Kepler Problem and Formally Real Jordan Algebras IV

Guowu Meng

Department of Mathematics Hong Kong University of Science and Technology

17th International Conference on Geometry, Integrability and Quantization Varna, Bulgaria, June 9, 2015

《曰》 《聞》 《臣》 《臣》 三臣 …

2/8

A generalized Kepler problem via a suitable realization of co

Guowu weng (HKUSI)

Recall that the conformal algebra of V has a Poisson realization on TV in which X_u and Y_v can be realized as real-valued function

$$\mathcal{X}_u = \langle x \mid \{\pi u \pi\} \rangle$$
 and $\mathcal{Y}_v = \langle x \mid v \rangle$

respectively on TV. Since $H = \frac{1}{2} \frac{X_e}{Y_e} - \frac{1}{Y_e}$, H can be realized as

$$\mathcal{H} = \frac{1}{2} \frac{\langle x \mid \pi^2 \rangle}{r} - \frac{1}{r}$$

where $r = \langle x | e \rangle = \frac{1}{\operatorname{rank} V} \operatorname{tr} x$.

However,

\mathcal{H} is NOT even a real-valued function on TV!

To make sense of \mathcal{H} , we need to work on a small subspace of TV.

Guowu Meng	(HKUST)
------------	---------

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall that the conformal algebra of V has a Poisson realization on TV in which X_{μ} and Y_{ν} can be realized as real-valued function

$$\mathcal{X}_{u} = \langle x \mid \{\pi u \pi\} \rangle$$
 and $\mathcal{Y}_{v} = \langle x \mid v \rangle$

respectively on TV. Since $H = \frac{1}{2} \frac{X_e}{Y_e} - \frac{1}{Y_e}$, H can be realized as

$$\mathcal{H} = rac{1}{2} rac{\langle x \mid \pi^2
angle}{r} - rac{1}{r}$$

where $r = \langle x | e \rangle = \frac{1}{\operatorname{rank} V} \operatorname{tr} x$.

However,

\mathcal{H} is NOT even a real-valued function on TV!

To make sense of \mathcal{H} , we need to work on a small subspace of TV.

Guowu Meng	(HKUST)
------------	---------

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall that the conformal algebra of V has a Poisson realization on TV in which X_{μ} and Y_{ν} can be realized as real-valued function

$$\mathcal{X}_u = \langle x \mid \{\pi u \pi\} \rangle$$
 and $\mathcal{Y}_v = \langle x \mid v \rangle$

respectively on *TV*. Since $H = \frac{1}{2} \frac{X_e}{Y_e} - \frac{1}{Y_e}$, *H* can be realized as

$$\mathcal{H} = rac{1}{2} rac{\langle x \mid \pi^2
angle}{r} - rac{1}{r}$$

where $r = \langle x | e \rangle = \frac{1}{\operatorname{rank} V} \operatorname{tr} x$.

However,

\mathcal{H} is NOT even a real-valued function on TV!

To make sense of \mathcal{H} , we need to work on a small subspace of TV.

Guowu Meng ((HKUST)
--------------	---------

・ 戸 ト ・ ヨ ト ・ ヨ ト

Recall that the conformal algebra of V has a Poisson realization on TV in which X_u and Y_v can be realized as real-valued function

$$\mathcal{X}_{u} = \langle x \mid \{\pi u \pi\} \rangle$$
 and $\mathcal{Y}_{v} = \langle x \mid v \rangle$

respectively on *TV*. Since $H = \frac{1}{2} \frac{X_e}{Y_e} - \frac{1}{Y_e}$, *H* can be realized as

$$\mathcal{H} = rac{1}{2} rac{\langle x \mid \pi^2
angle}{r} - rac{1}{r}$$

where $r = \langle x \mid e \rangle = \frac{1}{\operatorname{rank} V} \operatorname{tr} x$.

However,

\mathcal{H} is NOT even a real-valued function on TV!

To make sense of \mathcal{H} , we need to work on a small subspace of TV.

