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Let A be an Z/2Z-graded, associative and graded commutative
algebra.The degree of an element a ∈ A will be denoted by |a|, the
same for the degree of an application; we shall consider derivations
of A. A map δ : A → A is a derivation if for any a, b ∈ A, one has:

δ(ab) = δ(a)b + (−1)|a||δ|aδ(b).

It’s well-known that the space of derivations of a commutative
associative algebra is a Lie algebra through commutator, a generic
example being derivations of the algebra of smooth functions on a
differentiable manifold, isomorphic to the Lie algebra of tangent
vector fields through Lie derivative. This fact generalizes to the
Z/2Z-graded case: graded bracket of derivations induces a Lie
superalgebra structure, as can easily be deduced from the formula:

[δ1, δ2] = δ1 ◦ δ2 − (−1)|δ1||δ2|δ2 ◦ δ1.

For basic definitions and results about superalgebra, see [DM ].
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We shall generalize here the construction of Virasoro algebra from
the commutative and associative algebra of smooth functions on
the unit circle with its natural derivative (cf.[GR ] for basic results
about Virasoro algebra). Let δ be a derivation of A, and a ∈ A,
then aδ defined as [aδ](b) = aδ(b), is a derivation of degree
|aδ| = |a|+ |δ|; so if δ is even, then |aδ| = |a|. One can then
define the graded commutator of two such derivations as:

[aδ, bδ] = (aδb − (−1)|a||b|bδa)δ.
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One obtains a Lie superalgebra denoted by V(A) which can be
called virasorisation of A; the parity satisfies: V(A)i is isomorphic
to Ai for i = 0, 1 modulo 2. One thus recover Virasoro algebra
together with some of its supersymmetric partners, such as
superconformal algebras like Vect(1|1), but that construction is far
more general (cf.[OR ], appendix).

Claude ROGER ALGEBRAS GENERATED BY ODD DERIVATIONS



About virasorisation
When the derivation is odd

About odd derivations
In way of motivation

In that case, we can define a graded space V(A), generated by the
aδ, and V(A)i is isomorphic to Ai+1 for i = 0, 1 modulo 2.
The choice of signs in the bracket of V(A) is imposed by parity;
elementary computations shows that in order to cancel all terms in
δ2 (in physicist’s language, the algebra must ”close”), one must
set:

[aδ, bδ] = (aδb + (−1)(|a|+1)(|b|+1)bδa)δ

The bracket is then a commutator if |a| = |b| = 0, an
anticommutator in all other cases, one has to study the kind of
algebraic structures we just obtained.
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V(A)0 × V(A)0 → V(A)0

V(A)0 × V(A)1 → V(A)1

V(A)1 × V(A)1 → V(A)0

One can check immediately that those multiplications satisfy the
same symmetry-antisymmetry conditions as the Lie antialgebras
defined and studied by Valentin Ovsienko in [O ].
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Let’s first consider an important particular case, when A is the
algebra of functions on the supercircle S1|1 in variables t, θ, and
when δ = Dθ = θ ∂∂t −

∂
∂θ (remember the relation Dθ ◦ Dθ = ∂

∂t ).
This algebra will be denoted V(A(1)). One has then :
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The bracket [, ] associated with δ = Dθ provides V(A(1)) with a
Lie antialgebra structure isomorphic to the one denoted as AK(1)
in [O ].
The proposition is a consequence of a direct computation, the
product of two elements of V(A(1)) satisfies:

[(u + θφ)Dθ, (v + θψ)Dθ] = (uψ + vφ+ θ(uv ′ − vu′ + 2φψ))Dθ

On using suitable trigonometrical bases we recover formulas of [O ]
.
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It’s now natural to study the case when odd dimension N is
arbitrary: to any odd derivation δ of a superalgebra A is associated
a graded algebra denoted as V(A, δ). We no longer have any Lie
antialgebra structure if N > 2, on the other hand:
Proposition:
The even part V(A, δ)0 is a Jordan algebra, and if furthermore
δ2 = 0 the odd part V(A, δ)1 is a Jordan module.
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Jordan algebras were first considered by the theoretical physicist
Pascual Jordan (1902-1980) who used them to find the most
suitable mathematical formalism in quantum mechanics. We shall
not discuss here Jordan algebras in details, let’s simply describe the
standard example: take the algebra of square matrices, and
symmetrize the product, you get a commutative but non
associative algebra. For basic results on Jordan algebras, cf.[MC ].
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For our proof, the definition will be sufficient: a commutative
algebra with product . is a Jordan algebra if for every x , y , one has:

(x .y).(x .x) = x .(y .(x .x)).(J1)

