Kepler Problem and Formally Real Jordan Algebras IV

Guowu Meng

Department of Mathematics
Hong Kong University of Science and Technology

$17^{\text {th }}$ International Conference on
Geometry, Integrability and Quantization
Varna, Bulgaria, June 9, 2015

In the last lecture we arrived at the following procedure for producing many more integrable models of Kepler type:

A simple Euclidean Jordan algebra V
the conformal Lie algebra co
the associative algebra $\mathcal{T} K K$

Universal Kepler Problem

A generalized Kepler problem via a suitable realization of co

In the last lecture we arrived at the following procedure for producing many more integrable models of Kepler type:

$$
\text { A simple Euclidean Jordan algebra } V
$$

the conformal Lie algebra co
the associative algebra $\mathcal{T} K K$

Universal Kepler Problem

A generalized Kepler problem via a suitable realization of co

In the last lecture we arrived at the following procedure for producing many more integrable models of Kepler type:

$$
\text { A simple Euclidean Jordan algebra } V
$$

\Downarrow

the conformal Lie algebra co

the associative algebra $\mathcal{T} K K$

Universal Kepler Problem

A generalized Kepler problem via a suitable realization of co

In the last lecture we arrived at the following procedure for producing many more integrable models of Kepler type:

$$
\text { A simple Euclidean Jordan algebra } V
$$

the conformal Lie algebra co

```
\Downarrow
```

the associative algebra $\mathcal{T} K K$

> Universal Kepler Problem
\square

In the last lecture we arrived at the following procedure for producing many more integrable models of Kepler type:

A simple Euclidean Jordan algebra V
\Downarrow
the conformal Lie algebra co
\Downarrow
the associative algebra $\mathcal{T} K K$
\Downarrow
Universal Kepler Problem

In the last lecture we arrived at the following procedure for producing many more integrable models of Kepler type:

A simple Euclidean Jordan algebra V

\Downarrow
the conformal Lie algebra co
\Downarrow
the associative algebra $\mathcal{T} K K$
\Downarrow
Universal Kepler Problem
\Downarrow
A generalized Kepler problem via a suitable realization of $\mathfrak{c o}$

Recall that the conformal algebra of V has a Poisson realization on $T V$ in which X_{u} and Y_{v} can be realized as real-valued function

$$
\mathcal{X}_{u}=\langle x \mid\{\pi u \pi\}\rangle \quad \text { and } \quad \mathcal{Y}_{v}=\langle x \mid v\rangle
$$

respectively on $T V$. Since $H=\frac{1}{2} X_{0}-\frac{1}{\gamma_{0}}, H$ can be realized as

where $r=\langle x \mid e\rangle=\frac{1}{\operatorname{rank} v} \operatorname{tr} x$.
However,
\mathcal{H} is NOT even a real-valued function on TV!
To make sense of \mathcal{H}, we need to work on a small subspace of TV.

Recall that the conformal algebra of V has a Poisson realization on $T V$ in which X_{u} and Y_{v} can be realized as real-valued function

$$
\mathcal{X}_{u}=\langle x \mid\{\pi u \pi\}\rangle \quad \text { and } \quad \mathcal{Y}_{v}=\langle x \mid v\rangle
$$

respectively on $T V$. Since $H=\frac{1}{2} \frac{X_{e}}{Y_{e}}-\frac{1}{Y_{e}}, H$ can be realized as

$$
\mathcal{H}=\frac{1}{2} \frac{\left\langle x \mid \pi^{2}\right\rangle}{r}-\frac{1}{r}
$$

where $r=\langle x \mid e\rangle=\frac{1}{\operatorname{rank} v} \operatorname{tr} x$.
However,
\mathcal{H} is NOT even a real-valued function on TV!
To make sense of \mathcal{H}, we need to work on a small subspace of TV.

