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Planck’s relation
E = hν,

where E is the energy, ν is the frequency of the wave, and h is a
universal constant called Planck’s constant.

Bohr’s quantization condition∮
pidqi = nh,

where (q1, ..., qn) are position coordinates, (p1, ..., pn) are the
conjugate momenta, h is Planck’s constant, and Einstein’s convention
of summation over repeated indices is adopted.

Harmonic oscillator Hamiltonian

H =
1
2
(p2 + q2).

Contour integral is taken over circles H = constant.
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Notation. Symplectic form

ω = d(pidqi ) = dpi ∧ dqi .

For each smooth function f (p, q), the Hamiltonian vector field of f is
the vector field

Xf =
∂f
∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi
.

In general, Xf is defined by

Xf ω = −df .

Hydrogen atom Hamiltonian

H =
1
2m
p2 − k

|q| .

Contour integration is taken over the integral curves of the
Hamiltonian vector fields Xpϕ , Xpθ

and XH , where pϕ and pθ are
canonical momenta conjugate to the spherical polar cocrdinates ϕ
and θ, respectively.
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Relativistic hydrogen atom Hamiltonian

H =
√
m2 − p2 − k

|q| .

The motion is not periodic, but orbits lie on 3-dimensional tori.
Sommerfeld interpreted the contour integral in Bohr’s quantization
condition as integration over generators of the tori.
A Hamiltonian system with n-degrees of freedom is completely
integrable if its orbits lie on n-dimensional tori.
Bohr-Sommerfeld quantization conditions for completely
integrable Hamiltonian systems∮

pidqi = nh,

where integration is taken over generators of the tori.
Modified Bohr-Sommerfeld quantization conditions∮

pdq = (n+
1
2
)h.
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Heisenberg’s advance

Quotation from Dirac’s lecture in 1975: “The great advance was
made by Heisenberg in 1925. He made a very bold step. He had the
idea that physical theory should concentrate on quantities which are
very closely related to observed quantities. Now, the things you
observe are only very remotely connected with the Bohr orbits. So
Heisenberg said that the Bohr orbits are not very important. The
things that are observed, or which are connected closely with the
observed quantities, are all associated with two Bohr orbits and not
with one Bohr orbit: two instead of one.”

In the following year, we had two competing theories: the matrix
mechanics of Max Born and Pascuale Jordan and the wave mechanics
of Ervin Schrödinger. A unification of both theories into the present
day quantum mechanics came in the work of Paul Dirac.
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Quantum Mechanics in Dirac’s formulation

Classical states are points of the phase space manifold P and
dynamical variables are f ∈ C∞(P).
Quantum states of the system under consideration form a complex
Hilbert space H.

For Ψ1, Ψ2 ∈ H, the scalar product 〈Ψ1 | Ψ2〉 is the relative
probability amplitude; that is |〈Ψ1 | Ψ2〉|2 is the probability that the
measurement of state Ψ1 gives state Ψ2.

Classical dynamical variables f ∈ C∞(P) of the system are replaced
by quantum observables that are self-adjoint operators on H (possibly
unbounded).
Observables form an algebra A over C with operations of
multiplication and commutation of operators.
A complete set of commuting observables is a set of observables
which commute with one another and for which there is only one
simultaneous eigenvector (possibly generalized) belonging to any set
of eigenvalues.
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There exists a basis (Ψξ) in H, consisting of joint eigenvectors of a
complete set of commuting observables labelled by sets ξ of joint
eigenvalues.

Every vector Ψ ∈ H, can be expressed as follows:

Ψ = ∑
ξ ′

〈
Ψ | Ψξ ′

〉
Ψξ ′ +

∫ 〈
Ψ | Ψξ ′′

〉
dξ ′′Ψξ ′′ ,

where the sum is take over eigenvalues ξ ′ in the discrete joint
spectrum, and integration is taken over the continuous spectrum.

Different choice of of a complete set of commuting observables gives
rise to a different decomposition the space H of quantum states.

If the spectrum of eigenvalues is discrete, we get matrix formalism.

If the spectrum of eigenvalues is purely continuous, we get
Schrödinger’s wave mechanics.
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Poisson algebra

Notation Symplectic structure ω of the phase space P of a classical
system gives rise to the Poisson bracket {·, ·} on C∞(P), defined by

{f1, f2} = Xf2(f1),

for all f1, f2 ∈ C∞(P). Here, Xf2 is the Hamiltonian vector field of f2. The
Poisson bracket is bilinear, and antisymmetric. Moreover, it satisfies the
Leibniz rule

{f1f2, f3} = f1{f2, f3}+ f2{f1, f3}
and the Jacobi identity

{f1, {f2, f3}}+ {f2, {f3, f1}}+ {f3{f1, f2}} = 0.

The space C∞(P) of smooth functions on a symplectic manifold (P, ω),
endowed with the Poisson bracket, is called the Poisson algebra of (P, ω).
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Classical Analogy

A classical analogy between a quantum observables A and a classical
dynamical variables C∞(P) is given by a Poisson subalgebra A of
C∞(P) and a linear map

Q : A→ A : f 7→ Qf ,

such that, for every f1, f2 ∈ A,

[Qf1 ,Qf2 ] = i h̄Q{f1,f2},

where h̄ is Planck’s constant divided by 2π.
Note that Dirac’s quantum conditions imply that that the map

f 7→ (1/i h̄)Qf

is a homomorphism of the Poisson algebra A into the Lie algebra of
skew-adjoint operators on H.

