Kepler Problem and Formally Real Jordan Algebras II－III

Guowu Meng

Department of Mathematics

Hong Kong University of Science and Technology
$17^{\text {th }}$ International Conference on
Geometry，Integrability and Quantization
Varna，Bulgaria，June 6－8， 2015

Think deeply of simple things－Arnold Ross

We have learned from the last lecture that there is a family of God-given classical dynamic models (indexed by a real parameter μ) with

- configuration space \mathbb{R}_{*}^{3},
- conserved angular momentum L,
- and an additional conserved vector A.

Moreover, the orbits of these models are either linear or conic. These models are completely integrable in the sense that
the number of functionally independent constants of motion
is equal to
the dimension of the phase space -1 .

We have learned from the last lecture that there is a family of God-given classical dynamic models (indexed by a real parameter μ) with

- configuration space \mathbb{R}_{*}^{3},
- conserved angular momentum L,
- and an additional conserved vector \mathbf{A}.

Moreover, the orbits of these models are either linear or conic. These models are completely integrable in the sense that
the number of functionally independent constants of motion
is equal to
the dimension of the phase space -1 .

We have learned from the last lecture that there is a family of God-given classical dynamic models (indexed by a real parameter μ) with

- configuration space \mathbb{R}_{*}^{3},
- conserved angular momentum L,
- and an additional conserved vector A.

Moreover, the orbits of these models are either linear or conic. These models are completely integrable in the sense that
the number of functionally independent constants of motion
is equal to
the dimension of the phase space -1 .

We have learned from the last lecture that there is a family of God-given classical dynamic models (indexed by a real parameter μ) with

- configuration space \mathbb{R}_{*}^{3},
- conserved angular momentum \mathbf{L},
- and an additional conserved vector \mathbf{A}.

Moreover, the orbits of these models are either linear or conic. These models are completely integrable in the sense that
the number of functionally independent constants of motion
is equal to
the dimension of the phase space - 1 .

We have learned from the last lecture that there is a family of God-given classical dynamic models (indexed by a real parameter μ) with

- configuration space \mathbb{R}_{*}^{3},
- conserved angular momentum L,
- and an additional conserved vector \mathbf{A}.

Moreover, the orbits of these models are either linear or conic.
models are completely integrable in the sense that
the number of functionally independent constants of motion
is equal to
the dimension of the phase space - 1 .

We have learned from the last lecture that there is a family of God-given classical dynamic models (indexed by a real parameter μ) with

- configuration space \mathbb{R}_{*}^{3},
- conserved angular momentum L,
- and an additional conserved vector \mathbf{A}.

Moreover, the orbits of these models are either linear or conic. These models are completely integrable in the sense that
the number of functionally independent constants of motion
is equal to
the dimension of the phase space -1 .

We also learned that the orbits of these models have very attractive descriptions on the future light cone

$$
\Lambda_{+}:=\left\{x \in \mathbb{R}^{1,3} \mid x^{2}=0, x_{0}>0\right\}
$$

in the Minkowski space $\mathbb{R}^{1,3}:=\left(\mathbb{R} \oplus \mathbb{R}^{3}\right.$, Lorentz inner product $)$ spanned by our ordinary three spatial dimensions and a new mysterious temporal dimension.
one may ask this
Question: Can Kepler problem and its magnetized versions be naturally formulated on that future light cone Λ_{+}?
Answer: Yes, provided that we can employ the more refined Jordan algebra structure behind the Lorentz structure on that Minkowski space $\mathbb{R}^{1,3}$. Since

We also learned that the orbits of these models have very attractive descriptions on the future light cone

$$
\Lambda_{+}:=\left\{x \in \mathbb{R}^{1,3} \mid x^{2}=0, x_{0}>0\right\}
$$

in the Minkowski space $\mathbb{R}^{1,3}:=\left(\mathbb{R} \oplus \mathbb{R}^{3}\right.$, Lorentz inner product) spanned by our ordinary three spatial dimensions and a new mysterious temporal dimension. Is this a coincidence?
one may ask this
Question: Can Kepler problem and its magnetized versions be naturally formulated on that future light cone Λ_{+}?
Answer: Yes, provided that we can employ the more refined Jordan algebra structure behind the Lorentz structure on that Minkowski space $\mathbb{R}^{1,3}$. Since

We also learned that the orbits of these models have very attractive descriptions on the future light cone

$$
\Lambda_{+}:=\left\{x \in \mathbb{R}^{1,3} \mid x^{2}=0, x_{0}>0\right\}
$$

in the Minkowski space $\mathbb{R}^{1,3}:=\left(\mathbb{R} \oplus \mathbb{R}^{3}\right.$, Lorentz inner product) spanned by our ordinary three spatial dimensions and a new mysterious temporal dimension. Is this a coincidence? More precisely, one may ask this

Question: Can Kepler problem and its magnetized versions be naturally formulated on that future light cone Λ_{+}?
Answer: Yes, provided that we can employ the more refined Jordan algebra structure behind the Lorentz structure on that Minkowski space $\mathbb{R}^{1,3}$. Since

We also learned that the orbits of these models have very attractive descriptions on the future light cone

$$
\Lambda_{+}:=\left\{x \in \mathbb{R}^{1,3} \mid x^{2}=0, x_{0}>0\right\}
$$

in the Minkowski space $\mathbb{R}^{1,3}:=\left(\mathbb{R} \oplus \mathbb{R}^{3}\right.$, Lorentz inner product) spanned by our ordinary three spatial dimensions and a new mysterious temporal dimension. Is this a coincidence? More precisely, one may ask this

Question: Can Kepler problem and its magnetized versions be naturally formulated on that future light cone Λ_{+}?
Answer: Yes, provided that we can employ the more refined Jordan algebra structure behind the Lorentz structure on that Minkowski space $\mathbb{R}^{1,3}$.

We also learned that the orbits of these models have very attractive descriptions on the future light cone

$$
\Lambda_{+}:=\left\{x \in \mathbb{R}^{1,3} \mid x^{2}=0, x_{0}>0\right\}
$$

in the Minkowski space $\mathbb{R}^{1,3}:=\left(\mathbb{R} \oplus \mathbb{R}^{3}\right.$, Lorentz inner product $)$ spanned by our ordinary three spatial dimensions and a new mysterious temporal dimension. Is this a coincidence? More precisely, one may ask this
Question: Can Kepler problem and its magnetized versions be naturally formulated on that future light cone Λ_{+}?
Answer: Yes, provided that we can employ the more refined Jordan algebra structure behind the Lorentz structure on that Minkowski space $\mathbb{R}^{1,3}$. Since

$$
\begin{aligned}
\mathbb{R}_{*}^{3} & \rightarrow \Lambda_{+} \\
\mathbf{r} & \mapsto(r, \mathbf{r})
\end{aligned}
$$

is a diffeomorphism, in hindsight, this may not be a surprise.

The Jordan algebra structure on $\mathbb{R}^{1,3}$ Write $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Write X for $x_{0} I+\mathbf{x} \cdot \vec{\sigma}$, i.e.

$$
X=\left[\begin{array}{cc}
x_{0}+x_{3} & x_{1}-\mathrm{i} x_{2} \\
x_{1}+\mathrm{i} x_{2} & x_{0}-x_{3}
\end{array}\right] .
$$

Let $\mathrm{H}_{2}(\mathbb{C})$ is the set of all complex hermitian matrices of order two. Note that $\operatorname{det} X=x^{2}$.

\square

The Jordan algebra structure on $\mathbb{R}^{1,3}$ Write $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Write X for $x_{0} I+\mathbf{x} \cdot \vec{\sigma}$, i.e.

$$
X=\left[\begin{array}{ll}
x_{0}+x_{3} & x_{1}-\mathrm{i} x_{2} \\
x_{1}+\mathrm{i} x_{2} & x_{0}-x_{3}
\end{array}\right] .
$$

Let $\mathrm{H}_{2}(\mathbb{C})$ is the set of all complex hermitian matrices of order two. Note that $\operatorname{det} X=x^{2}$.

- The map $x \mapsto X$ is an isometry between $\mathbb{R}^{1,3}$ and $\left(\mathrm{H}_{2}(\mathbb{C})\right.$, det $)$.

The Jordan algebra structure on $\mathbb{R}^{1,3}$

 Write $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Write X for $x_{0} I+\mathbf{x} \cdot \vec{\sigma}$, i.e.$$
X=\left[\begin{array}{cc}
x_{0}+x_{3} & x_{1}-\mathrm{i} x_{2} \\
x_{1}+\mathrm{i} x_{2} & x_{0}-x_{3}
\end{array}\right] .
$$

Let $\mathrm{H}_{2}(\mathbb{C})$ is the set of all complex hermitian matrices of order two. Note that $\operatorname{det} X=x^{2}$.