Recall that the conformal algebra of V has a Poisson realization on $T V$ in which X_{u} and Y_{v} can be realized as real-valued function

$$
\mathcal{X}_{u}=\langle x \mid\{\pi u \pi\}\rangle \quad \text { and } \quad \mathcal{Y}_{v}=\langle x \mid v\rangle
$$

respectively on $T V$. Since $H=\frac{1}{2} \frac{X_{e}}{Y_{e}}-\frac{1}{Y_{e}}, H$ can be realized as

$$
\mathcal{H}=\frac{1}{2} \frac{\left\langle x \mid \pi^{2}\right\rangle}{r}-\frac{1}{r}
$$

where $r=\langle x \mid e\rangle=\frac{1}{\operatorname{rank} v} \operatorname{tr} x$.
However,
\mathcal{H} is NOT even a real-valued function on $T V$!
To make sense of \mathcal{H}, we need to work on a small subspace of $T V$.

Recall that the conformal algebra of V has a Poisson realization on $T V$ in which X_{u} and Y_{v} can be realized as real-valued function

$$
\mathcal{X}_{u}=\langle x \mid\{\pi u \pi\}\rangle \quad \text { and } \quad \mathcal{Y}_{v}=\langle x \mid v\rangle
$$

respectively on $T V$. Since $H=\frac{1}{2} \frac{X_{e}}{Y_{e}}-\frac{1}{Y_{e}}$, H can be realized as

$$
\mathcal{H}=\frac{1}{2} \frac{\left\langle x \mid \pi^{2}\right\rangle}{r}-\frac{1}{r}
$$

where $r=\langle x \mid e\rangle=\frac{1}{\operatorname{rank} v} \operatorname{tr} x$.
However,
\mathcal{H} is NOT even a real-valued function on $T V$!
To make sense of \mathcal{H}, we need to work on a small subspace of $T V$.

Kepler cones

Theorem (G. W. Meng, 2011)
Let k be a positive integer which is at most rank V, and C_{k} be the set of rank-k semi-positive elements of V.

\square
is a positive-definite quadratic form on $T_{x}^{*} C_{k}$.

These quadratic forms in the theorem define a Riemannian metric on C_{k} (called the Kepler metric), and shall be denoted by $(,)_{K}$

Claim: The dynamic model with configuration space C_{k}, Lagrangian
$L=\frac{1}{2}(\dot{x}, \dot{x})_{K}^{2}+\frac{1}{r}$ or Hamiltonian

is a super integrable model of Kepler type.

Kepler cones

Theorem (G. W. Meng, 2011)
Let k be a positive integer which is at most rank V, and C_{k} be the set of rank-k semi-positive elements of V. Then C_{k} is a manifold.
for any $x \in C_{k}$, 1) $T_{x} C_{k}=\{x\} \times \operatorname{Im} L_{x}$, 2) The map
\square
is a positive-definite quadratic form on $T_{x}^{*} C_{k}$

> These quadratic forms in the theorem define a Riemannian metric on C_{k} (called the Kepler metric), and shall be denoted by $(,)_{K}$

> Claim: The dynamic model with configuration space C_{k}, Lagrangian
> $L=\frac{1}{2}(\dot{x}, \dot{x})_{K}^{2}+\frac{1}{r}$ or Hamiltonian

Kepler cones

Theorem (G. W. Meng, 2011)
Let k be a positive integer which is at most rank V, and C_{k} be the set of rank-k semi-positive elements of V. Then C_{k} is a manifold. Moreover, for any $\left.x \in C_{k}, 1\right) T_{x} C_{k}=\{x\} \times \operatorname{Im} L_{x}$, 2) The map
\square
These quadratic forms in the theorem define a Riemannian metric on C_{k} (called the Kepler metric), and shall be denoted by $(,)_{K}$ Claim: The dynamic model with configuration space C_{k}, Lagrangian $L=\frac{1}{2}(\dot{x}, \dot{x})_{K}^{2}+\frac{1}{r}$ or Hamiltonian