Dirac allows for existence of systems for which there is no non-trivial
Poisson subalgebra A of C∞(P), for which quantum conditions apply.
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Kirillov-Kostant-Souriau forms

The foundation of geometric quantization is the fact, discovered
independently by Kirillov, Souriau and Kostant, that every co-adjoint
orbit P of a Lie group G is endowed with a symplectic form ω.
Coadjoint orbit of G through µ ∈ g∗,

P = {Ad∗g µ | g ∈ G},

where
〈
Ad∗g µ | ξ

〉
=
〈
µ | Adg−1ξ

〉
for every ξ ∈ g.

Since the co-adjoint action of G is transitive on P, for each ξ ∈ g ,
there exists a unique vector field X ξ on P generating the action of
exp tξ on P, and for every ν ∈ P,

TνP = {X ξ(ν) | ξ ∈ g}.

The Kirillov-Kostant-Souriau form ω, also called the KKS-form, is
given by

ω(X ξ(ν),X ζ(ν)) = − 〈ν | [ξ, ζ]〉 .
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Hamiltonian action of a Lie group

An action
Φ : G × P → P : (g , p) 7→ Φg (p)

of a connected Lie group G on a symplectic manifold (P, ω) is
Hamiltonian if there exists an Ad∗-equivariant mmomentum map
J : P → g∗ such that, for every ξ ∈ g, the restriction of Φ to the
1-parameter subgroup exp tξ is generated by the Hamiltonian vector
field of

Jξ = 〈J, ξ〉 .

If P is a co-adjoint orbit of a connected Lie group G and ω is the
Kirillov-Kostant-Souriau form on P, then the co-adjoint action of G
on P is Hamiltonian, with the momentum map J : P → g∗ given by
the inclusion of P in g∗.
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Sources of geometric quantization

In 1962, Aleksandr Kirillov constructed unitary representations of
nilpotent Lie groups using the orbit method, which relied on the
symplectic structure of co-adjoint orbits. Kirillov also conjectured
that irreducible unitary representations of compact group were in
one-to-one correspondence with integral co-adjoint orbits.

Jean-Marie Souriau formulated, in his 1966 paper, a quantization
scheme in terms of sections of a circle bundle over the phase space
(P, ω) of the quantized system. Souriau’s quantification géométrique
did not provide for probability amplitudes in quantum mechanics.

In 1965, Bertram Kostant outlined his geometric quantization theory
at the US-Japan Seminar in Differential Geometry, Kyoto. A
comprehensive presentation of the first step of geometric
quantization, called prequantization, was given in his 1970 paper .
Application of the complete theory to representations of solvable
group appeared in a joint paper with L. Auslander published in 1971
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Role of geometric quantization

The theory of geometric quantization forms a bridge between
quantum mechanics and the representation theory of Lie groups. I

In representation theory, geometric quantization is a geometric
technique of obtaining a unitary representation of a connected Lie
group from its action on a symplectic manifold.

In quantum mechanics, geometric quantization provides a
differential-geometric method of constructing a quantum theory
correponding to the classical system.

This dual role of geometric quantization enables us to use
representation theory to test hypotheses in quantum mechanics and
vice versa.

Reliance on differential geometry restricts the applicability of
geometric quantization to smooth situations.

Study of singularities requires further techniques like cohomology and
singularity theory.
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Elements of geometric quantization

Prequantization gives a representation of the Poisson algebra of a
symplectic manifolds by symmetric operators on a Hilbert space H.

Polarization chooses an irreducible component of the prequantization
representation to a sub-algebra of the Poisson algebra.

If the space of the polarization representation consists of generalized
vectors in H, the next step is to determine the scalar product for
which the polarization representation is unitary.

Determine a sub-algebra of the Poisson algebra which acts transitively
on the space of the polarization representation.
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Classical elastica

An elastica is a curve in R3 that is stationary under variations of the
integral of the square of its curvature.
Consider a dynamical system t 7→ x(t) such that its evolution follows
an elastica.
The Lagrangian is

L(t, x , ẋ , ẍ) = κ2 |ẋ | = |ẍ |
2

|ẋ |3
− ẋ · ẍ
|ẋ |5

.

The action integral is invariant under the group of reparametrizations,
that is the group Diff+R of orientation preserving diffeomorphisms of
R.
By the Second Noether Theorem the initial data for an elastica are
not independent; they satisfy some identities.
It is a toy model for general relativity.
How should we quantize this system?
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Constrained Hamiltonian system

Ostrogradski’s Legendre transformation L : J30 → T ∗J10 is

pẋ =
∂L
∂ẍ

, and px =
∂L
∂ẋ
− d
dt

∂L
∂ẍ

.

Here J10 = {(t, x , ẋ) ∈ R7 | ẋ 6= 0} and
J30 = {(t, x , ẋ , ẍ ,

...
x ) ∈ R13 | ẋ 6= 0}.

ω = dpt ∧ dt + dpx ∧ dx + dpẋ ∧ dẋ is the canonical symplectic form
of T ∗J10 .
The function

h = 4
ẋ
|ẋ | · px + |ẋ |

2 pẋ · pẋ

may be interpreted as a Hamiltonian of the motion.
Theorem. The action of Diff+R on T ∗J10 is Hamiltonian with the
momentum map J : T ∗J10 → (diff+R)∗ such that, for every
τ ∂

∂t ∈ diff+R,
Jτ = τpτ − τ̇ẋ · pẋ .

The range of L is J−1(0) ∩ h−1(0).
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Reduction of reparametrization symmetries

The projection map ρ : J −1(0)→ J −1(0)/Diff+R is a submersion.