Guowu	Meng	(HKUST)
		· · · /

不同 とうきょうきょう

Theorem (G. W. Meng, 2011)

Let k be a positive integer which is at most rank V, and C_k be the set of rank-k semi-positive elements of V. Then C_k is a manifold. Moreover, for any $x \in C_k$, 1) $T_x C_k = \{x\} \times \text{Im}L_x$, 2) The map

$$\langle \pi | \rangle \mapsto rac{\mathcal{X}_{e}}{\mathcal{Y}_{e}} = rac{\langle x | \pi^{2}
angle}{\langle x | e
angle} = rac{\langle \pi | x \pi
angle}{r}$$

is a positive-definite quadratic form on $T_x^*C_k$.

These quadratic forms in the theorem define a Riemannian metric on C_k (called the **Kepler metric**), and shall be denoted by $(,)_K$.

<u>Claim</u>: The dynamic model with configuration space C_k , Lagrangian $L = \frac{1}{2}(\dot{x}, \dot{x})_K^2 + \frac{1}{r}$ or Hamiltonian

$$\mathcal{H} = \frac{1}{2} ||p||_K^2 - \frac{1}{r}$$

s a super integrable model of Kepler type.

Guowu Meng (HKUST)

イロト イロト イヨト イ

Theorem (G. W. Meng, 2011)

Let k be a positive integer which is at most rank V, and C_k be the set of rank-k semi-positive elements of V. Then C_k is a manifold. Moreover, for any $x \in C_k$, 1) $T_x C_k = \{x\} \times \text{Im}L_x$, 2) The map

$$\langle \pi \mid \rangle \mapsto rac{\mathcal{X}_{e}}{\mathcal{Y}_{e}} = rac{\langle x \mid \pi^{2} \rangle}{\langle x \mid e \rangle} = rac{\langle \pi \mid x \pi \rangle}{r}$$

is a positive-definite quadratic form on $T_x^*C_k$.

These quadratic forms in the theorem define a Riemannian metric on C_k (called the **Kepler metric**), and shall be denoted by $(,)_K$.

<u>Claim</u>: The dynamic model with configuration space C_k , Lagrangian $L = \frac{1}{2}(\dot{x}, \dot{x})_K^2 + \frac{1}{r}$ or Hamiltonian

$$\mathcal{H} = \frac{1}{2} ||p||_K^2 - \frac{1}{r}$$

s a super integrable model of Kepler type.

Guowu Meng (HKUST)

イロト イロト イヨト イ

Theorem (G. W. Meng, 2011)

Let k be a positive integer which is at most rank V, and C_k be the set of rank-k semi-positive elements of V. Then C_k is a manifold. Moreover, for any $x \in C_k$, 1) $T_x C_k = \{x\} \times \text{Im}L_x$, 2) The map

$$\langle \pi | \rangle \mapsto rac{\mathcal{X}_{e}}{\mathcal{Y}_{e}} = rac{\langle x | \pi^{2} \rangle}{\langle x | e \rangle} = rac{\langle \pi | x \pi \rangle}{r}$$

is a positive-definite quadratic form on $T_x^*C_k$.

These quadratic forms in the theorem define a Riemannian metric on C_k (called the **Kepler metric**), and shall be denoted by $(,)_K$.

<u>Claim</u>: The dynamic model with configuration space C_k , Lagrangian $L = \frac{1}{2}(\dot{x}, \dot{x})_K^2 + \frac{1}{r}$ or Hamiltonian

$$\mathcal{H} = \frac{1}{2} ||p||_K^2 - \frac{1}{r}$$

s a super integrable model of Kepler type.

Guowu Meng (HKUST)

Theorem (G. W. Meng, 2011)

Let k be a positive integer which is at most rank V, and C_k be the set of rank-k semi-positive elements of V. Then C_k is a manifold. Moreover, for any $x \in C_k$, 1) $T_x C_k = \{x\} \times \text{Im}L_x$, 2) The map

$$\langle \pi \mid \rangle \mapsto rac{\mathcal{X}_{e}}{\mathcal{Y}_{e}} = rac{\langle x \mid \pi^{2}
angle}{\langle x \mid e
angle} = rac{\langle \pi \mid x \pi
angle}{r}$$

is a positive-definite quadratic form on $T_x^*C_k$.

These quadratic forms in the theorem define a Riemannian metric on C_k (called the **Kepler metric**), and shall be denoted by $(,)_K$.

<u>Claim</u>: The dynamic model with configuration space C_k , Lagrangian $L = \frac{1}{2}(\dot{x}, \dot{x})_K^2 + \frac{1}{r}$ or Hamiltonian

$$\mathcal{H} = \frac{1}{2} ||p||_K^2 - \frac{1}{r}$$

s a super integrable model of Kepler type.