- The map $x \mapsto X$ is an isometry between $\mathbb{R}^{1,3}$ and $\left(\mathrm{H}_{2}(\mathbb{C})\right.$, det $)$.
- Under the symmetrized matrix multiplication:

$$
X \circ Y:=\frac{1}{2}(X Y+Y X),
$$

$\mathrm{H}_{2}(\mathbb{C})$ becomes a real commutative algebra with unit.
$\mathrm{H}_{2}(\mathbb{C}), A^{2}+B^{2}=0 \Longrightarrow A=B=0$.

The Jordan algebra structure on $\mathbb{R}^{1,3}$

 Write $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Write X for $x_{0} I+\mathbf{x} \cdot \vec{\sigma}$, i.e.$$
X=\left[\begin{array}{ll}
x_{0}+x_{3} & x_{1}-\mathrm{i} x_{2} \\
x_{1}+\mathrm{i} x_{2} & x_{0}-x_{3}
\end{array}\right] .
$$

Let $\mathrm{H}_{2}(\mathbb{C})$ is the set of all complex hermitian matrices of order two. Note that $\operatorname{det} X=x^{2}$.

- The map $x \mapsto X$ is an isometry between $\mathbb{R}^{1,3}$ and $\left(\mathrm{H}_{2}(\mathbb{C})\right.$, det $)$.
- Under the symmetrized matrix multiplication:

$$
X \circ Y:=\frac{1}{2}(X Y+Y X),
$$

$\mathrm{H}_{2}(\mathbb{C})$ becomes a real commutative algebra with unit.

- This algebra is formally real in the following sense: for A, B in $\mathrm{H}_{2}(\mathbb{C}), A^{2}+B^{2}=0 \Longrightarrow A=B=0$.

The Jordan algebra structure on $\mathbb{R}^{1,3}$

 Write $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Write X for $x_{0} I+\mathbf{x} \cdot \vec{\sigma}$, i.e.$$
X=\left[\begin{array}{ll}
x_{0}+x_{3} & x_{1}-\mathrm{i} x_{2} \\
x_{1}+\mathrm{i} x_{2} & x_{0}-x_{3}
\end{array}\right] .
$$

Let $\mathrm{H}_{2}(\mathbb{C})$ is the set of all complex hermitian matrices of order two. Note that $\operatorname{det} X=x^{2}$.

- The map $x \mapsto X$ is an isometry between $\mathbb{R}^{1,3}$ and $\left(\mathrm{H}_{2}(\mathbb{C})\right.$, det $)$.
- Under the symmetrized matrix multiplication:

$$
X \circ Y:=\frac{1}{2}(X Y+Y X),
$$

$\mathrm{H}_{2}(\mathbb{C})$ becomes a real commutative algebra with unit.

- This algebra is formally real in the following sense: for A, B in $\mathrm{H}_{2}(\mathbb{C}), A^{2}+B^{2}=0 \Longrightarrow A=B=0$.

Proof.

For any column vector \vec{x} in \mathbb{C}^{2}, let \vec{x}^{\dagger} be its hermitian conjugate. Then $0=\vec{x}^{\dagger}\left(A^{2}+B^{2}\right) \vec{x}=\|A \vec{x}\|^{2}+\|B \vec{x}\|^{2}$, so $A \vec{x}=B \vec{x}=\overrightarrow{0}$, so $A=0$ and

Weak associativity

The symmetrized matrix multiplication is

- not associative.
- weakly associative in the following sense: for X, Y in $\mathrm{H}_{2}(\mathbb{C})$, we have

Here $X^{2}=X \circ X=X X$.

Weak associativity

The symmetrized matrix multiplication is

- not associative.
- weakly associative in the following sense: for X, Y in $\mathrm{H}_{2}(\mathbb{C})$, we have

$$
(X \circ Y) \circ X^{2}=X \circ\left(Y \circ X^{2}\right)
$$

Here $X^{2}=X \circ X=X X$.

Weak associativity

The symmetrized matrix multiplication is

- not associative.
- weakly associative in the following sense: for X, Y in $\mathrm{H}_{2}(\mathbb{C})$, we have

$$
(X \circ Y) \circ X^{2}=X \circ\left(Y \circ X^{2}\right)
$$

Here $X^{2}=X \circ X=X X$.

Proof.

$$
\begin{aligned}
\text { LHS } & =\frac{1}{2}(X Y+Y X) \circ X^{2}=\frac{1}{4}\left[(X Y+Y X) X^{2}+X^{2}(X Y+Y X)\right] \\
& =\frac{1}{4}\left[X Y X^{2}+Y X X^{2}+X^{2} X Y+X^{2} Y X\right] \\
& =\frac{1}{4}\left[X Y X^{2}+Y X^{2} X+X X^{2} Y+X^{2} Y X\right] \\
& =\frac{1}{4}\left[\left(Y X^{2}+X^{2} Y\right) X+X\left(Y X^{2}+X^{2} Y\right)\right]=X \circ \frac{1}{2}\left(Y X^{2}+X^{2} Y\right) \\
& =R H S
\end{aligned}
$$

The euclidean structure on $\mathrm{H}_{2}(\mathbb{C})$

For any $u \in \mathrm{H}_{2}(\mathbb{C})$, we let L_{u} be the endomorphism on $\mathrm{H}_{2}(\mathbb{C})$ defined by $v \mapsto u \circ v$. Let $\langle\rangle:, \mathrm{H}_{2}(\mathbb{C}) \times \mathrm{H}_{2}(\mathbb{C}) \rightarrow \mathbb{R}$ be defined as follows:

$$
\langle u, v\rangle:=\frac{1}{2} \operatorname{tr}(u \circ v)=\frac{1}{2} \operatorname{tr}(u v)=\frac{1}{4} \operatorname{tr} L_{u o v} .
$$

- \langle,$\rangle is an inner product on \mathrm{H}_{2}(\mathbb{C})$ such that

$$
\sigma_{0}:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}:=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

form an orthonormal basis. Note that $\operatorname{tr} \sigma_{0}=2$ and $\operatorname{tr} \sigma_{i}=0$.

- The multiplication law for the real commutative algebra $\mathrm{H}_{2}(\mathbb{C})$ with unit is given by

$$
\sigma_{i} \circ \sigma_{j}=\delta_{i j} \sigma_{0}, \quad \sigma_{0} \text { is the unit } e .
$$

- L_{u} is self-adjoint with respect to \langle,$\rangle , i.e., \langle v, u \circ w\rangle=\langle u \circ v, w\rangle$ for any $v, w \in H_{2}(\mathbb{C})$. Indeed,
LHS $=\frac{1}{2} \operatorname{tr}(v(u w+w u))=\frac{1}{2} \operatorname{tr}(v u w+v w u)=\frac{1}{2} \operatorname{tr}((u v+v u) w)_{\equiv}=$ RHS

Relevance to Kepler problem

- The future light cone $\Lambda_{+}=$the set of rank one, semi-positive elements in $\mathrm{H}_{2}(\mathbb{C})$. Indeed, if the rank of X is less than two, then $\operatorname{det} X=0$, also, if $X \neq 0$ is semi-positive, then $\operatorname{tr} X>0$. So $x^{2}=0$ and $x_{0}>0$.
- For the Kepler problem, the potential term is

- The Kinetic term for the the Kepler problem (or rather the Riemannian metric on Λ_{+}), angular momentum, and Lenz vector can all be naturally expressed in terms of Jordan algebra structure as well.

For details, we have to study Formally Real Jordan algebras.

Relevance to Kepler problem

- The future light cone $\Lambda_{+}=$the set of rank one, semi-positive elements in $\mathrm{H}_{2}(\mathbb{C})$. Indeed, if the rank of X is less than two, then $\operatorname{det} X=0$, also, if $X \neq 0$ is semi-positive, then $\operatorname{tr} X>0$. So $x^{2}=0$ and $x_{0}>0$.
- For the Kepler problem, the potential term is

$$
-\frac{1}{\langle e, x\rangle}
$$

- The Kinetic term for the the Kepler problem (or rather the

Riemannian metric on Λ_{+}), angular momentum, and Lenz vector can all be naturally expressed in terms of Jordan algebra structure as well.

For details, we have to study Formally Real Jordan algebras.