J −1(0)/Diff+R has a symplectic form ωred such that ρ∗ωred is the
pull-back to J −1(0) of the canonical symplectic form of T ∗J10 .

Theorem There is a diffeomorphism δ : J10/Diff+R→ S , where

S = R3 ×P3 = {(x , ẋ/ |ẋ |) | x , ẋ ∈ R3, ẋ 6= 0}

is the product of R3 and the projective space P3.

Theorem The orbit space (J −1(0)/Diff+R, ωred ) is
symplectomorphic to the cotangent bundle space T ∗S of endowed
with its canonical symplectic form.

The Hamiltonian function h = 4 ẋ|ẋ | · px + |ẋ |
2 pẋ · pẋ pushes forward

to a function hred on T ∗S .
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Quantization of the extended phase space

Quantize (T ∗J10 , ω) to obtain a quantization representation of
Diff+R.

Use Schrödinger quantization with wave functions Ψ on J10 and the
scalar product

(Ψ1, Ψ2) =
∫
J10

Ψ1(t, x , ẋ)Ψ2(t, x , ẋ)dtd3xd3ẋ .

For Jτ = τpτ − τ̇ẋ · pẋ ,

QJτ
=

(
−i h̄τ

∂

∂t
+ i h̄τ̇

〈
ẋ · ∂

∂ẋ

〉)
.

Moreover,

Qh = −
h̄2

4

(
|ẋ |2

〈
∂

∂ẋ
· ∂

∂ẋ

〉
− 1
3

)
− i h̄
|ẋ |

〈
ẋ · ∂

∂ẋ

〉
.
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Implementation of the constraint conditions

Physically admissible quantum states satisfy the quantum constraint
conditions

QJτ Ψ = 0 for all τ ∈ diff+R, and QhΨ = 0.

Thus physically admissible states states Ψ are Diff+R-invariant and
satisfy the equation

QhΨ ≡ − h̄
2

4

(
|ẋ |2

〈
∂

∂ẋ
· ∂

∂ẋ

〉
− 1
3

)
Ψ− i h̄

|ẋ |

〈
ẋ · ∂

∂ẋ

〉
Ψ = 0.

Diff+R-invariant functions Ψ on J10 are pull-backs by δ of functions ψ
on S = R3 ×P3.
Diff+R-invariant wave functions Ψ on J10 that satisfy the equation
QhΨ = 0 are pull-backs of wave functions ψ on S = R3 ×P3

satisying the equation
Qhred ψ = 0,

where Qhred is the quantization of the reduced Hamiltonian on T
∗S .
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Commutation of quantization and reduction

Quantizing a system with constraints, we have to decide on the order
of quantization and reduction.

Gupta and Bleuler first quantized the extended phase space of
electrodynamics in the space of quantum states with indefinite metric.
They followed with the quantum implementation of the (linear)
constraint conditions.

In general relativity, the constraint equations are not linear.
Therefore, Dirac’s approach was to reduce the constraint first and to
quantize the reduced system.

In the context of the theory of representations of compact groups,
Guillemin and Sternberg showed that the quantization and reduction
commute.

In this example quantization commutes with reduction even though
Diff+R is not locally compact.
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Complex line bundle

Let λ : L→ P be a complex line bundle with connection ∇.

For each section σ : P → L, and each vector field X on P, the
covariant derivative ∇X σ is a section of L such that, for every
f ∈ C∞(P),

∇X (f σ) = X (f )σ+ f∇X σ and ∇fX σ = f∇X σ.

The curvature of the connection ∇ is a 2-form α on P such that

(∇X1∇X2 −∇X2∇X1 −∇[X1,X2 ])σ = 2πiα(X1,X2)σ.

A form α on P is the curvature form of a complex line bundle with
connection if and only if the de Rham cohomology class [α] is in
H2(Z)̇.
For every line bundle L with connection, there exists a connection
invariant Hermitian form 〈· | ·〉 defined up to a constant factor. For
every pair of sections σ1, σ2 of L and every vector field X on P,

X (〈σ1 | σ2〉) = 〈∇X σ1 | σ2〉+ 〈σ1 | ∇X σ2〉.
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Prequantization line bundle

A symplectic manifold (P, ω) is prequantizable if, for every closed
surface S in P, ∫

S
ω = nh,

where n is an integer.
In quantum mechanics, ω = ∑ dpi ∧ dqi , where (qi ) are position
coordinates, pi is the momentum dual to qi , and h denotes Planck’s
constant.
In the theory of representations of Lie groups, h is usually taken to be
−i .
If (P, ω) is prequantizable, there exists a complex line bundle
λ : L→ P with a connection ∇ and a connection invariant Hermitian
form such that the curvature of ∇ is α = − 1hω.

Equivalence classes of complex line bundles with connection with the
curvature form α = − 1hω are parametrized by H1(Z).
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Quantomorphisms

A function f ∈ C∞(P) generates a local one-parameter group exp tXf
of local symplectomorphisms of (P, ω).
The Hamiltonian vector field Xf corresponding to f can be lifted to a
unique vector field X̂f on L such that exp tX̂f is the lift of exp tXf
that preserves the connection ∇.
For each σ ∈ S∞(L) we set

Pf σ = i h̄
d
dt
(exp tX̂f ◦ σ ◦ exp(−tXf ))|t=0.

Direct computation yields

Pf σ = (−i h̄∇Xf + f )σ.

For each f1, f2 ∈ C∞(P) and σ ∈ S∞(L)
[Pf1 ,Pf2 ] = i h̄P{f1,f2}.