• □ > • □ > • □ > •

Theorem (G. W. Meng, 2011)

Let k be a positive integer which is at most rank V, and C_k be the set of rank-k semi-positive elements of V. Then C_k is a manifold. Moreover, for any $x \in C_k$, 1) $T_x C_k = \{x\} \times \text{Im}L_x$, 2) The map

$$\langle \pi \mid \rangle \mapsto rac{\mathcal{X}_{e}}{\mathcal{Y}_{e}} = rac{\langle x \mid \pi^{2}
angle}{\langle x \mid e
angle} = rac{\langle \pi \mid x \pi
angle}{r}$$

is a positive-definite quadratic form on $T_x^*C_k$.

These quadratic forms in the theorem define a Riemannian metric on C_k (called the **Kepler metric**), and shall be denoted by $(,)_K$.

<u>Claim</u>: The dynamic model with configuration space C_k , Lagrangian $L = \frac{1}{2}(\dot{x}, \dot{x})_K^2 + \frac{1}{r}$ or Hamiltonian

$$\mathcal{H} = \frac{1}{2} ||p||_K^2 - \frac{1}{r}$$

s a super integrable model of Kepler type.

Theorem (G. W. Meng, 2011)

Let k be a positive integer which is at most rank V, and C_k be the set of rank-k semi-positive elements of V. Then C_k is a manifold. Moreover, for any $x \in C_k$, 1) $T_x C_k = \{x\} \times \text{Im}L_x$, 2) The map

$$\langle \pi \mid \rangle \mapsto rac{\mathcal{X}_{e}}{\mathcal{Y}_{e}} = rac{\langle x \mid \pi^{2}
angle}{\langle x \mid e
angle} = rac{\langle \pi \mid x \pi
angle}{r}$$

is a positive-definite quadratic form on $T_x^*C_k$.

These quadratic forms in the theorem define a Riemannian metric on C_k (called the **Kepler metric**), and shall be denoted by $(,)_K$.

<u>Claim</u>: The dynamic model with configuration space C_k , Lagrangian $L = \frac{1}{2}(\dot{x}, \dot{x})_K^2 + \frac{1}{r}$ or Hamiltonian

$$\mathcal{H} = \frac{1}{2} ||\boldsymbol{p}||_{K}^{2} - \frac{1}{r}$$

is a super integrable model of Kepler type.

The purpose here is to verify this claim: If $V = \Gamma(3) := \mathbb{R} \oplus \mathbb{R}^3$ and k = 1, then the dynamical model mentioned in the last slide is exactly the Kepler problem.

In terms of the standard basis vectors \vec{e}_0 , \vec{e}_1 , \vec{e}_2 , \vec{e}_3 , the Jordan multiplication can be determined by the following rules: \vec{e}_0 is the identity element, and

$$\vec{e}_i \vec{e}_j = \delta_{ij} \vec{e}_0$$

for i, j > 0. The trace tr : $V \to \mathbb{R}$ is given by the following rules:

$$\mathrm{tr}\,\vec{e}_0=2,\quad\mathrm{tr}\,\vec{e}_i=0.$$

So the inner product on V is the one such that the standard basis is an orthonormal basis. Since V has rank two, the determinant of $x = x^{\mu} \vec{e}_{\mu}$ is

$$\det x = \frac{1}{2}((\operatorname{tr} x)^2 - \operatorname{tr} x^2) = (x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2.$$

イロト イポト イヨト イヨト

The purpose here is to verify this claim: If $V = \Gamma(3) := \mathbb{R} \oplus \mathbb{R}^3$ and k = 1, then the dynamical model mentioned in the last slide is exactly the Kepler problem.

In terms of the standard basis vectors $\vec{e}_0, \vec{e}_1, \vec{e}_2, \vec{e}_3$, the Jordan multiplication can be determined by the following rules: \vec{e}_0 is the identity element, and

$$\vec{e}_i \vec{e}_j = \delta_{ij} \vec{e}_0$$

for i, j > 0. The trace tr : $V \to \mathbb{R}$ is given by the following rules:

$$\mathrm{tr}\,\vec{e}_0=2,\quad\mathrm{tr}\,\vec{e}_i=0.$$

So the inner product on V is the one such that the standard basis is an orthonormal basis. Since V has rank two, the determinant of $x = x^{\mu} \vec{e}_{\mu}$ is

$$\det x = \frac{1}{2}((\operatorname{tr} x)^2 - \operatorname{tr} x^2) = (x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2.$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

The purpose here is to verify this claim: If $V = \Gamma(3) := \mathbb{R} \oplus \mathbb{R}^3$ and k = 1, then the dynamical model mentioned in the last slide is exactly the Kepler problem.