Kepler cones

Theorem (G. W. Meng, 2011)
Let k be a positive integer which is at most rank V, and C_{k} be the set of rank-k semi-positive elements of V. Then C_{k} is a manifold. Moreover, for any $x \in C_{k}$, 1) $T_{x} C_{k}=\{x\} \times \operatorname{Im} L_{x}$, 2) The map

$$
\langle\pi \mid\rangle \mapsto \frac{\mathcal{X}_{e}}{\mathcal{Y}_{e}}=\frac{\left\langle x \mid \pi^{2}\right\rangle}{\langle x \mid e\rangle}=\frac{\langle\pi \mid x \pi\rangle}{r}
$$

is a positive-definite quadratic form on $T_{x}^{*} C_{k}$.
\square
These quadratic forms in the theorem define a Riemannian metric on C_{k} (called the Kepler metric), and shall be denoted by $(,)_{K}$. Claim: The dynamic model with configuration space C_{k}, I agrangian $L=\frac{1}{2}(\dot{x}, \dot{x})_{K}^{2}+\frac{1}{r}$ or Hamiltonian

Kepler cones

Theorem (G. W. Meng, 2011)

Let k be a positive integer which is at most rank V, and C_{k} be the set of rank-k semi-positive elements of V. Then C_{k} is a manifold. Moreover, for any $x \in C_{k}$, 1) $T_{x} C_{k}=\{x\} \times \operatorname{Im} L_{x}$, 2) The map

$$
\langle\pi \mid\rangle \mapsto \frac{\mathcal{X}_{e}}{\mathcal{Y}_{e}}=\frac{\left\langle x \mid \pi^{2}\right\rangle}{\langle x \mid e\rangle}=\frac{\langle\pi \mid x \pi\rangle}{r}
$$

is a positive-definite quadratic form on $T_{x}^{*} C_{k}$.
These quadratic forms in the theorem define a Riemannian metric on C_{k} (called the Kepler metric), and shall be denoted by $(,)_{K}$.

Kepler cones

Theorem (G. W. Meng, 2011)

Let k be a positive integer which is at most rank V, and C_{k} be the set of rank-k semi-positive elements of V. Then C_{k} is a manifold. Moreover, for any $x \in C_{k}$, 1) $T_{x} C_{k}=\{x\} \times \operatorname{Im} L_{x}$, 2) The map

$$
\langle\pi \mid\rangle \mapsto \frac{\mathcal{X}_{e}}{\mathcal{Y}_{e}}=\frac{\left\langle x \mid \pi^{2}\right\rangle}{\langle x \mid e\rangle}=\frac{\langle\pi \mid x \pi\rangle}{r}
$$

is a positive-definite quadratic form on $T_{x}^{*} C_{k}$.
These quadratic forms in the theorem define a Riemannian metric on C_{k} (called the Kepler metric), and shall be denoted by $(,)_{K}$.
Claim: The dynamic model with configuration space C_{k}, Lagrangian $L=\frac{1}{2}(\dot{x}, \dot{x})_{K}^{2}+\frac{1}{r}$ or Hamiltonian

$$
\mathcal{H}=\frac{1}{2}\|p\|_{K}^{2}-\frac{1}{r}
$$

is a super integrable model of Kepler type.

Kepler problem and future light-cone

The purpose here is to verify this claim: If $V=\Gamma(3):=\mathbb{R} \oplus \mathbb{R}^{3}$ and $k=1$, then the dynamical model mentioned in the last slide is exactly the Kepler problem.

> In terms of the standard basis vectors $\vec{e}_{0}, \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$, the Jordan multiplication can be determined by the following rules: \vec{e}_{0} is the identity element, and

$$
\vec{e}_{i} \vec{e}_{j}=\delta_{i j} \vec{e}_{0}
$$

for $i, j>0$. The trace $\operatorname{tr}: V \rightarrow \mathbb{R}$ is given by the following rules:

$$
\operatorname{tr} \vec{e}_{0}=2, \quad \operatorname{tr} \vec{e}_{i}=0
$$

So the inner product on V is the one such that the standard basis is an orthonormal basis. Since V has rank two, the determinant of $x=x^{\mu} \vec{e}_{\mu}$