Prequantization map

P : C∞(P)× S∞(L)→ S∞(L) : (f , σ) 7→ Pf σ.
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Prequantization representation

The map C∞(P)× S∞(L)→ S∞(L) : (f , σ) 7→ i
h̄Pf σ is a

representation of the Lie algebra structure of C∞(P) on S∞(L).
The space S∞

0 (L) of compactly supported smooth sections of L has a
Hermitian scalar product

((σ1 || σ2)) =
∫
P
〈σ1 | σ2〉ωn,

where n = 1
2 dimP.

For each f ∈ C∞(P), the prequantization operator Pf is symmetric
with respect to this scalar product.
If the Hamiltonian vector field Xf of f is complete, then Pf is
self-adjoint on the Hilbert space H obtained by the completion of
S∞
0 (L) with respect to the norm above.
Prequantization does not correspond to the quantum theory, because
the interpretation of ((σ || σ)) (p) as the probability density of
localizing the state σ at a point p ∈ P fails to satisfy Heisenberg’s
Uncertainty Principle.
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Hamiltonian action of a Lie group

An action
Φ : G × P → P : (g , p) 7→ Φg (p)

of a connected Lie group G on a symplectic manifold (P, ω) is
Hamiltonian if there exists an Ad∗-equivariant momentum map
J : P → g∗ such that, for every ξ ∈ g, the restriction of Φ to the
1-parameter subgroup exp tξ is generated by the Hamiltonian vector
field of

Jξ = 〈J, ξ〉 .

If P is a co-adjoint orbit of a connected Lie group G and ω is the
Kirillov-Kostant-Souriau form on P, then the co-adjoint action of G
on P is Hamiltonian, with the momentum map J : P → g∗ given by
the inclusion of P in g∗.
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Prequantization representation of a Lie group

For a Hamiltonian action of G on (P, ω) with the momentum map
J : P → g∗, the map ξ 7→ Jξ is a homomorphism of g to the Poisson
algebra C∞(P).

The map ξ 7→ (i/ h̄)PJξ
is the prequantization representation of the

Lie algebra g by skew-adjoint operators on the Hilbert space H.

If the prequantization representation of g on H integrates to a unitary
representation

U : G ×H→ H

of G on H, we call U the prequantization representation of G .
The prequantization representation U of a Lie group G need not be
irreducible.
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Polarization

A polarization of a symplectic manifold (P, ω) is an involutive
complex Lagrangian distribution F such that

D = F ∩ F ∩ TP and E = (F + F ) ∩ TP.,
where D and E are involutive distributions on P.

1 Real polarization F = D ⊗C, where D is an integrable Lagranian
distribution on P such that the space P/D of integral manifolds of D
is a quotient manifold of P.

2 Complex polarization F such that F ∩ F = 0. Involutivity of F ensures
that P has a complex structure and F is spanned by anti-holomorphic
directions.

The representation space corresponding to F is

S∞
F (L) = {σ ∈ S∞(L) | ∇uσ = 0 for all u ∈ F}.

A function f ∈ C∞(Q) is directly quantizable in terms of F if Xf
preserves F . Such functions form a Poisson subalgebra C∞

F (P) of
C∞(P).
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Quantization

The quantization map Q relative to a polarization F is the restriction
of the prequantization map P to domain
C∞
F (P)× S∞

F (L) ⊂ C∞(P)× S∞(L) and codomain S∞
F (L) ⊂ S∞(L):

Q : C∞
F (P)× S∞

F (L)→ S∞
F (L) : (f , σ) 7→ Qf σ = (i h̄∇Xf + f )σ.

Note that sections S∞
F (L) may have zero intersection with H. In this

case we need to introduce a new scalar product in S∞
F (L) to

construct the Hilbert space HF of normalizable quantum states.

If P = T ∗Q, ω is the canonical symplectic form of the cotangent
bundle, and D is the kernel of the projection map, then sections in
S∞
F (L) are given by pull-backs to T

∗P of complex valued functions on
Q. The space C∞

F (P) consists of functions on T
∗Q that are linear in

momenta. In order to get the usual Schrödinger quantum mechanics,
we need an additional structure on P, called the metaplectic structure.
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Blattner-Kostant-Sternberg kernels

This approach to quantization allows to compare quantizations
corresponding to different polarizations.

Let F1 and F2 be two transverse polarizations, so that
F1 ⊕ F2 = TP ⊗C. For σi ∈ S∞

Fi
(L), the integral

K21(σ1, σ2) =
∫
P
〈σ1, σ2〉ωn

defines a sesquilinear pairing of S∞
F1(L) and S

∞
F2(L), which can be

used to construct a linear transformation between the corresponding
Hilbert spaces of quantum states.

This transformation is a generalization of the Fourier transform
between the position and the momentum representations in the
Schrödinger formulation.
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III Prequantization of spin

Co-adjoint orbits of SO(3) are spheres

S2r = {x ∈ R3 | x2 = r2}.

For a fixed r > 0, let s = x|Sr denote the restriction of x to S
2
r . The

Kirillov-Kostant-Souriau ω form on S2r can be written as

ω = −1
2
r−2 ∑

i ,j ,k

εijk s
ids j ∧ dsk = 1

r
volS 2r ,

where s1, s2, s3 are components of the spin vector s, εijk is the
completely antisymmetric tensor with ε123 = 1, and volS 2r is is the
standard area form on S2r with

∫
S 2r

volS 2r = 4πr2.