In terms of the standard basis vectors $\vec{e}_0, \vec{e}_1, \vec{e}_2, \vec{e}_3$, the Jordan multiplication can be determined by the following rules: \vec{e}_0 is the identity element, and

$$ec{e}_i ec{e}_j = \delta_{ij} ec{e}_0$$

for i, j > 0. The trace tr : $V \to \mathbb{R}$ is given by the following rules:

$$\mathrm{tr}\,\vec{e}_0=2,\quad\mathrm{tr}\,\vec{e}_i=0.$$

So the inner product on V is the one such that the standard basis is an orthonormal basis. Since V has rank two, the determinant of $x = x^{\mu} \vec{e}_{\mu}$ is

$$\det x = \frac{1}{2}((\operatorname{tr} x)^2 - \operatorname{tr} x^2) = (x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2.$$

イロン 不良 とうほう うまいしゅ

The purpose here is to verify this claim: If $V = \Gamma(3) := \mathbb{R} \oplus \mathbb{R}^3$ and k = 1, then the dynamical model mentioned in the last slide is exactly the Kepler problem.

In terms of the standard basis vectors $\vec{e}_0, \vec{e}_1, \vec{e}_2, \vec{e}_3$, the Jordan multiplication can be determined by the following rules: \vec{e}_0 is the identity element, and

$$ec{e}_i ec{e}_j = \delta_{ij} ec{e}_0$$

for i, j > 0. The trace tr : $V \to \mathbb{R}$ is given by the following rules:

$$\mathrm{tr}\,\vec{e}_0=2,\quad\mathrm{tr}\,\vec{e}_i=0.$$

So the inner product on *V* is the one such that the standard basis is an orthonormal basis. Since *V* has rank two, the determinant of $x = x^{\mu} \vec{e}_{\mu}$ is

$$\det x = \frac{1}{2}((\operatorname{tr} x)^2 - \operatorname{tr} x^2) = (x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2.$$

イロト 不得 トイヨト イヨト 二日

The purpose here is to verify this claim: If $V = \Gamma(3) := \mathbb{R} \oplus \mathbb{R}^3$ and k = 1, then the dynamical model mentioned in the last slide is exactly the Kepler problem.

In terms of the standard basis vectors $\vec{e}_0, \vec{e}_1, \vec{e}_2, \vec{e}_3$, the Jordan multiplication can be determined by the following rules: \vec{e}_0 is the identity element, and

$$ec{e}_i ec{e}_j = \delta_{ij} ec{e}_0$$

for i, j > 0. The trace tr : $V \to \mathbb{R}$ is given by the following rules:

$$\mathrm{tr}\,\vec{e}_0=2,\quad\mathrm{tr}\,\vec{e}_i=0.$$

So the inner product on *V* is the one such that the standard basis is an orthonormal basis. Since *V* has rank two, the determinant of $x = x^{\mu} \vec{e}_{\mu}$ is

$$\det x = \frac{1}{2}((\operatorname{tr} x)^2 - \operatorname{tr} x^2) = (x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2.$$

イロト 不得 トイヨト イヨト 二日

$$C_1 = \{x \in V \mid \det x = 0, \operatorname{tr} x > 0\}$$

is precisely the future light-cone in the Minkowski space. Since points on C_1 can be parametrized by $\mathbf{r} \in \mathbb{R}^3_* : x(\mathbf{r}) = (|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r} , we have (write $\mathbf{r} = x^i \vec{e}_i$)

$$\partial_{x^i} = \vec{e}_i + \frac{x^i}{|\mathbf{r}|}\vec{e}_0$$

The dual tangent frame E^j w.r.t. $\langle | \rangle$, obtained by solving Eqs $\langle E^j | \partial_{x^j} \rangle = \delta_i^j$, is

$$E^j = \vec{e}_j - \frac{x^j}{2|\mathbf{r}|^2}\mathbf{r} + \frac{x^j}{2|\mathbf{r}|}\vec{e}_0.$$