Kepler problem and future light-cone

The purpose here is to verify this claim: If $V=\Gamma(3):=\mathbb{R} \oplus \mathbb{R}^{3}$ and $k=1$, then the dynamical model mentioned in the last slide is exactly the Kepler problem.
In terms of the standard basis vectors $\vec{e}_{0}, \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$, the Jordan multiplication can be determined by the following rules: \vec{e}_{0} is the identity element, and

$$
\vec{e}_{i} \vec{e}_{j}=\delta_{i j} \vec{e}_{0}
$$

for $i, j>0$. The trace $\mathrm{tr}: V \rightarrow \mathbb{R}$ is given by the following rules:

$$
\operatorname{tr} \vec{e}_{0}=2, \quad \operatorname{tr} \vec{e}_{i}=0
$$

So the inner product on V is the one such that the standard basis is an orthonormal basis. Since V has rank two, the determinant of $x=x^{\mu} \vec{e}_{\mu}$

Kepler problem and future light-cone

The purpose here is to verify this claim: If $V=\Gamma(3):=\mathbb{R} \oplus \mathbb{R}^{3}$ and $k=1$, then the dynamical model mentioned in the last slide is exactly the Kepler problem.
In terms of the standard basis vectors $\vec{e}_{0}, \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$, the Jordan multiplication can be determined by the following rules: \vec{e}_{0} is the identity element, and

$$
\vec{e}_{i} \vec{e}_{j}=\delta_{i j} \vec{e}_{0}
$$

for $i, j>0$. The trace $\operatorname{tr}: V \rightarrow \mathbb{R}$ is given by the following rules:

$$
\operatorname{tr} \vec{e}_{0}=2, \quad \operatorname{tr} \vec{e}_{i}=0
$$

So the inner product on V is the one such that the standard basis is an orthonormal basis. Since V has rank two, the determinant of $x=x^{\mu} \vec{e}_{\mu}$

Kepler problem and future light-cone

The purpose here is to verify this claim: If $V=\Gamma(3):=\mathbb{R} \oplus \mathbb{R}^{3}$ and $k=1$, then the dynamical model mentioned in the last slide is exactly the Kepler problem.
In terms of the standard basis vectors $\vec{e}_{0}, \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$, the Jordan multiplication can be determined by the following rules: \vec{e}_{0} is the identity element, and

$$
\vec{e}_{i} \vec{e}_{j}=\delta_{i j} \vec{e}_{0}
$$

for $i, j>0$. The trace $\operatorname{tr}: V \rightarrow \mathbb{R}$ is given by the following rules:

$$
\operatorname{tr} \vec{e}_{0}=2, \quad \operatorname{tr} \vec{e}_{i}=0
$$

So the inner product on V is the one such that the standard basis is an orthonormal basis.

Kepler problem and future light-cone

The purpose here is to verify this claim: If $V=\Gamma(3):=\mathbb{R} \oplus \mathbb{R}^{3}$ and $k=1$, then the dynamical model mentioned in the last slide is exactly the Kepler problem.
In terms of the standard basis vectors $\vec{e}_{0}, \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$, the Jordan multiplication can be determined by the following rules: \vec{e}_{0} is the identity element, and

$$
\vec{e}_{i} \vec{e}_{j}=\delta_{i j} \vec{e}_{0}
$$

for $i, j>0$. The trace $\operatorname{tr}: V \rightarrow \mathbb{R}$ is given by the following rules:

$$
\operatorname{tr} \vec{e}_{0}=2, \quad \operatorname{tr} \vec{e}_{i}=0 .
$$

So the inner product on V is the one such that the standard basis is an orthonormal basis. Since V has rank two, the determinant of $x=x^{\mu} \vec{e}_{\mu}$ is

$$
\operatorname{det} x=\frac{1}{2}\left((\operatorname{tr} x)^{2}-\operatorname{tr} x^{2}\right)=\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2} .
$$