The orbit (S2r , ω) is prequantizable if∫
S 2r

ω =
∫
S 2r

1
r

volS 2r = 4πr = nh

or r = n h̄/2.
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Complex structure

For even n = 2s, prequantization of (S2r , ω) gives a representation of
SO(3).

Let V+ and V− be complements of the south pole and the north pole
in S2r , respectively,

V+ = {s ∈ S2r | s3 + r > 0} and V− = {s ∈ S2r | s3 − r < 0}.

On V+ and V− define complex functions

z+ =
s1 − is2
r + s3

and z− =
s1 + is2

r − s3 .

In V+ ∩ V−,
z+z− = 1.

The functions z+ and z− define a complex structure on S2r .
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Computations

Solving for the spin vector s we obtain

s1 = r(z± + z̄±)(1+ z±z̄±)−1,

s2 = ±ir(z± − z̄±)(1+ z±z̄±)−1,
s3 = ±r(1− z±z̄±)(1+ z±z̄±)−1.

Hence,

ω|V± = dθ± = −2ir(1+ z±z̄±)−2dz̄± ∧ dz±,

θ± = −2ir(1+ z±z̄±)−1 z̄±dz±,

and

θ+ − θ− = id(log z2r− ) = i h̄d(log z
2r/ h̄
− ) = i h̄d(log zn−).

Since n is an integer, the transition function zn− is globally defined
and single-valued
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Prequantization line bundle

Consider an equivalence relation ∼ on
(C× V+ × {+}) ∪ (C× V− × {−}) defined by

(c, x , α) ∼ (c ′, x ′, α′)

if (i) (c, x , α) = (c ′, x ′, α′) or (ii) α = +, α′ = −, x = x ′ ∈ V+ ∩V−,
and c = z−(x)nc ′, or
(iii) α = −, α′ = +, x = x ′ ∈ V+ ∩ V−, and c ′ = z−(x)nc .

The space L of ∼-equivalence classes is a complex line bundle over S2r
with projection map

λ : L→ S2r : [(c, x , α)] 7→ x .

The restrictions of L to V± are trivial, with trivializing sections

σ± : V± → L : x 7→ [(1, x ,±)].

For x ∈ V+ ∩ V−,
σ+(x) = z−(x)nσ−(x).
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Connection

In V± set
∇±σ± = −i h̄−1θ± ⊗ σ±.

In V+ ∩ V−,

∇−σ+ = ∇−(zn−λ−) = dzn− ⊗ σ− + zn−∇−σ−

= dzn− ⊗ σ− − i h̄−1zn−θ− ⊗ σ−

= dzn− ⊗ σ− + i h̄−1zn−(θ+ − θ− − θ+)⊗ σ−

= dzn− ⊗ σ− + i h̄−1zn−(θ+ − θ−)⊗ σ− − i h̄−1zn−θ+ ⊗ σ−

= dzn− ⊗ σ− + i h̄−1zn−(i h̄d(log z
n
−))⊗ σ− − i h̄−1θ+ ⊗ zn−σ−

= ∇+σ+.

Hence, there exists a unique connection ∇ on L that restricts to ∇±
on L|V± . By construction, the curvature of ∇ is −1h ω, as required.
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Hermitian form

If 〈·, ·〉 is a connection invariant Hermitian form on L, then

d 〈σ±, σ±〉 = 〈∇±σ±, σ±〉+ 〈σ±,∇±σ±〉
= i h̄−1(θ̄± − θ±) 〈σ±, σ±〉
= −2 h̄−1rd log(1+ z±z̄±) 〈σ±, σ±〉 .

Since r = n h̄2 = s h̄, it follows that

d 〈σ±, σ±〉 = −2sd log(1+ z±z̄±) 〈σ±, σ±〉

or

d log 〈σ±, σ±〉 = −2sd log(1+ z±z̄±) = d log(1+ z±z̄±)−2s .

Therefore, we may choose

〈σ±, σ±〉 = (1+ z±z̄±)−2s .

J. Śniatycki (University of Calgary) June 5 - 10, Varna, Bulgaria 35 / 70



Prequantization representation of so(3)

For every section section σ : S2r → L,

σ|V± = ψ±σ±,

where ψ± are functions on V±.
For each f ∈ C∞(S2), the prequantization operator is

Pf σ|V± = Pf (ψ±σ±) = (−i h̄Xf ψ± + f − 〈θ± | Xf 〉)σ±.

In particular,

Ps1σ|V± = − h̄
2

[
(z2± − 1)

∂ψ±
∂z±
− (z̄2± − 1)

∂ψ±
∂z̄±

]
σ± + s h̄z±ψ±σ±

Ps2σ|V± = ∓ i h̄
2

[
(z2± + 1)

∂ψ±
∂z±

+ (z̄2± + 1)
∂ψ±
∂z̄±

]
σ± ± is h̄z±ψ±σ±,

Ps3σ|V± = ± h̄
[
z̄±

∂ψ±
∂z̄±
− z±

∂ψ±
∂z±

]
σ± ± s h̄ψ±σ±.
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Polarization

The sphere S2r does not admit a real 1-dimensional distribution.

However, S2r has a complex structure defined by functions z± on V±.

Choose the polarization

F = span
{

∂

∂z̄+
,

∂

∂z̄−

}
corresponding to anti-holomorphic directions.

A section σ = ψ±σ± is covariantly constant along F if
∇ ∂

∂z̄±
(ψ±σ±) = 0.