Write the Kepler metric ds_K^2 as $g_{ij} dx^i dx^j$. Claim: $g_{ij} = \delta_{ij}$, i.e., $ds_K^2 = \sum_i (dx^i)^2$. **Proof**. It suffice to prove that $g^{ij} = \delta_{ij}$. To do that, we note that

$$xE^{j} = (x^{j}\vec{e}_{0} - \frac{x^{j}}{2}\vec{e}_{0} + \frac{x^{j}}{2|\mathbf{r}|}\mathbf{r}) + (|\mathbf{r}|\vec{e}_{j} - \frac{x^{j}}{2|\mathbf{r}|}\mathbf{r} + \frac{x^{j}}{2|\mathbf{r}|}\mathbf{e}_{0}) = |\mathbf{r}|\vec{e}_{j} + x^{j}\vec{e}_{0}.$$

$$C_1 = \{x \in V \mid \det x = 0, \operatorname{tr} x > 0\}$$

is precisely the future light-cone in the Minkowski space. Since points on C_1 can be parametrized by $\mathbf{r} \in \mathbb{R}^3_*$: $x(\mathbf{r}) = (|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r} , we have (write $\mathbf{r} = x^i \vec{e}_i$)

$$\partial_{\mathbf{x}^i} = \vec{\mathbf{e}}_i + \frac{\mathbf{x}^i}{|\mathbf{r}|}\vec{\mathbf{e}}_0.$$

The dual tangent frame E^j w.r.t. $\langle | \rangle$, obtained by solving Eqs $\langle E^j | \partial_{x^i} \rangle = \delta_i^j$, is

$$E^j = \vec{e}_j - \frac{x^j}{2|\mathbf{r}|^2}\mathbf{r} + \frac{x^j}{2|\mathbf{r}|}\vec{e}_0.$$

Write the Kepler metric ds_K^2 as $g_{ij} dx^i dx^j$. Claim: $g_{ij} = \delta_{ij}$, i.e., $ds_K^2 = \sum_i (dx^i)^2$. **Proof**. It suffice to prove that $g^{ij} = \delta_{ij}$. To do that, we note that

$$xE^{j} = (x^{j}\vec{e}_{0} - \frac{x^{j}}{2}\vec{e}_{0} + \frac{x^{j}}{2|\mathbf{r}|}\mathbf{r}) + (|\mathbf{r}|\vec{e}_{j} - \frac{x^{j}}{2|\mathbf{r}|}\mathbf{r} + \frac{x^{j}}{2|\mathbf{r}|}\mathbf{e}_{0}) = |\mathbf{r}|\vec{e}_{j} + x^{j}\vec{e}_{0}.$$

$$C_1 = \{x \in V \mid \det x = 0, \operatorname{tr} x > 0\}$$

is precisely the future light-cone in the Minkowski space. Since points on C_1 can be parametrized by $\mathbf{r} \in \mathbb{R}^3_*$: $x(\mathbf{r}) = (|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r} , we have (write $\mathbf{r} = x^i \vec{e}_i$)

$$\partial_{\mathbf{x}^i} = \vec{\mathbf{e}}_i + \frac{\mathbf{x}'}{|\mathbf{r}|}\vec{\mathbf{e}}_0.$$

The dual tangent frame E^j w.r.t. $\langle | \rangle$, obtained by solving Eqs $\langle E^j | \partial_{x^i} \rangle = \delta^j_i$, is

$$E^j = ec{e}_j - rac{x^j}{2|\mathbf{r}|^2}\mathbf{r} + rac{x^j}{2|\mathbf{r}|}ec{e}_0.$$

Write the Kepler metric ds_K^2 as $g_{ij} dx^i dx^j$. Claim: $g_{ij} = \delta_{ij}$, i.e., $ds_K^2 = \sum_i (dx^i)^2$. **Proof**. It suffice to prove that $g^{ij} = \delta_{ij}$. To do that, we note that

$$xE^{j} = (x^{j}\vec{e}_{0} - \frac{x^{j}}{2}\vec{e}_{0} + \frac{x^{j}}{2|\mathbf{r}|}\mathbf{r}) + (|\mathbf{r}|\vec{e}_{j} - \frac{x^{j}}{2|\mathbf{r}|}\mathbf{r} + \frac{x^{j}}{2|\mathbf{r}|}\mathbf{e}_{0}) = |\mathbf{r}|\vec{e}_{j} + x^{j}\vec{e}_{0}.$$