Relevance to Kepler problem

- The future light cone $\Lambda_{+}=$the set of rank one, semi-positive elements in $\mathrm{H}_{2}(\mathbb{C})$. Indeed, if the rank of X is less than two, then $\operatorname{det} X=0$, also, if $X \neq 0$ is semi-positive, then $\operatorname{tr} X>0$. So $x^{2}=0$ and $x_{0}>0$.
- For the Kepler problem, the potential term is

$$
-\frac{1}{\langle e, x\rangle}
$$

- The Kinetic term for the the Kepler problem (or rather the Riemannian metric on Λ_{+}), angular momentum, and Lenz vector can all be naturally expressed in terms of Jordan algebra structure as well.

For details, we have to study Formally Real Jordan algebras.

Relevance to Kepler problem

- The future light cone $\Lambda_{+}=$the set of rank one, semi-positive elements in $\mathrm{H}_{2}(\mathbb{C})$. Indeed, if the rank of X is less than two, then $\operatorname{det} X=0$, also, if $X \neq 0$ is semi-positive, then $\operatorname{tr} X>0$. So $x^{2}=0$ and $x_{0}>0$.
- For the Kepler problem, the potential term is

$$
-\frac{1}{\langle e, x\rangle}
$$

- The Kinetic term for the the Kepler problem (or rather the Riemannian metric on Λ_{+}), angular momentum, and Lenz vector can all be naturally expressed in terms of Jordan algebra structure as well.

For details, we have to study Formally Real Jordan algebras.

Formally real Jordan algebras [J.Faraut and A.Koranyi, Analysis on Symmetric Cones]

 Jordan algebras are the unfavored cousins of Lie algebras, and Formally real Jordan algebras are the unfavored cousins of compact real Lie algebras. Having $\mathrm{H}_{2}(\mathbb{C})$ in mind, we have\square in V, we have

1) $a b=b a$ (symmetry),

The simplest example is \mathbb{R}, the other example is $\mathrm{H}_{2}(\mathbb{C})$. We use L_{a} : $V \rightarrow V$ to denote the multiplication by a. Then 2) says that $\left[L_{a}, L_{a^{2}}\right]=0$ (Jordan Identity) and 3) can be replaced by

Formally real Jordan algebras are also called

Formally real Jordan algebras Jordan algebras are the unfavored cousins of Lie algebras, and Formally real Jordan algebras are the unfavored cousins of compact real Lie algebras. Having $\mathrm{H}_{2}(\mathbb{C})$ in mind, we have

Definition (P. Jordan, 1933)

A finite dimensional Formally real Jordan algebra is a finite dimensional real algebra V with unit e such that, for any elements a, b in V, we have

1) $a b=b a$ (symmetry),
2) $a\left(b a^{2}\right)=(a b) a^{2}$ (weakly associative),
3) $a^{2}+b^{2}=0 \Longrightarrow a=b=0$ (formally real).

 Jordan algebras are the unfavored cousins of Lie algebras, and Formally real Jordan algebras are the unfavored cousins of compact real Lie algebras. Having $\mathrm{H}_{2}(\mathbb{C})$ in mind, we have
Definition (P. Jordan, 1933)

A finite dimensional Formally real Jordan algebra is a finite dimensional real algebra V with unit e such that, for any elements a, b in V, we have

1) $a b=b a$ (symmetry),
2) $a\left(b a^{2}\right)=(a b) a^{2}$ (weakly associative),
3) $a^{2}+b^{2}=0 \Longrightarrow a=b=0$ (formally real).

The simplest example is \mathbb{R}, the other example is $\mathrm{H}_{2}(\mathbb{C})$. We use L_{a} : $V \rightarrow V$ to denote the multiplication by a. Then 2) says that $\left[L_{a}, L_{a^{2}}\right]=0$ (Jordan Identity) and 3) can be replaced by
$\left.3^{\prime}\right)$ The "Killing form" $\langle a \mid b\rangle=\frac{1}{\operatorname{dim} V} \operatorname{tr} L_{a b}$ is positive definite. Note that $\langle b \mid a c\rangle=\langle a b \mid c\rangle$. Formally real Jordan algebras are also called Euclidean Jordan alaebras.

The classification theorem

Theorem (Jordan, von Neumann and Wigner, 1934)
Euclidean Jordan algebras are semi-simple, and the simple ones consist of four infinity families and one exceptional:
\mathbb{R}.
$\Gamma(n):=\mathbb{R} \oplus \mathbb{R}^{n}, n \geq 2$.
$\mathrm{H}_{n}(\mathbb{R}), n \geq 3$.
$\mathrm{H}_{n}(\mathbb{C}), n \geq 3$.
$\mathrm{H}_{n}(\mathbb{H}), n \geq 3$.
$\mathrm{H}_{3}(\mathbb{O})$.
Remark.

- $\Gamma(0) \cong \mathbb{R}, \Gamma(1) \cong \mathbb{R} \oplus \mathbb{R}, \Gamma(2) \cong \mathrm{H}_{2}(\mathbb{R}), \Gamma(3) \cong \mathrm{H}_{2}(\mathbb{C})$,
$\Gamma(5) \cong \mathrm{H}_{2}(\mathbb{H}), \Gamma(9) \cong \mathrm{H}_{2}(\mathbb{O})$.
- Each but the exceptional one is associated with an associative algebra.
- $\mathbb{R}, \Gamma(3)$, and $\mathrm{H}_{3}(\mathbb{O})$ are somewhat special.

The structure algebra

For a, b in V, we let

$$
S_{a b}:=\left[L_{a}, L_{b}\right]+L_{a b}, \quad\{a b c\}:=S_{a b}(c)
$$

and $\mathfrak{s t r}$ be the span of $\left\{S_{a b} \mid a, b \in V\right\}$ over \mathbb{R}. Since

$$
\left[S_{a b}, S_{c d}\right]=S_{\{a b c\} d}-S_{c\{b a d\}}
$$

$\mathfrak{s t r}$ becomes a real Lie algebra - the structure algebra of V. For example, (1) $\mathfrak{s t r} \cong \mathbb{R}$ for $V=\mathbb{R}$, (2) $\mathfrak{s t r} \cong \mathfrak{s o}(1,3) \oplus \mathbb{R}$ for $V=\Gamma(3)$.

This Lie algebra is not simple, actually not even semi-simple, because it has a non-trivial central element: $S_{e e}$. Note that $L_{u}=S_{u e}$.

The good hews is that this algebra can be extended to a simple real Lie algebra provided that V is a simple Euclidean Jordan algebra. From hereon V is assumed to be a simple Euclidean Jordan algebra

The structure algebra

For a, b in V, we let

$$
S_{a b}:=\left[L_{a}, L_{b}\right]+L_{a b}, \quad\{a b c\}:=S_{a b}(c)
$$

and $\mathfrak{s t r}$ be the span of $\left\{S_{a b} \mid a, b \in V\right\}$ over \mathbb{R}. Since

$$
\left[S_{a b}, S_{c d}\right]=S_{\{a b c\} d}-S_{c\{b a d\}}
$$

$\mathfrak{s t r}$ becomes a real Lie algebra - the structure algebra of V. For example, (1) $\mathfrak{s t r} \cong \mathbb{R}$ for $V=\mathbb{R}$, (2) $\mathfrak{s t r} \cong \mathfrak{s o}(1,3) \oplus \mathbb{R}$ for $V=\Gamma(3)$.

This Lie algebra is not simple, actually not even semi-simple, because it has a non-trivial central element: $S_{e e}$. Note that $L_{u}=S_{u e}$.

The good news is that this algebra can be extended to a simple real Lie algebra provided that V is a simple Euclidean Jordan algebra. From hereon V is assumed to be a simple Euclidean Jordan algebra

The structure algebra

For a, b in V, we let

$$
S_{a b}:=\left[L_{a}, L_{b}\right]+L_{a b}, \quad\{a b c\}:=S_{a b}(c)
$$

and $\mathfrak{s t r}$ be the span of $\left\{S_{a b} \mid a, b \in V\right\}$ over \mathbb{R}. Since

$$
\left[S_{a b}, S_{c d}\right]=S_{\{a b c\} d}-S_{c\{b a d\}}
$$

$\mathfrak{s t r}$ becomes a real Lie algebra - the structure algebra of V. For example, (1) $\mathfrak{s t r} \cong \mathbb{R}$ for $V=\mathbb{R}$, (2) $\mathfrak{s t r} \cong \mathfrak{s o}(1,3) \oplus \mathbb{R}$ for $V=\Gamma(3)$.

This Lie algebra is not simple, actually not even semi-simple, because it has a non-trivial central element: $S_{e e}$. Note that $L_{u}=S_{u e}$.