But

∇±σ± = −i h̄−1θ± ⊗ σ± = −2 h̄−1r(1+ z±z̄±)−1 z̄±dz± ⊗ σ±

implies that σ = ψ±σ± is covariantly constant along F if ψ± are
holomorphic functions of z±..
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Quantization

Thus σ is covariantly constant along F ⇔ σ is holomorphic.
The subspace HF of H consisting of holomorphic sections in H is
non-zero.
The Hamiltonian vector fields of s1, s2 and s3 preserve F .

The the quantum operators Qs i are restrictions of Ps i to holomorphic
sections.

Qs1σ|V± = − h̄
2

[
(z2± − 1)

∂ψ±
∂z±

]
σ± + s h̄z±ψ±σ±

Qs2σ|V± = ∓ i h̄
2

[
(z2± + 1)

∂ψ±
∂z±

]
σ± ± is h̄z±ψ±σ±,

Qs3σ|V± = ∓ h̄
[
z±

∂ψ±
∂z±

]
σ± ± s h̄ψ±σ±.

The operators (i/ h̄)Qs1 , (i/ h̄)Q and (i/ h̄)Qs3 give the usual spin s
representation of so(3). It integrates to the spin s representation of
SO(3).
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IV Polarizations

A complex distribution F ⊂ TCP = C⊗ TP on a symplectic
manifold (P, ω) is Lagrangian if, for each p ∈ P, the restriction of
the symplectic form ω to the subspace Fp ⊂ TC

p P vanishes
identically, and rankCF = 1

2 dimP.
A polarization of (P, ω) is an involutive complex Lagrangian
distribution F such that

D = F ∩ F ∩ TP and E = (F + F ) ∩ TP.,
where D and E are involutive distributions on P.
F is strongly admissible if the spaces P/D and P/E of integral
manifolds of D and P, respectively, are quotients manifolds of P and
the natural projection P/D → P/E is a submersion.
F is positive if iω(w , w̄) ≥ 0 for every w ∈ F .
A positive polarization F is semi-definite if ω(w , w̄) = 0 for w ∈ F
implies that w ∈ DC.
F is real if F = F̄ . In this case F = D ⊗C.
F is complex if F ⊕ F̄ = TP.
F is Kähler if it is complex and positive.J. Śniatycki (University of Calgary) June 5 - 10, Varna, Bulgaria 39 / 70



Quantization

C∞(P)CF complex-valued functions on P constant along F .

If F is strongly admissible, it is spanned by the Hamiltonian vector
fields of functions in C∞(P)CF .

C∞
F (P) denote the space of functions on P whose Hamiltonian vector
fields preserve F .
C∞
F (P) is a Poisson subalgebra of C∞(P).
The space of polarized sections of L is

S∞
F (L) = {σ ∈ S∞(L) | ∇uσ = 0 for all u ∈ F}.

The quantization map Q relative to a polarization F is the restriction
of the prequantization map P to domain
C∞
F (P)× S∞

F (L) ⊂ C∞(P)× S∞(L) and codomain S∞
F (L) ⊂ S∞(L).

Thus,

Q : C∞
F (P)×S∞

F (L)→ S∞
F (L) : (f , σ) 7→ Qf σ = Pf σ = (i h̄∇Xf + f )σ.
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Quantization of momentum map

Assume that a Hamiltonian action Φ : G × P → P preserves F .

For each ξ ∈ g, the momentum Jξ is in C∞
F (P).

The map ξ 7→ (i h̄)−1QJξ
is a representation of g on S∞

F (L).
If the action Φ of G on P lifts to an action of G on L by connection
preserving automorphisms, then this representation of g integrates to
a linear representation

R : G × S∞
F (L)→ S∞

F (L) : (g , σ) 7→ Rgσ

of G on S∞
F (L), which we call the quantization representation of G .

If F is Kähler, R restricts to a unitary representation

U : G ×HF → HF : (g , σ) 7→ Rgσ

of G on HF .
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Kähler polarizations

Recall that a polarization F of (P, ω) is Kähler if F ⊕ F̄ = TCP and
iω(w , w̄) > 0 for all non-zero w ∈ F . These assumptions imply that
there is a complex structure J on P such that F is the space of
antiholomorphic directions. Moreover, P is a Kähler manifold such
that −ω is the Kähler form on P.
If F is Kähler, L is a holomorphic line bundle over P and the space
S∞
F (L) of polarized sections coincides with the space of holomorphic
sections. and the linear representation R of G on S∞

F (L) gives rise to
a unitary representation U of G on

HF = H∩ S∞
F (L).

Co-adjoint orbits of a compact connected Lie group admit Kähler
polarizations.
For a quantizable co-adjoint orbit (P, ω) of G , the unitary
quantization representation U of G on HF is irreducible, and the map
P 7→ U is a bijection.
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Cotangent polarization

Assume that P = T ∗Q is the cotangent bundle of a manifold Q, with
the cotangent bundle projection π : T ∗Q → Q.

The Liouville form θ of the cotangent bundle T ∗Q is defined as
follows. For each p ∈ T ∗Q and every u ∈ TpT ∗Q,

θ(u) = 〈p | Tϑ(u)〉.

ω = dθ is the canonical symplectic form of T ∗Q.

The cotangent polarization is the complexification F = (kerTπ)⊗C

of the kernel of the cotangent bundle projection.

Since ω is exact, the prequantization line bundle is trivial; that is
L = C× P.
We choose a trivializing section σ0 : P → L : p 7→ (1, p) of L,
〈σ0, σ0〉 = 1 and the covariant derivative operator ∇ such that

∇σ0 = i h̄−1θ ⊗ σ0.
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Non-normalizability of polarized sections

C∞(P)CF consists of complex-valued functions on P = T
∗Q that are

constant along the fibres of π : T ∗Q → Q; that is

C∞(P)CF = {π∗k | k ∈ (C⊗ C∞(Q))}.
The space S∞

F (L) of polarized sections of L is given by
S∞
F (L) = {π∗Ψσ0 | Ψ ∈ C⊗ C∞(Q)}.