Therefore, the Kepler cone

$$
C_{1}=\{x \in V \mid \operatorname{det} x=0, \operatorname{tr} x>0\}
$$

is precisely the future light-cone in the Minkowski space. Since points
on C_{1} can be parametrized by $r \in \mathbb{R}_{*}^{3}: x(r)=(|r|, r)$ where $|r|$ is the length of \mathbf{r}, we have (write $\mathbf{r}=x^{i} \vec{e}_{i}$)

The dual tangent frame E^{j} w.r.t. $\langle\mid\rangle$, obtained by solving Eqs $\left\langle E^{j} \mid \partial_{x^{i}}\right\rangle=\delta_{i}^{j}$, is

Write the Kepler metric $\mathrm{d} s_{K}^{2}$ as $g_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}$.
Claim: $g_{i j}=\delta_{i j}$, i.e., $\mathrm{d} s_{K}^{2}=\sum_{i}\left(\mathrm{~d} x^{i}\right)^{2}$.
Proof. It suffice to prove that $g^{i j}=\delta_{i j}$. To do that, we note that

Therefore, the Kepler cone

$$
C_{1}=\{x \in V \mid \operatorname{det} x=0, \operatorname{tr} x>0\}
$$

is precisely the future light-cone in the Minkowski space. Since points on C_{1} can be parametrized by $\mathbf{r} \in \mathbb{R}_{*}^{3}: x(\mathbf{r})=(|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r}, we have (write $\mathbf{r}=x^{i} \vec{e}_{i}$)

$$
\partial_{x^{i}}=\vec{e}_{i}+\frac{x^{i}}{|\mathbf{r}|} \vec{e}_{0}
$$

Therefore, the Kepler cone

$$
C_{1}=\{x \in V \mid \operatorname{det} x=0, \operatorname{tr} x>0\}
$$

is precisely the future light-cone in the Minkowski space. Since points on C_{1} can be parametrized by $\mathbf{r} \in \mathbb{R}_{*}^{3}: x(\mathbf{r})=(|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r}, we have (write $\mathbf{r}=x^{i} \vec{e}_{i}$)

$$
\partial_{x^{i}}=\vec{e}_{i}+\frac{x^{i}}{|\mathbf{r}|} \vec{e}_{0}
$$

The dual tangent frame E^{j} w.r.t. $\langle\mid\rangle$, obtained by solving Eqs $\left\langle E^{j} \mid \partial_{x^{i}}\right\rangle=\delta_{i}^{j}$, is

$$
E^{j}=\vec{e}_{j}-\frac{x^{j}}{2|\mathbf{r}|^{2}} \mathbf{r}+\frac{x^{j}}{2|\mathbf{r}|} \vec{e}_{0}
$$

Write the Kepler metri
Claim: $g_{i j}=\delta_{i j}$, i.e., ds
Proof. It suffice to pro
$x E^{j}=\left(x^{j} e_{0}-\frac{x^{j}}{2} e_{0}\right.$

Therefore, the Kepler cone

$$
C_{1}=\{x \in V \mid \operatorname{det} x=0, \operatorname{tr} x>0\}
$$

is precisely the future light-cone in the Minkowski space. Since points on C_{1} can be parametrized by $\mathbf{r} \in \mathbb{R}_{*}^{3}: x(\mathbf{r})=(|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r}, we have (write $\mathbf{r}=x^{i} \vec{e}_{i}$)

$$
\partial_{x^{i}}=\vec{e}_{i}+\frac{x^{i}}{|\mathbf{r}|} \vec{e}_{0}
$$

The dual tangent frame E^{j} w.r.t. $\langle\mid\rangle$, obtained by solving Eqs
$\left\langle E^{j} \mid \partial_{x^{i}}\right\rangle=\delta_{i}^{j}$, is

$$
E^{j}=\vec{e}_{j}-\frac{x^{j}}{2|\mathbf{r}|^{2}} \mathbf{r}+\frac{x^{j}}{2|\mathbf{r}|} \vec{e}_{0}
$$

Write the Kepler metric $\mathrm{d} s_{K}^{2}$ as $g_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}$.
Proof. It suffice to prove that $g^{i j}=\delta_{i j}$. To do that, we note that