The good news is that this algebra can be extended to a simple real Lie algebra provided that V is a simple Euclidean Jordan algebra. From hereon V is assumed to be a simple Euclidean Jordan algebra .

The conformal algebra
Write $z \in V$ as X_{z} and $\langle w \mid\rangle \in V^{*}$ as Y_{w}.

Definition (J. Tits, M. Koecher, I.L. Kantor, 1960's)

The conformal algebra co is a Lie algebra whose underlying real vector space is $V \oplus \mathfrak{s t r} \oplus V^{*}$, and the commutation relations are

$$
\begin{gather*}
{\left[X_{u}, X_{v}\right]=0, \quad\left[Y_{u}, Y_{v}\right]=0, \quad\left[X_{u}, Y_{v}\right]=-2 S_{u v},} \\
{\left[S_{u v}, X_{z}\right]=X_{\{u v z\}}, \quad\left[S_{u v}, Y_{z}\right]=-Y_{\{v u z\}},} \tag{1}\\
{\left[S_{u v}, S_{z w}\right]=S_{\{u v z\} w}-S_{z\{v u w\}}}
\end{gather*}
$$

for u, v, z, w in V.
When $V=\Gamma(3), \mathfrak{s t r}=\mathfrak{s o}(3,1) \oplus \mathbb{R}, \mathfrak{c o}=\mathfrak{s o}(4,2)$. When $V=\mathbb{R}$, $\mathfrak{s t r}=\mathbb{R}, \mathfrak{c o}=\mathfrak{s l}(2, \mathbb{R})$. In general, $\mathfrak{c o}$ is the Lie algebra of the bi holomorphic automorphism group of the complex domain $V \oplus \mathrm{i} V_{+} \subset V \otimes_{\mathbb{R}} \mathbb{C}$.

After spending so much effort on the basic facts on Euclidean Jordan algebras, an impatient audience may ask

Question: How could the Euclidean Jordan algebra $\mathrm{H}_{2}(\mathbb{C})($ or $\Gamma(3)$) be relevant to the Kepler problem?

Well, the answer will become clear after we review the Lenz algebra for the Kepler problem.

After spending so much effort on the basic facts on Euclidean Jordan algebras, an impatient audience may ask this

Question: How could the Euclidean Jordan algebra $\mathrm{H}_{2}(\mathbb{C})$ (or $\Gamma(3)$) be relevant to the Kepler problem?

Well, the answer will become clear after we review the Lenz algebra for the Kepler problem.

After spending so much effort on the basic facts on Euclidean Jordan algebras, an impatient audience may ask this

Question: How could the Euclidean Jordan algebra $\mathrm{H}_{2}(\mathbb{C})$ (or $\Gamma(3)$) be relevant to the Kepler problem?

Well, the answer will become clear after we review the Lenz algebra for the Kepler problem.

Lenz algebra for the Kepler problem

The phase space for the Kepler problem, i.e., $T^{*} \mathbb{R}_{*}^{3}$, is a Poisson manifold. In terms of the standard canonical coordinates $x^{1}, x^{2}, x^{3}, p_{1}, p_{2}, p_{3}$, the Poisson structure can be described by the following basic Poisson bracket relations:

$$
\left\{x^{i}, x^{j}\right\}=0, \quad\left\{x^{i}, p_{j}\right\}=\delta_{j}^{i}, \quad\left\{p_{i}, p_{j}\right\}=0 .
$$

Recall that the Hamiltonian, angular momentum, and Lenz vector are

$$
H=\frac{1}{2} \mathbf{p}^{2}-\frac{1}{r}, \quad \mathrm{~L}=\mathrm{r} \times \mathbf{p}, \quad \mathbf{A}=\mathrm{L} \times \mathrm{p}+\frac{r}{r}
$$

respectively. In terms of Poisson bracket, the fact that L and \mathbf{A} are
constants of motion can be restated as

$$
\{\mathrm{L}, \mathrm{H}\}=0, \quad\{\mathbf{A}, \mathrm{H}\}=0 .
$$

To show that, we first note that $L_{i}($ (the i-th component of L$)$ is the
infinitesimal generator of the rotation about the i-th axis. For example,
\square

Lenz algebra for the Kepler problem

The phase space for the Kepler problem, i.e., $T^{*} \mathbb{R}_{*}^{3}$, is a Poisson manifold. In terms of the standard canonical coordinates $x^{1}, x^{2}, x^{3}, p_{1}, p_{2}, p_{3}$, the Poisson structure can be described by the following basic Poisson bracket relations:

$$
\left\{x^{i}, x^{j}\right\}=0, \quad\left\{x^{i}, p_{j}\right\}=\delta_{j}^{i}, \quad\left\{p_{i}, p_{j}\right\}=0
$$

Recall that the Hamiltonian, angular momentum, and Lenz vector are

$$
\mathrm{H}=\frac{1}{2} \mathbf{p}^{2}-\frac{1}{r}, \quad \mathbf{L}=\mathbf{r} \times \mathbf{p}, \quad \mathbf{A}=\mathbf{L} \times \mathbf{p}+\frac{\mathbf{r}}{r}
$$

respectively. In terms of Poisson bracket, the fact that \mathbf{L} and \mathbf{A} are constants of motion can be restated as

$$
\{\mathbf{L}, \mathrm{H}\}=0, \quad\{\mathbf{A}, \mathrm{H}\}=0
$$

infinitesimal generator of the rotation about the i-th axis. For example,

Lenz algebra for the Kepler problem

The phase space for the Kepler problem, i.e., $T^{*} \mathbb{R}_{*}^{3}$, is a Poisson manifold. In terms of the standard canonical coordinates $x^{1}, x^{2}, x^{3}, p_{1}, p_{2}, p_{3}$, the Poisson structure can be described by the following basic Poisson bracket relations:

$$
\left\{x^{i}, x^{j}\right\}=0, \quad\left\{x^{i}, p_{j}\right\}=\delta_{j}^{i}, \quad\left\{p_{i}, p_{j}\right\}=0
$$

Recall that the Hamiltonian, angular momentum, and Lenz vector are

$$
\mathrm{H}=\frac{1}{2} \mathbf{p}^{2}-\frac{1}{r}, \quad \mathbf{L}=\mathbf{r} \times \mathbf{p}, \quad \mathbf{A}=\mathbf{L} \times \mathbf{p}+\frac{\mathbf{r}}{r}
$$

respectively. In terms of Poisson bracket, the fact that \mathbf{L} and \mathbf{A} are constants of motion can be restated as

$$
\{\mathbf{L}, \mathrm{H}\}=0, \quad\{\mathbf{A}, \mathrm{H}\}=0
$$

To show that, we first note that L_{i} (the i-th component of L) is the infinitesimal generator of the rotation about the i-th axis. For example, since $L_{3}=x^{1} p_{2}-x^{2} p_{1}$, we have

$$
\left\{L_{3}, x^{1}\right\}=-x^{2}\left\{p_{1}, x^{1}\right\}=x^{2},\left\{L_{3}, x^{2}\right\}=-x^{1},\left\{L_{3}, x^{3}\right\}=0
$$

Similarly, we have

$$
\left\{L_{3}, p_{1}\right\}=p_{2}, \quad\left\{L_{3}, p_{2}\right\}=-p_{1}, \quad\left\{L_{3}, p_{3}\right\}=0
$$

Then, it is clear that $\{\mathbf{L}, \mathrm{H}\}=0$; moreover,

$$
\begin{aligned}
\{\mathbf{A}, \mathrm{H}\} & =\mathbf{L} \times\{\mathbf{p}, \mathrm{H}\}+\left\{\frac{\mathbf{r}}{r}, \mathrm{H}\right\} \\
& =\mathbf{L} \times\left\{\mathbf{p},-\frac{1}{r}\right\}+\left\{\frac{\mathbf{r}}{r}, \frac{1}{2} \mathbf{p}^{2}\right\} \\
& =\mathbf{L} \times \nabla \frac{1}{r}+\sum_{i}\left\{\frac{\mathbf{r}}{r}, p_{i}\right\} p_{i} \\
& =-\mathbf{L} \times \frac{\mathbf{r}}{r^{3}}+\sum_{i} p_{i} \partial_{x^{i}} \frac{\mathbf{r}}{r} \\
& =-(\mathbf{r} \times \mathbf{p}) \times \frac{\mathbf{r}}{r^{3}}+\frac{\mathbf{p}}{r}-\frac{\mathbf{r} \cdot \mathbf{p}}{r^{3}} \mathbf{r} \\
& =\mathbf{0} .
\end{aligned}
$$

In fact, it is fairly routine to verify this
Theorem
Let $L_{i}\left(\right.$ resp. $\left.A_{i}\right)$ be the i-th component of \mathbf{L} (resp. A). Then

$$
\begin{align*}
& \left\{L_{i}, \mathrm{H}\right\}=0, \\
& \left\{A_{i}, \mathrm{H}\right\}=0, \\
& \left\{L_{i}, L_{j}\right\}=\epsilon_{j k} L_{k}, \tag{2}\\
& \left\{L_{i}, A_{j}\right\}=\epsilon_{i j k} A_{k}, \\
& \left\{A_{i}, A_{j}\right\}=-2 H \epsilon_{i j k} L_{k} .
\end{align*}
$$

Here $\epsilon_{i j k}=1$ (resp. -1) if $i j k$ is an even (resp. odd) permutation of 123 and equals to 0 otherwise. A summation over the repeated index k is assumed. So we have $\left\{L_{1}, L_{2}\right\}=L_{3},\left\{L_{2}, A_{3}\right\}=A_{1}$, and so on.