If σi = π∗Ψσ0, for i = 1, 2,

〈π∗Ψ1σ0, π∗Ψ2σ0〉 = π∗(Ψ1Ψ2) = (Ψ1Ψ2) ◦ π.

Since the fibres of the cotangent bundle projection π are not compact,∫
T ∗Q
〈σ, σ〉ωn =

∫
T ∗Q

ϑ∗(ΨΨ)ωn = ∞

unless Ψ = 0.
Hence, by passing to polarized sections we have lost the scalar
product.
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Quantization

π∗C∞(Q) is the space of functions in C∞(T ∗Q) that are constant
along kerTπ,

π∗C∞(Q) == {π∗k | k ∈ C∞(Q)}.

C∞
F (T

∗Q) is a module over π∗C∞(Q) generated by functions in
π∗C∞(Q) and of functions k in and evaluations 〈θ,X 〉 of the
Liouville form on smooth vector fields on Q.

For each f1 = π∗k, f2 = 〈θ,X 〉 and σ = π∗Ψσ0

Qf1σ = Qπ∗k (π
∗Ψσ0) = π∗(kΨ)σ0,

Qf2σ = Q〈θ,X 〉(π
∗Ψσ0) = −i h̄π∗X (Ψ)σ0.

Functions that are not linear on the fibres of the cotangent bundle
projection are not quantizable in this scheme, because their
Hamiltonian vector fields do not preserve F .
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Alternative scalar product

We can introduce the scalar product in
S∞
F (L) = {π∗Ψσ0 | Ψ ∈ C⊗ C∞(Q)} by choosing a volume density

κ on and set

((π∗Ψ1σ0 ||π∗Ψ2σ0))κ =
∫
Q

Ψ1Ψ2κ .

Let Hκ be the Hilbert space of square-integrable sections with respect
to ((. || .))κ.
The operator Qπ∗k is self adjoint on Hκ.The operator Q〈θ,X 〉 is
self-adjoint on Hκ only if X preserves κ.
In order to achieve self-adjointness, we can modify the representation
space by multiplying π∗Ψσ0 by

√
κ. This will modify the operator

Q〈θ,X 〉 by the inclusion of the action of X on κ, and the modified
operator will be self-adjoint.
We have to define what we mean by a

√
κ. First, we discuss

√
|κ|

and then lift our considerations to the double covering.
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Half-densities

Consider a strongly admissible real polarization F = D ⊗C.
πD : P → P/D associates to each p ∈ P the integral manifold of D
through p.

The bundle BF of all linear frames of F is a principal bundle with
structure group Gl(n, C) and the projection map β : BF → T ∗Q.
BF restricted to integral manifolds of D has a flat affi ne connection.
We say that the bundle BF has a flat partial affi ne connection
covering D.
The bundle

√
|∧n | F of half-densities associated to F is the

associated bundle of BF corresponding to the homomorphism

|det|1/2 : Gl(n, C)→ C× : A 7→ |detA|1/2 .

A section µ : P →
√
|∧n | F corresponds to an equivariant function

µ] : BF → C such that

µ](bA) = |detA|−1/2 µ](b).
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Scalar product given by half-densities

Let (u1, ..., un, v1, ..., vn) be a symplectic frame in TpP such that
v1, ..., vn are in Dp . Then (TπD (u1), ...,TπD (un)) is a basis in
TπP (p)(P/D). Define

〈µ1, µ2〉 ((Tπ(u1), ...,Tπ(un)) = µ1(v1, ..., v2)µ2(v1, ..., vn).

For half-densities µ1 and µ2 that are covariantly constant along D,
the pairing 〈µ1, µ2〉 given is a well defined density on P/D.
As an alternative to choosing a density κ on Q, we can take the
representation space to consist of sections of L⊗

√
|∧n | F that are

covariantly constant along F , and define the scalar product of
σ1 ⊗ µ1 and σ2 ⊗ µ2 by

((σ1 ⊗ µ1 || σ2 ⊗ µ2))|F | =
∫
Q

π∗ 〈σ1, σ2〉 〈µ1, µ2〉

Denote by H|F | the space of sections of L⊗
√
|∧n | F that are

covariantly constant along F and square integrable with respect to
this scalar product.
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Pairing of half-densities

F1 = D1 ⊗C and F2 = D2 ⊗C such that D1 ⊕D2 = TP.
Sections σi ⊗ µi ∈ H|Fi | pair to a function 〈σ1 ⊗ µ1, σ2 ⊗ µ2〉 on P
such that, for each p ∈ P, and a symplectic basis (u1,u2) in TpP
such that u1 is a basis in D1 and u2 is a basis in D2,

〈σ1 ⊗ µ1, σ2 ⊗ µ2〉 (p) = 〈σ1, σ2〉 (p)µ1(u1) µ2(u2).

The integral

K21(σ1 ⊗ µ1, σ2 ⊗ µ2) =
∫
P
〈σ1 ⊗ µ1, σ2 ⊗ µ2〉 |ωn |

gives a sesquilinear pairing

K21 : H|F1 | ×H|F2 | → C,

It defines a C-linear map L21 : H|F1 | → H|F2 | such that
K21(σ1 ⊗ µ1, σ2 ⊗ µ2) is the scalar product in H|F2 | of L21(σ1 ⊗ µ1)
and σ2 ⊗ µ2; that is

((L21(σ1 ⊗ µ1) || σ2 ⊗ µ2))|F2 | = K21(σ1 ⊗ µ1, σ2 ⊗ µ2).
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Half-forms

Ml(n, C) is the double cover of Gl(n, C).

