Poisson realization =⇒ a classical model.

Guowu Meng (HKUST) Lecture II-III
Varna, Bulgaria, June 6-8, 2015 18 /

22



Poisson realizations
In a Poisson realization of the TKK algebra, Suv , Xz , Yw are
respectively represented as real functions Suv , Xz , Yw on a Poisson
manifold so that the commutation relations are represented by the
Poisson bracket relations: for u, v , z, w in V , we have

{Xu,Xv} = 0, {Yu,Yv} = 0, {Xu,Yv} = −2Suv ,

{Suv ,Xz} = X{uvz}, {Suv ,Yz} = −Y{vuz},

{Suv ,Szw} = S{uvz}w − Sz{vuw}.

(7)

Then, H, Au and Lu,v can be realized as real functions

H =
1
2Xe − 1
Ye

, Au :=
{Lu,Y2

eH}
Ye

, Lu,v := {Lu,Lv} (8)

respectively. Note that

Au =
1
2

(
Xu − Yu

Xe

Ye

)
+
Yu

Ye
. (9)
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Poisson Realization on TV
Via the canonical inner product on V , TV ∼= T ∗V . So TV becomes a
symplectic space. Denote an element of TV = V × V by (x , π) and fix
an orthonormal basis {eα} for V so that we can write x = xαeα and
π = παeα. Then the basic Poisson bracket relations on TV are

{xα, πβ} = δαβ, {xα, xβ} = 0, {πα, πβ} = 0.

In coordinate free form, we have

{〈x | u〉, 〈π | v〉} = 〈u | v〉, {〈x | u〉, 〈x | v〉} = {〈π | u〉, 〈π | v〉} = 0.

One can check that real functions

Suv := 〈Suv (x) | π〉, Xu := 〈x | {πuπ}〉, Yv := 〈x | v〉 (10)

yield a Poisson realization on TV of Suv , Xz , Yw respectively.
Proof. It is clear that {Yu,Yv} = 0.

{Xu,Yv} = {〈x | {πuπ}〉, 〈x | v〉}
= −2〈x | {vuπ}〉 = −2〈Suv (x) | π〉
= −2Suv .
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{Suv ,Yz} = {〈Suv (x) | π〉, 〈x | z〉}
= −〈Suv (x) | z〉 = −〈x | {vuz}〉
= −Y{vuz}.

{Suv ,Szw} = {〈Suv (x) | π〉, 〈Szw (x) | π〉}
= 〈Suv Szw (x) | π〉 − 〈SzwSuv (x) | π〉
= 〈[Suv ,Szw ](x) | π〉 = 〈(S{uvz}w − Sz{vuw})(x) | π〉
= S{uvz}w − Sz{vuw}.

The rest of the proof is skipped. �

However, this is not a suitable Poisson realization because neither Xe
nor Ye is positive on TV .

To salvage this Poisson realization, we restrict the Poisson realization
to certain sub-symplectic manifolds of TV , for example, TCr where Cr
is the set of rank r semi-positive elements of V , with r being a positive
integer less than or equal to the rank of V . Indeed, restricting H to TCr
yields an integrable model of Kepler type, which is the Kepler problem
when V = Γ(3) and r = 1.
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to certain sub-symplectic manifolds of TV , for example, TCr where Cr
is the set of rank r semi-positive elements of V , with r being a positive
integer less than or equal to the rank of V . Indeed, restricting H to TCr
yields an integrable model of Kepler type, which is the Kepler problem
when V = Γ(3) and r = 1.
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To be continued

Thanks for your attention!
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