The real associated algebra with generators $H, L_{1}, L_{2}, L_{3}, A_{1}, A_{2}, A_{3}$ and relations in Eq. (2) is called the Lenz algebra.

With this in mind we are now ready to introduce the Universal Kepler
\square

In fact, it is fairly routine to verify this

Theorem

Let $L_{i}\left(\right.$ resp. $\left.A_{i}\right)$ be the i-th component of \mathbf{L} (resp. A). Then

$$
\begin{align*}
& \left\{L_{i}, \mathrm{H}\right\}=0, \\
& \left\{A_{i}, \mathrm{H}\right\}=0, \\
& \left\{L_{i}, L_{j}\right\}=\epsilon_{j k} L_{k}, \tag{2}\\
& \left\{L_{i}, A_{j}\right\}=\epsilon_{i j k} A_{k}, \\
& \left\{A_{i}, A_{j}\right\}=-2 H \epsilon_{i j k} L_{k} .
\end{align*}
$$

Here $\epsilon_{i j k}=1$ (resp. -1) if $i j k$ is an even (resp. odd) permutation of 123, and equals to 0 otherwise. A summation over the repeated index k is assumed. So we have $\left\{L_{1}, L_{2}\right\}=L_{3},\left\{L_{2}, A_{3}\right\}=A_{1}$, and so on.

The real associated algebra with generators $H, L_{1}, L_{2}, L_{3}, A_{1}, A_{2}, A_{3}$ and relations in Eq. (2) is called the Lenz algebra.
 Whith this in mind, we are now ready to introduce the Universal Kepler

In fact, it is fairly routine to verify this

Theorem

Let $L_{i}\left(\right.$ resp. $\left.A_{i}\right)$ be the i-th component of $\mathbf{L}(r e s p . ~ A)$. Then

$$
\begin{align*}
& \left\{L_{i}, \mathrm{H}\right\}=0, \\
& \left\{A_{i}, \mathrm{H}\right\}=0, \\
& \left\{L_{i}, L_{j}\right\}=\epsilon_{i j k} L_{k}, \tag{2}\\
& \left\{L_{i}, A_{j}\right\}=\epsilon_{i j k} A_{k}, \\
& \left\{A_{i}, A_{j}\right\}=-2 \mathrm{~A}_{i j k} L_{k} .
\end{align*}
$$

Here $\epsilon_{i j k}=1$ (resp. -1) if $i j k$ is an even (resp. odd) permutation of 123, and equals to 0 otherwise. A summation over the repeated index k is assumed. So we have $\left\{L_{1}, L_{2}\right\}=L_{3},\left\{L_{2}, A_{3}\right\}=A_{1}$, and so on.
The real associated algebra with generators $H, L_{1}, L_{2}, L_{3}, A_{1}, A_{2}, A_{3}$ and relations in Eq. (2) is called the Lenz algebra.
With this in mind, we are now ready to introduce the Universal Kepler Problem.

In fact, it is fairly routine to verify this

Theorem

Let $L_{i}\left(\right.$ resp. $\left.A_{i}\right)$ be the i-th component of $\mathbf{L}(r e s p . \mathbf{A})$. Then

$$
\begin{align*}
\left\{L_{i}, \mathrm{H}\right\} & =0, \\
\left\{A_{i}, \mathrm{H}\right\} & =0, \\
\left\{L_{i}, L_{j}\right\} & =\epsilon_{i j k} L_{k}, \tag{2}\\
\left\{L_{i}, A_{j}\right\} & =\epsilon_{i j k} A_{k}, \\
\left\{A_{i}, A_{j}\right\} & =-2 \mathrm{H} \epsilon_{i j k} L_{k} .
\end{align*}
$$

Here $\epsilon_{i j k}=1$ (resp. -1) if ijk is an even (resp. odd) permutation of 123, and equals to 0 otherwise. A summation over the repeated index k is assumed. So we have $\left\{L_{1}, L_{2}\right\}=L_{3},\left\{L_{2}, A_{3}\right\}=A_{1}$, and so on.
The real associated algebra with generators $H, L_{1}, L_{2}, L_{3}, A_{1}, A_{2}, A_{3}$ and relations in Eq. (2) is called the Lenz algebra.
With this in mind, we are now ready to introduce the Universal Kepler Problem.

Universal Kepler problem

[Based on [G. Mend, "The Universal Kepler Problems", JGSP 36 (2014) 47-57]] Let $\mathcal{T K} \mathcal{K}$ be the complexified universal enveloping algebra for the conformal algebra, but with Y_{e} being formally inverted.

Definition
The universal angular momentum is

The universal Hamiltonian is

The universal Lenz vector is

Universal Kepler problem

[Based on [G. Meng, "The Universal Kepler Problems", JGSP 36 (2014) 47-57]] Let $\mathcal{T K} \mathcal{K}$ be the complexified universal enveloping algebra for the conformal algebra, but with Y_{e} being formally inverted.

Definition

The universal angular momentum is

$$
\begin{align*}
L: V \times V & \rightarrow \mathcal{T} \mathcal{K} \mathcal{K} \\
(u, v) & \mapsto L_{u, v}:=\left[L_{u}, L_{v}\right] \tag{3}
\end{align*}
$$

The universal Lenz vector is

Universal Kepler problem

[Based on [G. Meng, "The Universal Kepler Problems", JGSP 36 (2014) 47-57]] Let $\mathcal{T K} \mathcal{K}$ be the complexified universal enveloping algebra for the conformal algebra, but with Y_{e} being formally inverted.

Definition

The universal angular momentum is

$$
\begin{align*}
L: V \times V & \rightarrow \mathcal{T} \mathcal{K K} \\
(u, v) & \mapsto L_{u, v}:=\left[L_{u}, L_{v}\right] \tag{3}
\end{align*}
$$

The universal Hamiltonian is

$$
\begin{equation*}
H:=\frac{1}{2} Y_{e}^{-1} X_{e}-\left(\mathrm{i} Y_{e}\right)^{-1} \tag{4}
\end{equation*}
$$

Universal Kepler problem

[Based on [G. Meng, "The Universal Kepler Problems", JGSP 36 (2014) 47-57]] Let $\mathcal{T K} \mathcal{K}$ be the complexified universal enveloping algebra for the conformal algebra, but with Y_{e} being formally inverted.