$$C_1 = \{x \in V \mid \det x = 0, \operatorname{tr} x > 0\}$$

is precisely the future light-cone in the Minkowski space. Since points on C_1 can be parametrized by $\mathbf{r} \in \mathbb{R}^3_*$: $x(\mathbf{r}) = (|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r} , we have (write $\mathbf{r} = x^i \vec{e}_i$)

$$\partial_{\mathbf{x}^i} = \vec{\mathbf{e}}_i + \frac{\mathbf{x}'}{|\mathbf{r}|}\vec{\mathbf{e}}_0.$$

The dual tangent frame E^j w.r.t. $\langle | \rangle$, obtained by solving Eqs $\langle E^j | \partial_{x^i} \rangle = \delta^j_i$, is

$$E^j = ec{e}_j - rac{x^j}{2|\mathbf{r}|^2}\mathbf{r} + rac{x^j}{2|\mathbf{r}|}ec{e}_0.$$

Write the Kepler metric $ds_{\mathcal{K}}^2$ as $g_{ij} dx^i dx^j$.

Claim: $g_{ij} = \delta_{ij}$, i.e., $ds_K^2 = \sum_i (dx^i)^2$. **Proof**. It suffice to prove that $g^{ij} = \delta_{ij}$. To do that, we note that

$$xE^{j} = (x^{j}\vec{e}_{0} - \frac{x^{j}}{2}\vec{e}_{0} + \frac{x^{j}}{2|\mathbf{r}|}\mathbf{r}) + (|\mathbf{r}|\vec{e}_{j} - \frac{x^{j}}{2|\mathbf{r}|}\mathbf{r} + \frac{x^{j}}{2|\mathbf{r}|}\mathbf{e}_{0}) = |\mathbf{r}|\vec{e}_{j} + x^{j}\vec{e}_{0}.$$

$$C_1 = \{x \in V \mid \det x = 0, \operatorname{tr} x > 0\}$$

is precisely the future light-cone in the Minkowski space. Since points on C_1 can be parametrized by $\mathbf{r} \in \mathbb{R}^3_*$: $x(\mathbf{r}) = (|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r} , we have (write $\mathbf{r} = x^i \vec{e}_i$)

$$\partial_{\mathbf{x}^i} = \vec{\mathbf{e}}_i + \frac{\mathbf{x}'}{|\mathbf{r}|}\vec{\mathbf{e}}_0.$$

The dual tangent frame E^{j} w.r.t. $\langle | \rangle$, obtained by solving Eqs $\langle E^{j} | \partial_{x^{i}} \rangle = \delta_{i}^{j}$, is

$$E^{j} = \vec{e}_{j} - \frac{x^{j}}{2|\mathbf{r}|^{2}}\mathbf{r} + \frac{x^{j}}{2|\mathbf{r}|}\vec{e}_{0}.$$

Write the Kepler metric ds_K^2 as $g_{ij} dx^i dx^j$. Claim: $g_{ij} = \delta_{ij}$, i.e., $ds_K^2 = \sum_i (dx^i)^2$. **Proof**. It suffice to prove that $g^{ij} = \delta_{ij}$. To do that, we note that

 $xE^{j} = (x^{j}\vec{e}_{0} - \frac{x^{j}}{2}\vec{e}_{0} + \frac{x^{j}}{2|\mathbf{r}|}\mathbf{r}) + (|\mathbf{r}|\vec{e}_{j} - \frac{x^{j}}{2|\mathbf{r}|}\mathbf{r} + \frac{x^{j}}{2|\mathbf{r}|}\mathbf{e}_{0}) = |\mathbf{r}|\vec{e}_{j} + x^{j}\vec{e}_{0}.$

$$C_1 = \{x \in V \mid \det x = 0, \operatorname{tr} x > 0\}$$

is precisely the future light-cone in the Minkowski space. Since points on C_1 can be parametrized by $\mathbf{r} \in \mathbb{R}^3_*$: $x(\mathbf{r}) = (|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r} , we have (write $\mathbf{r} = x^i \vec{e}_i$)

$$\partial_{\mathbf{x}^i} = \vec{\mathbf{e}}_i + \frac{\mathbf{x}'}{|\mathbf{r}|}\vec{\mathbf{e}}_0.$$