Therefore, the Kepler cone

$$
C_{1}=\{x \in V \mid \operatorname{det} x=0, \operatorname{tr} x>0\}
$$

is precisely the future light-cone in the Minkowski space. Since points on C_{1} can be parametrized by $\mathbf{r} \in \mathbb{R}_{*}^{3}: x(\mathbf{r})=(|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r}, we have (write $\mathbf{r}=x^{i} \vec{e}_{i}$)

$$
\partial_{x^{i}}=\vec{e}_{i}+\frac{x^{i}}{|\mathbf{r}|} \vec{e}_{0}
$$

The dual tangent frame E^{j} w.r.t. $\langle\mid\rangle$, obtained by solving Eqs
$\left\langle E^{j} \mid \partial_{x^{i}}\right\rangle=\delta_{i}^{j}$, is

$$
E^{j}=\vec{e}_{j}-\frac{x^{j}}{2|\mathbf{r}|^{2}} \mathbf{r}+\frac{x^{j}}{2|\mathbf{r}|} \vec{e}_{0}
$$

Write the Kepler metric $\mathrm{d} s_{K}^{2}$ as $g_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}$.
Claim: $g_{i j}=\delta_{i j}$, i.e., $\mathrm{d} s_{K}^{2}=\sum_{i}\left(\mathrm{~d} x^{i}\right)^{2}$.

Therefore, the Kepler cone

$$
C_{1}=\{x \in V \mid \operatorname{det} x=0, \operatorname{tr} x>0\}
$$

is precisely the future light-cone in the Minkowski space. Since points on C_{1} can be parametrized by $\mathbf{r} \in \mathbb{R}_{*}^{3}: x(\mathbf{r})=(|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r}, we have (write $\mathbf{r}=x^{i} \vec{e}_{i}$)

$$
\partial_{x^{i}}=\vec{e}_{i}+\frac{x^{i}}{|\mathbf{r}|} \vec{e}_{0}
$$

The dual tangent frame E^{j} w.r.t. $\langle\mid\rangle$, obtained by solving Eqs
$\left\langle E^{j} \mid \partial_{x^{i}}\right\rangle=\delta_{i}^{j}$, is

$$
E^{j}=\vec{e}_{j}-\frac{x^{j}}{2|\mathbf{r}|^{2}} \mathbf{r}+\frac{x^{j}}{2|\mathbf{r}|} \vec{e}_{0}
$$

Write the Kepler metric $\mathrm{d} s_{K}^{2}$ as $g_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}$.
Claim: $g_{i j}=\delta_{i j}$, i.e., $\mathrm{d} s_{K}^{2}=\sum_{i}\left(\mathrm{~d} x^{i}\right)^{2}$.
Proof. It suffice to prove that $g^{i j}=\delta_{i j}$.

Therefore, the Kepler cone

$$
C_{1}=\{x \in V \mid \operatorname{det} x=0, \operatorname{tr} x>0\}
$$

is precisely the future light-cone in the Minkowski space. Since points on C_{1} can be parametrized by $\mathbf{r} \in \mathbb{R}_{*}^{3}: x(\mathbf{r})=(|\mathbf{r}|, \mathbf{r})$ where $|\mathbf{r}|$ is the length of \mathbf{r}, we have (write $\mathbf{r}=x^{i} \vec{e}_{i}$)

$$
\partial_{x^{i}}=\vec{e}_{i}+\frac{x^{i}}{|\mathbf{r}|} \vec{e}_{0}
$$

The dual tangent frame E^{j} w.r.t. $\langle\mid\rangle$, obtained by solving Eqs
$\left\langle E^{j} \mid \partial_{x^{i}}\right\rangle=\delta_{i}^{j}$, is

$$
E^{j}=\vec{e}_{j}-\frac{x^{j}}{2|\mathbf{r}|^{2}} \mathbf{r}+\frac{x^{j}}{2|\mathbf{r}|} \vec{e}_{0}
$$