Definition

The universal angular momentum is

$$
\begin{align*}
L: V \times V & \rightarrow \mathcal{T} \mathcal{K} \mathcal{K} \\
(u, v) & \mapsto L_{u, v}:=\left[L_{u}, L_{v}\right] \tag{3}
\end{align*}
$$

The universal Hamiltonian is

$$
\begin{equation*}
H:=\frac{1}{2} Y_{e}^{-1} X_{e}-\left(\mathrm{i} Y_{e}\right)^{-1} \tag{4}
\end{equation*}
$$

The universal Lenz vector is

$$
\begin{align*}
A: V & \rightarrow \mathcal{T} \mathcal{K} \mathcal{K} \\
u & \mapsto A_{u}:=\left(\mathrm{i} Y_{e}\right)^{-1}\left[L_{u},\left(\mathrm{i} Y_{e}\right)^{2} H\right] \tag{5}
\end{align*}
$$

Universal Lenz algebra

Via the commutation relation for the conformal algebra, one can verify

Theorem

For u, v, z and w in V,

$$
\begin{array}{ll}
{\left[L_{u, v}, H\right]} & =0, \\
{\left[A_{u}, H\right]} & =0, \\
{\left[L_{u, v}, L_{z, w}\right]} & =L_{L_{u, v}, w}+L_{z, L_{L, v}}, \tag{6}\\
{\left[L_{u, v}, A_{z}\right]} & =A_{L_{u, v},} \\
{\left[A_{u}, A_{v}\right]} & =-2 H L_{u, v} .
\end{array}
$$

Proof. Since $S_{u v}=L_{u, v}+L_{u v}$, part of the commutation relations for the conformal algebra can be rewritten as

Universal Lenz algebra

Via the commutation relation for the conformal algebra, one can verify

Theorem

For u, v, z and w in V,

$$
\begin{array}{ll}
{\left[L_{u, v}, H\right]} & =0, \\
{\left[A_{u}, H\right]} & =0, \\
{\left[L_{u, v}, L_{z, w}\right]} & =L_{L_{u, v}, w}+L_{z, L_{L, v}}, \tag{6}\\
{\left[L_{u, v}, A_{z}\right]} & =A_{L_{u, v},} \\
{\left[A_{u}, A_{v}\right]} & =-2 H L_{u, v} .
\end{array}
$$

Proof. Since $S_{u v}=L_{u, v}+L_{u v}$, part of the commutation relations for the conformal algebra can be rewritten as

$$
\begin{gathered}
{\left[L_{u, v}, X_{z}\right]=X_{L_{u, v} z}, \quad\left[L_{u, v}, Y_{z}\right]=Y_{L_{u, v}}} \\
{\left[L_{u, v}, L_{z}\right]=L_{L_{u, v}}, \quad\left[L_{u, v}, L_{z, w}\right]=L_{L_{u, v}, w}+L_{z, L_{u, v} w}}
\end{gathered}
$$

Universal Lenz algebra

Via the commutation relation for the conformal algebra, one can verify

Theorem

For u, v, z and w in V,

$$
\begin{array}{ll}
{\left[L_{u, v}, H\right]} & =0, \\
{\left[A_{u}, H\right]} & =0, \\
{\left[L_{u, v}, L_{z, w}\right]} & =L_{L_{u, v}, w}+L_{z, L_{L, v}}, \tag{6}\\
{\left[L_{u, v}, A_{z}\right]} & =A_{L_{u, v},} \\
{\left[A_{u}, A_{v}\right]} & =-2 H L_{u, v} .
\end{array}
$$

Proof. Since $S_{u v}=L_{u, v}+L_{u v}$, part of the commutation relations for the conformal algebra can be rewritten as

$$
\begin{gathered}
{\left[L_{u, v}, X_{z}\right]=X_{L_{u, v} z}, \quad\left[L_{u, v}, Y_{z}\right]=Y_{L_{u, v}}} \\
{\left[L_{u, v}, L_{z}\right]=L_{L_{u, v}}, \quad\left[L_{u, v}, L_{z, w}\right]=L_{L_{u, v} z, w}+L_{z, L_{u, v} w}}
\end{gathered}
$$

Then we have $\left[L_{u, v}, X_{e}\right]=\left[L_{u, v}, Y_{e}\right]=0$, so $\left[L_{u, v}, H\right]=0$.

Also, we have

$$
\begin{aligned}
{\left[L_{u, v}, A_{z}\right] } & =\mathrm{i} Y_{e}^{-1}\left[L_{u, v},\left[L_{z}, Y_{e}^{2} H\right]\right] \\
& =\mathrm{i} Y_{e}^{-1}\left(\left[\left[L_{u, v}, L_{z}\right], Y_{e}^{2} H\right]+\left[L_{z},\left[L_{u, v}, Y_{e}^{2} H\right]\right]\right) \\
& =\mathrm{i} Y_{e}^{-1}\left[L_{L_{u, v}}, Y_{e}^{2} H\right] \\
& =A_{L_{u, v}} .
\end{aligned}
$$

The rest of the proof is skipped.
A concrete realization of the conformal algebra
a concrete model of the Kepler type

To be more precise, we have

A suitable operator realization \Longrightarrow a quantum model.
A suitable Poisson realization \Longrightarrow a classical model.

Also, we have

$$
\begin{aligned}
{\left[L_{u, v}, A_{z}\right] } & =\mathrm{i} Y_{e}^{-1}\left[L_{u, v},\left[L_{z}, Y_{e}^{2} H\right]\right] \\
& =\mathrm{i} Y_{e}^{-1}\left(\left[\left[L_{u, v}, L_{z}\right], Y_{e}^{2} H\right]+\left[L_{z},\left[L_{u, v}, Y_{e}^{2} H\right]\right]\right) \\
& =\mathrm{i} Y_{e}^{-1}\left[L_{L_{u, v}}, Y_{e}^{2} H\right] \\
& =A_{L_{u, v}} .
\end{aligned}
$$

The rest of the proof is skipped.
A concrete realization of the conformal algebra \Downarrow a concrete model of the Kepler type
To be more precise, we have
A suitable operator realization \Longrightarrow a quantum model.
A suitable Poisson realization \longrightarrow a classical model.

Also, we have

$$
\begin{aligned}
{\left[L_{u, v}, A_{z}\right] } & =\mathrm{i} Y_{e}^{-1}\left[L_{u, v},\left[L_{z}, Y_{e}^{2} H\right]\right] \\
& =\mathrm{i} Y_{e}^{-1}\left(\left[\left[L_{u, v}, L_{z}\right], Y_{e}^{2} H\right]+\left[L_{z},\left[L_{u, v}, Y_{e}^{2} H\right]\right]\right) \\
& =\mathrm{i} Y_{e}^{-1}\left[L_{L_{u, v} z}, Y_{e}^{2} H\right] \\
& =A_{L_{u, v}} .
\end{aligned}
$$

The rest of the proof is skipped.
A concrete realization of the conformal algebra \Downarrow a concrete model of the Kepler type

To be more precise, we have
A suitable operator realization \Longrightarrow a quantum model.
A suitable Poisson realization \Longrightarrow a classical model.

Also, we have

$$
\begin{aligned}
{\left[L_{u, v}, A_{z}\right] } & =\mathrm{i} Y_{e}^{-1}\left[L_{u, v},\left[L_{z}, Y_{e}^{2} H\right]\right] \\
& =\mathrm{i} Y_{e}^{-1}\left(\left[\left[L_{u, v}, L_{z}\right], Y_{e}^{2} H\right]+\left[L_{z},\left[L_{u, v}, Y_{e}^{2} H\right]\right]\right) \\
& =\mathrm{i} Y_{e}^{-1}\left[L_{L_{u, v} z}, Y_{e}^{2} H\right] \\
& =A_{L_{u, v} z}
\end{aligned}
$$

The rest of the proof is skipped.
A concrete realization of the conformal algebra \Downarrow a concrete model of the Kepler type

To be more precise, we have
A suitable operator realization \Longrightarrow a quantum model.
A suitable Poisson realization \Longrightarrow a classical model.

Poisson realizations

In a Poisson realization of the TKK algebra, $S_{u v}, X_{z}, Y_{w}$ are respectively represented as real functions $\mathcal{S}_{u v}, \mathcal{X}_{z}, \mathcal{Y}_{w}$ on a Poisson manifold so that the commutation relations are represented by the Poisson bracket relations: for u, v, z, w in V, we have

$$
\begin{gather*}
\left\{\mathcal{X}_{u}, \mathcal{X}_{v}\right\}=0, \quad\left\{\mathcal{Y}_{u}, \mathcal{Y}_{v}\right\}=0, \quad\left\{\mathcal{X}_{u}, \mathcal{Y}_{v}\right\}=-2 \mathcal{S}_{u v}, \\
\left\{\mathcal{S}_{u v}, \mathcal{X}_{z}\right\}=\mathcal{X}_{\{u v z\}}, \quad\left\{\mathcal{S}_{u v}, \mathcal{Y}_{z}\right\}=-\mathcal{Y}_{\{v u z\}}, \\
\left\{\mathcal{S}_{u v}, \mathcal{S}_{z w}\right\}=\mathcal{S}_{\{u v z\} w}-\mathcal{S}_{z\{v u w\}} .
\end{gather*}
$$

Then, H, A_{u} and $L_{u, v}$ can be realized as real functions
respectively. Note that