The dual tangent frame E^j w.r.t. $\langle | \rangle$, obtained by solving Eqs $\langle E^j | \partial_{x^i} \rangle = \delta^j_i$, is

$$E^j = ec{e}_j - rac{\chi^j}{2|\mathbf{r}|^2}\mathbf{r} + rac{\chi^j}{2|\mathbf{r}|}ec{e}_0.$$

Write the Kepler metric ds_{K}^{2} as $g_{ij} dx^{i} dx^{j}$. Claim: $g_{ij} = \delta_{ij}$, i.e., $ds_{K}^{2} = \sum_{i} (dx^{i})^{2}$. **Proof**. It suffice to prove that $g^{ij} = \delta_{ij}$. To do that, we note that

$$C_1 = \{x \in V \mid \det x = 0, \operatorname{tr} x > 0\}$$

is precisely the future light-cone in the Minkowski space. Since points on C_1 can be parametrized by $\mathbf{r} \in \mathbb{R}^3_*$: $x(\mathbf{r}) = (|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r} , we have (write $\mathbf{r} = x^i \vec{e}_i$)

$$\partial_{\mathbf{x}^i} = \vec{\mathbf{e}}_i + \frac{\mathbf{x}'}{|\mathbf{r}|}\vec{\mathbf{e}}_0.$$

The dual tangent frame E^{j} w.r.t. $\langle | \rangle$, obtained by solving Eqs $\langle E^{j} | \partial_{x^{i}} \rangle = \delta_{i}^{j}$, is

$$E^j = ec{e}_j - rac{\chi^j}{2|\mathbf{r}|^2}\mathbf{r} + rac{\chi^j}{2|\mathbf{r}|}ec{e}_0.$$

Write the Kepler metric ds_{K}^{2} as $g_{ij} dx^{i} dx^{j}$. Claim: $g_{ij} = \delta_{ij}$, i.e., $ds_{K}^{2} = \sum_{i} (dx^{i})^{2}$. **Proof**. It suffice to prove that $g^{ij} = \delta_{ij}$. To do that, we note that

$$xE^{j} = (x^{j}\vec{e}_{0} - \frac{x^{j}}{2}\vec{e}_{0} + \frac{x^{j}}{2|\mathbf{r}|}\mathbf{r}) + (|\mathbf{r}|\vec{e}_{j} - \frac{x^{j}}{2|\mathbf{r}|}\mathbf{r} + \frac{x^{j}}{2|\mathbf{r}|}\mathbf{e}_{0}) = |\mathbf{r}|\vec{e}_{j} + x^{j}\vec{e}_{0}.$$

$$g^{ij} = \frac{\langle E^i \mid xE^j \rangle}{|\mathbf{r}|} = \frac{|\mathbf{r}|\delta_{ij} - \frac{x^i x^j}{2|\mathbf{r}|} + \frac{x^i x^j}{2|\mathbf{r}|}}{|\mathbf{r}|} = \delta_{ij}.$$

Let us write the momentum *p* as $p_i dx^i$, since $ds_K^2 = \sum_i (dx^i)^2$, and $r = \langle x \mid e \rangle = \frac{1}{2} \text{tr} x = |\mathbf{r}|$, the hamiltonian of the dynamic model can be written as

$$\mathcal{H} = \frac{1}{2} \sum_{i} p_i^2 - \frac{1}{|\mathbf{r}|}.$$

That is precisely the hamiltonian of the Kepler problem!

Exercise. Continue the above discussion, please verify that

$$\mathcal{L}_{\vec{e}_1,\vec{e}_2} = L_3, \quad \mathcal{L}_{\vec{e}_2,\vec{e}_3} = L_1, \quad \mathcal{L}_{\vec{e}_3,\vec{e}_1} = L_2, \quad \mathcal{A}_{\vec{e}_i} = A_i, \quad \mathcal{A}_{\vec{e}_0} = 1.$$

Here L_i (resp. A_i) is the *i*-th component of the angular momentum (resp. Lenz vector) in the Kepler problem.

$$g^{ij} = \frac{\langle E^i \mid xE^j \rangle}{|\mathbf{r}|} = \frac{|\mathbf{r}|\delta_{ij} - \frac{x^i x^j}{2|\mathbf{r}|} + \frac{x^i x^j}{2|\mathbf{r}|}}{|\mathbf{r}|} = \delta_{ij}.$$

Let us write the momentum *p* as $p_i dx^i$, since $ds_K^2 = \sum_i (dx^i)^2$, and $r = \langle x \mid e \rangle = \frac{1}{2} \text{tr } x = |\mathbf{r}|$, the hamiltonian of the dynamic model can be written as

$$\mathcal{H} = \frac{1}{2} \sum_{i} p_i^2 - \frac{1}{|\mathbf{r}|}.$$

That is precisely the hamiltonian of the Kepler problem!