Write the Kepler metric $\mathrm{d} s_{K}^{2}$ as $g_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}$.
Claim: $g_{i j}=\delta_{i j}$, i.e., $\mathrm{d} s_{K}^{2}=\sum_{i}\left(\mathrm{~d} x^{i}\right)^{2}$.
Proof. It suffice to prove that $g^{i j}=\delta_{i j}$. To do that, we note that

$$
x E^{j}=\left(x^{j} \vec{e}_{0}-\frac{x^{j}}{2} e_{0}+\frac{x^{j}}{2 \mid \mathbf{r} \backslash} \mathbf{r}\right)+\left(|\mathbf{r}| \vec{e}_{j}-\frac{x^{j}}{2|\mathbf{r}|} \mathbf{r}+\frac{x^{j}}{2} e_{0}\right)=|\mathbf{r}| \vec{e}_{j}+x^{j} \vec{e}_{0}
$$

So, because $E^{i}=\vec{e}_{i}-\frac{x^{i}}{2 r^{2}} \mathbf{r}+\frac{x^{i}}{2|r|} \vec{e}_{0}$ and $x E^{j}=|\mathbf{r}| \vec{e}_{j}+x^{j} \vec{e}_{0}$, we have

$$
g^{i j}=\frac{\left\langle E^{i} \mid x E^{j}\right\rangle}{|\mathbf{r}|}=\frac{|\mathbf{r}| \delta_{i j}-\frac{x^{i} x^{j}}{2|\mathbf{r}|}+\frac{x^{i} x^{j}}{2|\mathbf{r}|}}{|\mathbf{r}|}=\delta_{i j} .
$$

Let us write the momentum p as $p_{i} \mathrm{~d} x^{i}$, since $\mathrm{d} s_{K}^{2}=\sum_{i}\left(\mathrm{~d} x^{i}\right)^{2}$, and $r=\langle x \mid e\rangle=\frac{1}{2} \operatorname{tr} x=|\mathbf{r}|$, the hamiltonian of the dynamic model can be

 written as

That is precisely the hamiltonian of the Kepler problem!

Exercise. Continue the above discussion, please verify that

$$
\mathcal{L}_{\vec{e}_{1}, \vec{e}_{2}}=L_{3}, \quad \mathcal{L}_{\vec{e}_{2}, \vec{e}_{3}}=L_{1}, \quad \mathcal{L}_{\vec{e}_{3}, \vec{e}_{1}}=L_{2}, \quad \mathcal{A}_{\vec{e}_{i}}=A_{i}, \quad \mathcal{A}_{\vec{e}_{0}}=1
$$

Here $L_{i}\left(\right.$ resp. $\left.A_{i}\right)$ is the i-th component of the angular momentum (resp. Lenz vector) in the Kepler problem.

So, because $E^{i}=\vec{e}_{i}-\frac{x^{i}}{2 r^{2}} \mathbf{r}+\frac{x^{i}}{2|r|} \vec{e}_{0}$ and $x E^{j}=|\mathbf{r}| \vec{e}_{j}+x^{j} \vec{e}_{0}$, we have

$$
g^{i j}=\frac{\left\langle E^{i} \mid x E^{j}\right\rangle}{|\mathbf{r}|}=\frac{|\mathbf{r}| \delta_{i j}-\frac{x^{i} x^{j}}{2|\mathbf{r}|}+\frac{x^{i} x^{j}}{2|\mathbf{r}|}}{|\mathbf{r}|}=\delta_{i j}
$$

Let us write the momentum p as $p_{i} \mathrm{~d} x^{i}$, since $\mathrm{d} s_{K}^{2}=\sum_{i}\left(\mathrm{~d} x^{i}\right)^{2}$, and $r=\langle x \mid e\rangle=\frac{1}{2} \operatorname{tr} x=|\mathbf{r}|$,

written as

That is precisely the hamiltonian of the Kepler problem!