Poisson realizations

In a Poisson realization of the TKK algebra, $S_{u v}, X_{z}, Y_{w}$ are respectively represented as real functions $\mathcal{S}_{u v}, \mathcal{X}_{z}, \mathcal{Y}_{w}$ on a Poisson manifold so that the commutation relations are represented by the Poisson bracket relations: for u, v, z, w in V, we have

$$
\begin{gather*}
\left\{\mathcal{X}_{u}, \mathcal{X}_{v}\right\}=0, \quad\left\{\mathcal{Y}_{u}, \mathcal{Y}_{v}\right\}=0, \quad\left\{\mathcal{X}_{u}, \mathcal{Y}_{v}\right\}=-2 \mathcal{S}_{u v}, \\
\left\{\mathcal{S}_{u v}, \mathcal{X}_{z}\right\}=\mathcal{X}_{\{u v z\}}, \quad\left\{\mathcal{S}_{u v}, \mathcal{Y}_{z}\right\}=-\mathcal{Y}_{\{v u z\}}, \tag{7}\\
\left\{\mathcal{S}_{u v}, \mathcal{S}_{z w}\right\}=\mathcal{S}_{\{u v z\} w}-\mathcal{S}_{z\{v u w\}} .
\end{gather*}
$$

Then, H, A_{u} and $L_{u, v}$ can be realized as real functions

$$
\begin{equation*}
\mathcal{H}=\frac{\frac{1}{2} \mathcal{X}_{e}-1}{\mathcal{Y}_{e}}, \quad \mathcal{A}_{u}:=\frac{\left\{\mathcal{L}_{u}, \mathcal{Y}_{e}^{2} \mathcal{H}\right\}}{\mathcal{Y}_{e}}, \quad \mathcal{L}_{u, v}:=\left\{\mathcal{L}_{u}, \mathcal{L}_{v}\right\} \tag{8}
\end{equation*}
$$

respectively. Note that

$$
\begin{equation*}
\mathcal{A}_{u}=\frac{1}{2}\left(\mathcal{X}_{u}-\mathcal{Y}_{u} \frac{\mathcal{X}_{e}}{\mathcal{Y}_{e}}\right)+\frac{\mathcal{Y}_{u}}{\mathcal{Y}_{e}} . \tag{9}
\end{equation*}
$$

Poisson Realization on TV

Via the canonical inner product on $V, T V \cong T^{*} V$. So $T V$ becomes a symplectic space. Denote an element of $T V=V \times V$ by (x, π) and fix an orthonormal basis $\left\{e_{\alpha}\right\}$ for V so that we can write $x=x^{\alpha} e_{\alpha}$ and $\pi=\pi^{\alpha} e_{\alpha}$. Then the basic Poisson bracket relations on TV are

$$
\left\{x^{\alpha}, \pi^{\beta}\right\}=\delta^{\alpha \beta}, \quad\left\{x^{\alpha}, x^{\beta}\right\}=0, \quad\left\{\pi^{\alpha}, \pi^{\beta}\right\}=0
$$

In coordinate free form, we have

One can check that real functions

yield a Poisson realization on $T V$ of $S_{u v}, X_{z}, Y_{w}$ respectively. Proof. It is clear that $\left\{\mathcal{Y}_{u}, \mathcal{Y}_{v}\right\}=0$.

Poisson Realization on TV

Via the canonical inner product on $V, T V \cong T^{*} V$. So $T V$ becomes a symplectic space. Denote an element of $T V=V \times V$ by (x, π) and fix an orthonormal basis $\left\{e_{\alpha}\right\}$ for V so that we can write $x=x^{\alpha} e_{\alpha}$ and $\pi=\pi^{\alpha} e_{\alpha}$. Then the basic Poisson bracket relations on TV are

$$
\left\{x^{\alpha}, \pi^{\beta}\right\}=\delta^{\alpha \beta}, \quad\left\{x^{\alpha}, x^{\beta}\right\}=0, \quad\left\{\pi^{\alpha}, \pi^{\beta}\right\}=0 .
$$

In coordinate free form, we have

$$
\{\langle x \mid u\rangle,\langle\pi \mid v\rangle\}=\langle u \mid v\rangle, \quad\{\langle x \mid u\rangle,\langle x \mid v\rangle\}=\{\langle\pi \mid u\rangle,\langle\pi \mid v\rangle\}=0 .
$$

One can check that real functions

Proof. It is clear that $\left\{\mathcal{Y}_{u}, \mathcal{Y}_{v}\right\}=0$.

Poisson Realization on TV

Via the canonical inner product on $V, T V \cong T^{*} V$. So $T V$ becomes a symplectic space. Denote an element of $T V=V \times V$ by (x, π) and fix an orthonormal basis $\left\{e_{\alpha}\right\}$ for V so that we can write $x=x^{\alpha} e_{\alpha}$ and $\pi=\pi^{\alpha} e_{\alpha}$. Then the basic Poisson bracket relations on TV are

$$
\left\{x^{\alpha}, \pi^{\beta}\right\}=\delta^{\alpha \beta}, \quad\left\{x^{\alpha}, x^{\beta}\right\}=0, \quad\left\{\pi^{\alpha}, \pi^{\beta}\right\}=0 .
$$

In coordinate free form, we have

$$
\{\langle x \mid u\rangle,\langle\pi \mid v\rangle\}=\langle u \mid v\rangle, \quad\{\langle x \mid u\rangle,\langle x \mid v\rangle\}=\{\langle\pi \mid u\rangle,\langle\pi \mid v\rangle\}=0 .
$$

One can check that real functions

$$
\begin{equation*}
\mathcal{S}_{u v}:=\left\langle S_{u v}(x) \mid \pi\right\rangle, \quad \mathcal{X}_{u}:=\langle x \mid\{\pi u \pi\}\rangle, \quad \mathcal{Y}_{v}:=\langle x \mid v\rangle \tag{10}
\end{equation*}
$$

yield a Poisson realization on $T V$ of $S_{u v}, X_{z}, Y_{w}$ respectively.

Poisson Realization on TV

Via the canonical inner product on $V, T V \cong T^{*} V$. So $T V$ becomes a symplectic space. Denote an element of $T V=V \times V$ by (x, π) and fix an orthonormal basis $\left\{e_{\alpha}\right\}$ for V so that we can write $x=x^{\alpha} e_{\alpha}$ and $\pi=\pi^{\alpha} e_{\alpha}$. Then the basic Poisson bracket relations on TV are

$$
\left\{x^{\alpha}, \pi^{\beta}\right\}=\delta^{\alpha \beta}, \quad\left\{x^{\alpha}, x^{\beta}\right\}=0, \quad\left\{\pi^{\alpha}, \pi^{\beta}\right\}=0 .
$$

In coordinate free form, we have

$$
\{\langle x \mid u\rangle,\langle\pi \mid v\rangle\}=\langle u \mid v\rangle, \quad\{\langle x \mid u\rangle,\langle x \mid v\rangle\}=\{\langle\pi \mid u\rangle,\langle\pi \mid v\rangle\}=0 .
$$

One can check that real functions

$$
\begin{equation*}
\mathcal{S}_{u v}:=\left\langle S_{u v}(x) \mid \pi\right\rangle, \quad \mathcal{X}_{u}:=\langle x \mid\{\pi u \pi\}\rangle, \quad \mathcal{Y}_{v}:=\langle x \mid v\rangle \tag{10}
\end{equation*}
$$

yield a Poisson realization on $T V$ of $S_{u v}, X_{z}, Y_{w}$ respectively. Proof. It is clear that $\left\{\mathcal{Y}_{u}, \mathcal{Y}_{v}\right\}=0$.

$$
\begin{aligned}
\left\{\mathcal{X}_{u}, \mathcal{Y}_{v}\right\} & =\{\langle x \mid\{\pi u \pi\}\rangle,\langle x \mid v\rangle\} \\
& =-2\langle x \mid\{v u \pi\}\rangle=-2\left\langle S_{u v}(x) \mid \pi\right\rangle \\
& =-2 S_{u v} .
\end{aligned}
$$

$$
\begin{aligned}
\left\{\mathcal{S}_{u v}, \mathcal{Y}_{z}\right\} & =\left\{\left\langle S_{u v}(x) \mid \pi\right\rangle,\langle x \mid z\rangle\right\} \\
& =-\left\langle S_{u v}(x) \mid z\right\rangle=-\langle x \mid\{v u z\}\rangle \\
& =-\mathcal{Y}_{\{v u z\}} .
\end{aligned}
$$

$$
\begin{aligned}
\left\{\mathcal{S}_{u v}, \mathcal{S}_{z w}\right\} & =\left\{\left\langle S_{u v}(x) \mid \pi\right\rangle,\left\langle S_{z w}(x) \mid \pi\right\rangle\right\} \\
& =\left\langle S_{u v} S_{z w}(x) \mid \pi\right\rangle-\left\langle S_{z w} S_{u v}(x) \mid \pi\right\rangle \\
& =\left\langle\left[S_{u v}, S_{z w}\right](x) \mid \pi\right\rangle=\left\langle\left(S_{\{u v z\} w}-S_{z\{v u w\}}\right)(x) \mid \pi\right\rangle \\
& =\mathcal{S}_{\{u v z\} w}-\mathcal{S}_{z\{v u w\}} .
\end{aligned}
$$

The rest of the proof is skipped.
However, this is not a suitable Poisson realization because neither \mathcal{X}_{e} nor \mathcal{Y}_{e} is positive on $T V$.