(Jordan identity) Let’s first compute with even elements of type aδ
where |a| = 1; in this case the product is commutative
:aδ.bδ = (aδb + bδa)δ. One finds:
[aδ, aδ] = 2aδaδ
[bδ, [aδ, aδ]] = (2aδaδb + 2bδaδa + 2abδ2a)δ
[aδ, [bδ, [aδ, aδ]]] = (6aδaδbδb)δ + (2bδaδaδa)δ
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In particular terms in δ2 cancel miraculously. Besides,
[aδ, bδ] = (aδb + bδa)δ
[[aδ, aδ][aδ, bδ]] = (6aδaδbδb)δ + (2bδaδaδa)δ.
So one has [[aδ, aδ][aδ, bδ]] = [aδ, [bδ, [aδ, aδ]]], which prove the
first part of the proposition.
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For the sequel, let’s say first what Jordan modules are: we say that
M is a module on Jordan algebra A if there are left and right
actions such that a.m = m.a for any a ∈ A and m ∈ M, and such
that space A + M with the multiplication
(a,m).(b, n) = (a.b, a.n + m.b) be a Jordan algebra.
If one developes and check formulas J1 for A + M, one obtains two
independant conditions :
[aδ, aδ].(aδ.nδ) = aδ.([aδ, aδ].nδ)(J2)
[aδ, aδ].(bδ.mδ) + 2[aδ, bδ].(aδ.mδ) =
[bδ, [aδ, aδ]].mδ + 2aδ.(bδ.(aδ.mδ))(J3)
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Everything can be worked out explicitly, taking care of parities:
|a| = |δn| = 1 |n| = |δa| = 0. One finds:

[aδ, aδ].(aδ.nδ) = (6aδaδaδn + 2nδaδaδa)δ = aδ.([aδ, aδ].nδ)

[aδ, aδ].(bδ.mδ)+2[aδ, bδ].(aδ.mδ) = 12aδaδaδn+6bδmδaδa+6mδaδaδb = [bδ, [aδ, aδ]].mδ+2aδ.(bδ.(aδ.mδ))

For δ2 6= 0, as for example for δ = Dθi = θi
∂
∂t −

∂
∂θi

on A(N) the

algebra of functions on the supercircle S1|N in variables
t, θi , i = 1....N the proof fails .
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Conjecture:

For δ2 = 0, the graded commutative algebra V(A, δ) is a Jordan
superalgebra (cf. [MC ][KM ] for definitions).
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Derivations of (super)symplectic structures
Sketch of classification for N = 2

There exists two different kind of supersymplectic structures
according to parity of the form:

orthosymplectic or even supersymplectic structures. For
canonical coordinates pi , qi , θj , i = 1....n, j = 1...N on a
2n|N-dimensional manifold, the form reads as
ω =

∑n
i=1 dqi ∧ dpi +

∑N
j=1

1
2dθ

2
j , and the corresponding

Poisson bracket satisfies:

{f , g} =
n∑

i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi
) +

N∑
j=1

∂f

δθj

∂g

δθj
.

périplectic or odd symplectic structures on N|N-dimensional
manifolds, with coordinates xi , θi , i = 1....n the form is the
following ω =

∑N
i=1 dxi ∧ dθi while Poisson bracket reads as:

{f , g} =
N∑
i=1

(
∂f

∂xi

∂g

∂θi
− ∂f

∂xi

∂g

∂θi
).
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Derivations of (super)symplectic structures
Sketch of classification for N = 2

Adjoint action of a ∈ A for those respective Poisson brackets
defines an odd derivation of A, if a is odd (orthosymplectic case),
or even (periplectic case).Condition δ2 = 0 can be interpreted as a
cancellation of self-bracket of an odd vector field, cf. ”Master
Equation” type equations for BV-structures.
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Derivations of (super)symplectic structures
Sketch of classification for N = 2

Let’s consider the algebra A(2) of functions on the supercircle S1|2

with variables (t, θ1, θ2), and find an odd operator
D = A∂t + U1∂θ1 + U2∂θ2 such that D2 = 0 (so that A is odd, and
U1,U2 even). One deduces three differential equations in
A,U1,U2, it gives six equations in six unknown functions on S1,
and one easily gets the general form of the solution:

D = λ(u2θ1 − u1θ2)∂t + (u1 + λu′1θ1θ2)∂θ1 + (u2 + λu′2θ1θ2)∂θ2 ,

λ being an arbitrary scalar, and u1, u2 being arbitrary functions in t.
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The algebraic structure of infinite dimensional integrable systems
theory is extensively developed in [D ]. The well known KP
hierarchies are obtained through construction of square root of
stationary Schrödinger type operators ∂2x + u(x) in space
dimension 1, after a detailed study of the algebra of
pseudodifferential symbols in ∂x . But what can we do with
Schrödinger type operators when non stationary, or more generally
when dimension is greater than 1?
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This type of operator has been studied from infinite dimensional
Poisson geometry point of view for a particular case in [RU1 ], and
slightly extended in the book [RU2 ], using Schrödinger -Virasoro
symmetries. Also a different group-theoretical approach of that
kind of operators is considered in[OR ].
An appropriate construction of Miura transform (cf.again [D ] for
definition of Miura transform in the d = 1 case) is given in [R2 ],
using a supergeometric framework, thanks to the ”square root of
time” D2

θ = ∂
∂t ). In order to generalize the computations, one has

first to understand the structure of the algebra of
pseudodifferential symbols generalized to supergeometric case,
hence the considerations developed in this article.
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