Exercise. Continue the above discussion, please verify that

$$
\mathcal{L}_{\vec{e}_{1}, \vec{e}_{2}}=L_{3}, \quad \mathcal{L}_{\vec{e}_{2}, \vec{e}_{3}}=L_{1}, \quad \mathcal{L}_{\vec{e}_{3}, \vec{e}_{1}}=L_{2}, \quad \mathcal{A}_{\vec{e}_{i}}=A_{i}, \quad \mathcal{A}_{\vec{e}_{0}}=1 .
$$

Here $L_{i}\left(\right.$ resp. $\left.A_{i}\right)$ is the i-th component of the angular momentum
(resp. Lenz vector) in the Kepler problem.

So, because $E^{i}=\vec{e}_{i}-\frac{x^{i}}{2 r^{2}} \mathbf{r}+\frac{x^{i}}{2|r|} \vec{e}_{0}$ and $x E^{j}=|\mathbf{r}| \vec{e}_{j}+x^{j} \vec{e}_{0}$, we have

$$
g^{i j}=\frac{\left\langle E^{i} \mid x E^{j}\right\rangle}{|\mathbf{r}|}=\frac{|\mathbf{r}| \delta_{i j}-\frac{x^{i} x^{j}}{2|\mathbf{r}|}+\frac{x^{i} x^{j}}{2|\mathbf{r}|}}{|\mathbf{r}|}=\delta_{i j} .
$$

Let us write the momentum p as $p_{i} \mathrm{~d} x^{i}$, since $\mathrm{d} s_{K}^{2}=\sum_{i}\left(\mathrm{~d} x^{i}\right)^{2}$, and $r=\langle x \mid e\rangle=\frac{1}{2} \operatorname{tr} x=|\mathbf{r}|$, the hamiltonian of the dynamic model can be written as

$$
\mathcal{H}=\frac{1}{2} \sum_{i} p_{i}^{2}-\frac{1}{|\mathbf{r}|}
$$

That is precisely the hamiltonian of the Kepler problem!
Exercise. Continue the above discussion, please verify that

So, because $E^{i}=\vec{e}_{i}-\frac{x^{i}}{2 r^{2}} \mathbf{r}+\frac{x^{i}}{2|r|} \vec{e}_{0}$ and $x E^{j}=|\mathbf{r}| \vec{e}_{j}+x^{j} \vec{e}_{0}$, we have

$$
g^{i j}=\frac{\left\langle E^{i} \mid x E^{j}\right\rangle}{|\mathbf{r}|}=\frac{|\mathbf{r}| \delta_{i j}-\frac{x^{i} x^{j}}{2|\mathbf{r}|}+\frac{x^{i} x^{j}}{2|\mathbf{r}|}}{|\mathbf{r}|}=\delta_{i j} .
$$

Let us write the momentum p as $p_{i} \mathrm{~d} x^{i}$, since $\mathrm{d} s_{K}^{2}=\sum_{i}\left(\mathrm{~d} x^{i}\right)^{2}$, and $r=\langle x \mid e\rangle=\frac{1}{2} \operatorname{tr} x=|\mathbf{r}|$, the hamiltonian of the dynamic model can be written as

$$
\mathcal{H}=\frac{1}{2} \sum_{i} p_{i}^{2}-\frac{1}{|\mathbf{r}|}
$$

That is precisely the hamiltonian of the Kepler problem!
Exercise. Continue the above discussion, please verify that

$$
\mathcal{L}_{\vec{e}_{1}, \vec{e}_{2}}=L_{3}, \quad \mathcal{L}_{\vec{e}_{2}, \vec{e}_{3}}=L_{1}, \quad \mathcal{L}_{\vec{e}_{3}, \vec{e}_{1}}=L_{2}, \quad \mathcal{A}_{\vec{e}_{i}}=A_{i}, \quad \mathcal{A}_{\vec{e}_{0}}=1
$$

Here $L_{i}\left(\right.$ resp. $\left.A_{i}\right)$ is the i-th component of the angular momentum (resp. Lenz vector) in the Kepler problem.

To be continued

Thanks for your attention!

To be continued

Thanks for your attention!