To salvage this Poisson realization, we restrict the Poisson realization to certain sub-symplectic manifolds of TV, for example, $T \mathcal{C}_{r}$ where \mathcal{C}_{r} is the set of rank r semi-positive elements of V, with r being a positive integer less than or equal to the rank of V. Indeed, restricting \mathcal{H} to $T \mathcal{C}_{r}$ yields an integrable model of Kepler type, which is the Kepler problem when $V=\Gamma(3)$ and $r=1 . \quad$ Varna, Bulgaria, june $6 \cdot 8,2015{ }^{\circ}$

$$
\begin{aligned}
\left\{\mathcal{S}_{u v}, \mathcal{Y}_{z}\right\} & =\left\{\left\langle S_{u v}(x) \mid \pi\right\rangle,\langle x \mid z\rangle\right\} \\
& =-\left\langle S_{u v}(x) \mid z\right\rangle=-\langle x \mid\{v u z\}\rangle \\
& =-\mathcal{Y}_{\{v u z\}} .
\end{aligned}
$$

$$
\begin{aligned}
\left\{\mathcal{S}_{u v}, \mathcal{S}_{z w}\right\} & =\left\{\left\langle S_{u v}(x) \mid \pi\right\rangle,\left\langle S_{z w}(x) \mid \pi\right\rangle\right\} \\
& =\left\langle S_{u v} S_{z w}(x) \mid \pi\right\rangle-\left\langle S_{z w} S_{u v}(x) \mid \pi\right\rangle \\
& =\left\langle\left[S_{u v}, S_{z w}\right](x) \mid \pi\right\rangle=\left\langle\left(S_{\{u v z\} w}-S_{z\{v u w\}}\right)(x) \mid \pi\right\rangle \\
& =\mathcal{S}_{\{u v z\}}-\mathcal{S}_{z\{v u w\}} .
\end{aligned}
$$

The rest of the proof is skipped.
However, this is not a suitable Poisson realization because neither \mathcal{X}_{e} nor \mathcal{Y}_{e} is positive on $T V$.

To salvage this Poisson realization, we restrict the Poisson realization to certain sub-symplectic manifolds of $T V$, for example, $T \mathcal{C}_{r}$ where \mathcal{C}_{r} is the set of rank r semi-positive elements of V, with r being a positive integer less than or equal to the rank of V . Indeed, restricting \mathcal{H} to $T \mathcal{C}_{r}$ yields an integrable model of Kepler type, which is the Kepler problem When $V=\Gamma(3)$ and $r=1 . \square$ Varna, Bulgaria, June 6-8, 2015

$$
\begin{aligned}
\left\{\mathcal{S}_{u v}, \mathcal{Y}_{z}\right\} & =\left\{\left\langle S_{u v}(x) \mid \pi\right\rangle,\langle x \mid z\rangle\right\} \\
& =-\left\langle S_{u v}(x) \mid z\right\rangle=-\langle x \mid\{v u z\}\rangle \\
& =-\mathcal{Y}_{\{v u z\}}
\end{aligned}
$$

$$
\begin{aligned}
\left\{\mathcal{S}_{u v}, \mathcal{S}_{z w}\right\} & =\left\{\left\langle S_{u v}(x) \mid \pi\right\rangle,\left\langle S_{z w}(x) \mid \pi\right\rangle\right\} \\
& =\left\langle S_{u v} S_{z w}(x) \mid \pi\right\rangle-\left\langle S_{z w} S_{u v}(x) \mid \pi\right\rangle \\
& =\left\langle\left[S_{u v}, S_{z w}\right](x) \mid \pi\right\rangle=\left\langle\left(S_{\{u v z\} w}-S_{z\{v u w\}}\right)(x) \mid \pi\right\rangle \\
& =\mathcal{S}_{\{u v z\} w}-\mathcal{S}_{z\{v u w\}} .
\end{aligned}
$$

The rest of the proof is skipped.
However, this is not a suitable Poisson realization because neither \mathcal{X}_{e} nor \mathcal{Y}_{e} is positive on $T V$.

To salvage this Poisson realization, we restrict the Poisson realization to certain sub-symplectic manifolds of $T V$, for example, $T_{\mathcal{C}_{r}}$ where \mathcal{C}_{r} is the set of rank r semi-positive elements of V, with r being a positive integer less than or equal to the rank of V.

$$
\begin{aligned}
\left\{\mathcal{S}_{u v}, \mathcal{Y}_{z}\right\} & =\left\{\left\langle S_{u v}(x) \mid \pi\right\rangle,\langle x \mid z\rangle\right\} \\
& =-\left\langle S_{u v}(x) \mid z\right\rangle=-\langle x \mid\{v u z\}\rangle \\
& =-\mathcal{Y}_{\{v u z\}} . \\
\left\{\mathcal{S}_{u v}, \mathcal{S}_{z w}\right\} & =\left\{\left\langle S_{u v}(x) \mid \pi\right\rangle,\left\langle S_{z w}(x) \mid \pi\right\rangle\right\} \\
& =\left\langle S_{u v} S_{z w}(x) \mid \pi\right\rangle-\left\langle S_{z w} S_{u v}(x) \mid \pi\right\rangle \\
= & \left\langle\left[S_{u v}, S_{z w}\right](x) \mid \pi\right\rangle=\left\langle\left(S_{\{u v z\} w}-S_{z\{v u w\}}\right)(x) \mid \pi\right\rangle \\
& =\mathcal{S}_{\{u v z\} w}-\mathcal{S}_{z\{v u w\}} .
\end{aligned}
$$

The rest of the proof is skipped.
However, this is not a suitable Poisson realization because neither \mathcal{X}_{e} nor \mathcal{Y}_{e} is positive on $T V$.
To salvage this Poisson realization, we restrict the Poisson realization to certain sub-symplectic manifolds of $T V$, for example, $T_{\mathcal{C}_{r}}$ where \mathcal{C}_{r} is the set of rank r semi-positive elements of V, with r being a positive integer less than or equal to the rank of V. Indeed, restricting \mathcal{H} to $T \mathcal{C}_{r}$ yields an integrable model of Kepler type,

$$
\begin{aligned}
\left\{\mathcal{S}_{u v}, \mathcal{Y}_{z}\right\} & =\left\{\left\langle S_{u v}(x) \mid \pi\right\rangle,\langle x \mid z\rangle\right\} \\
& =-\left\langle S_{u v}(x) \mid z\right\rangle=-\langle x \mid\{v u z\}\rangle \\
& =-\mathcal{Y}_{\{v u z\}} . \\
\left\{\mathcal{S}_{u v}, \mathcal{S}_{z w}\right\} & =\left\{\left\langle S_{u v}(x) \mid \pi\right\rangle,\left\langle S_{z w}(x) \mid \pi\right\rangle\right\} \\
& =\left\langle S_{u v} S_{z w}(x) \mid \pi\right\rangle-\left\langle S_{z w} S_{u v}(x) \mid \pi\right\rangle \\
= & \left\langle\left[S_{u v}, S_{z w}\right](x) \mid \pi\right\rangle=\left\langle\left(S_{\{u v z\} w}-S_{z\{v u w\}}\right)(x) \mid \pi\right\rangle \\
& =\mathcal{S}_{\{u v z\} w}-\mathcal{S}_{z\{v u w\}} .
\end{aligned}
$$

The rest of the proof is skipped.
However, this is not a suitable Poisson realization because neither \mathcal{X}_{e} nor \mathcal{Y}_{e} is positive on $T V$.
To salvage this Poisson realization, we restrict the Poisson realization to certain sub-symplectic manifolds of $T V$, for example, $T \mathcal{C}_{r}$ where \mathcal{C}_{r} is the set of rank r semi-positive elements of V, with r being a positive integer less than or equal to the rank of V. Indeed, restricting \mathcal{H} to $T \mathcal{C}_{r}$ yields an integrable model of Kepler type, which is the Kepler problem when $V=\Gamma(3)$ and $r=1$.

To be continued

Thanks for your attention!

To be continued

Thanks for your attention!