Exercise. Continue the above discussion, please verify that

$$\mathcal{L}_{\vec{e}_1,\vec{e}_2} = L_3, \quad \mathcal{L}_{\vec{e}_2,\vec{e}_3} = L_1, \quad \mathcal{L}_{\vec{e}_3,\vec{e}_1} = L_2, \quad \mathcal{A}_{\vec{e}_i} = A_i, \quad \mathcal{A}_{\vec{e}_0} = 1.$$

Here L_i (resp. A_i) is the *i*-th component of the angular momentum (resp. Lenz vector) in the Kepler problem.

$$g^{ij} = \frac{\langle E^i \mid xE^j \rangle}{|\mathbf{r}|} = \frac{|\mathbf{r}|\delta_{ij} - \frac{x^i x^j}{2|\mathbf{r}|} + \frac{x^i x^j}{2|\mathbf{r}|}}{|\mathbf{r}|} = \delta_{ij}.$$

Let us write the momentum *p* as $p_i dx^i$, since $ds_K^2 = \sum_i (dx^i)^2$, and $r = \langle x \mid e \rangle = \frac{1}{2} \text{tr } x = |\mathbf{r}|$, the hamiltonian of the dynamic model can be written as

$$\mathcal{H}=\frac{1}{2}\sum_{i}p_{i}^{2}-\frac{1}{|\mathbf{r}|}.$$

That is precisely the hamiltonian of the Kepler problem!

Exercise. Continue the above discussion, please verify that

$$\mathcal{L}_{\vec{e}_1,\vec{e}_2} = L_3, \quad \mathcal{L}_{\vec{e}_2,\vec{e}_3} = L_1, \quad \mathcal{L}_{\vec{e}_3,\vec{e}_1} = L_2, \quad \mathcal{A}_{\vec{e}_i} = A_i, \quad \mathcal{A}_{\vec{e}_0} = 1.$$

Here L_i (resp. A_i) is the *i*-th component of the angular momentum (resp. Lenz vector) in the Kepler problem.

$$g^{ij} = \frac{\langle E^i \mid xE^j \rangle}{|\mathbf{r}|} = \frac{|\mathbf{r}|\delta_{ij} - \frac{x^i x^j}{2|\mathbf{r}|} + \frac{x^i x^j}{2|\mathbf{r}|}}{|\mathbf{r}|} = \delta_{ij}.$$

Let us write the momentum *p* as $p_i dx^i$, since $ds_K^2 = \sum_i (dx^i)^2$, and $r = \langle x \mid e \rangle = \frac{1}{2} \text{tr } x = |\mathbf{r}|$, the hamiltonian of the dynamic model can be written as

$$\mathcal{H}=rac{1}{2}\sum_{i}p_{i}^{2}-rac{1}{|\mathbf{r}|}.$$

That is precisely the hamiltonian of the Kepler problem!

Exercise. Continue the above discussion, please verify that

$$\mathcal{L}_{\vec{e}_1,\vec{e}_2} = L_3, \quad \mathcal{L}_{\vec{e}_2,\vec{e}_3} = L_1, \quad \mathcal{L}_{\vec{e}_3,\vec{e}_1} = L_2, \quad \mathcal{A}_{\vec{e}_i} = A_i, \quad \mathcal{A}_{\vec{e}_0} = 1.$$

Here L_i (resp. A_i) is the *i*-th component of the angular momentum (resp. Lenz vector) in the Kepler problem.

To be continued

Thanks for your attention!

・ 同 ト ・ ヨ ト ・ ヨ ト

To be continued

Thanks for your attention!

Guowu Meng (HKUST)

Lecture IV

Varna, Bulgaria, June 9, 2015 8 / 8

A D A D A D