The bundle of metalinear frames of F is a principal Ml(n, C) bundle
B̃F that double covers BF
The bundle

√
∧nFof half-forms relative to F is the associated fibre

bundle of BF corresponding to the holomorphic character√
det : Ml(n, C)→ C×.

To each pair ν1, ν2 of sections of
√
∧nF , there corresponds a density

〈ν1, ν2〉 on P/D.
The space HF of sections of L⊗

√
∧nF that are covariantly constant

along F , has scalar product

(σ1 ⊗ ν1 | σ2 ⊗ ν2)F =
∫
P/D

π∗ 〈σ1, σ2〉 〈ν1, ν2〉 .
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Blattner-Kostant-Sternberg kernel

The metaplectic group Mp(n) is the double covering group of the
symplectic group Sp(n).
The the metaplectic frame bundle B̃ωTP is the principal
Mp(n)-bundle over P that double covers the bundle BωTP of
symplectic frames of (P, ω).
The choice of the metaplectic frame bundle B̃ωTP determines
uniquely the metalinear frame bundle B̃F corresponding to F .
The action on P of each 1-parameter group ϕt of
symplectomorphisms of (P, ω) lifts to to the metaplectic frame
bundle B̃ωTP and it induces a principal fibre bundle isomorphism
from B̃F to B̃(T ϕt (F )).
If F1 and F2 are real polarizations such that F1 ⊕ F2 = TP ⊗C, there
is a sesquilinear map K̃21 : HF1 ×HF2 → C, called the BKS kernel.
K̃21 defines a C-linear map L̃21 : HF1 → HF2 such that(

(L̃21(σ1 ⊗ ν1) || σ2 ⊗ ν2)
)
F2
= K̃21(σ1 ⊗ ν1, σ2 ⊗ ν2).
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Example

(T ∗R3, dp∧ dq) the phase space of a free particle with position
variables q ∈ R3 and conjugate momenta p.
The one parameter group exp tXH generated by the Hamiltonian
vector field XH of the Hamiltonian H = 1

2p
2 maps the vertical

polarization F to Ft = T (exp tXH )F such that

Ft ⊕ F = TP ⊗C for t 6= 0,

and maps sections σ⊗ ν of HF to sections σt ⊗ νt of HFt .
Let L̃t : HFt → HF be the map defined by the BKS kernel.
Set QH (σ⊗ ν) = i h̄ ddt L̃t (σt ⊗ νt )|t=0.

If σ⊗ ν = Ψ⊗ σ0 ⊗ ν0, for an appropriate section ν0 of
√
∧3F , then

QH (Ψ⊗ σ0 ⊗ ν0) = −
h̄2

2
∆Ψ⊗ σ0 ⊗ ν0

gives the usual expression for the quantum Hamiltonian of a free
particle.
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MpC quantization

In the presentation above, we defined the representation space HF as
the space of square integrable sections of L⊗

√
∧nF that are

covariantly constant along F . This presumes the existence of the
prequantization line bundle L and the bundle

√
∧nF of 12 -forms

relative to F , which are equivalent to the vanishing of the
corresponding characteristic classes.

The tensor product L⊗
√
∧nF may exist, even though individual

factors do not exist.

The MpC-quantization was developed by Rawnsley and Robinson in
order to circumvent this diffi culty. Their theory is more general than
the geometric quantization presented here, but it is less intuitive.
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V Completely integrable systems

Consider a completely integrable system on a symplectic manifold
(P, ω).
Let (Ai , ϕi ) be action angle coordinates defined on an open dense
subset P0 of P.
The restriction to P0 of the symplectic form ω is an exact symplectic
form ω0 = dθ on P0, where θ = ∑n

i=1 Aidϕi .
We have a symplectic action on (P0, ω0) of the the torus group Tn

with the momentum map
J : P0 → Rn : p 7→ J(p) = (A1(p), ...,An(p)).
For each i = 1, ..., n, the Hamiltonian vector field XAi generates the
action on P0 of the i th component Ti of the torus group
Tn = T×T× ...×T.
Oi ,p the orbit of Ti through p ∈ P. Clearly, Ai is constant on each
orbit Oi ,p .

The Hamiltonian vector fields XAi =
∂

∂ϕi
span a Lagrangian

distribution D on P0.
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Bohr-Sommerfeld conditions

We consider a polarization F = D ⊗C of (P0, ω0).
Since ω0 is exact, the prequantization line bundle is trivial,
L = C0 ⊕ P0.
Trivializing section σ0 : P → L : p 7→ (1, p).
A section σ = Ψσ0 is covariantly constant along F if, or all
j = 1, ..., n,

∇ ∂
∂ϕj
(Ψσ0) =

(
∂Ψ
∂ϕj

+ i h̄−1AjΨ

)
σ0 = 0.

This equation has single-valued solution Ψ only if the
Bohr-Sommerfeld conditions∫ 2π

0
Ajdϕj = mjh

are satisfied for j = 1, ..., n, and integers m1, ...,mn.
Hence, Ψ cannot be a smooth function on P. It is a distribution
supported on the Bohr-Sommerfeld tori.

J. Śniatycki (University of Calgary) June 5 - 10, Varna, Bulgaria 55 / 70



Representation space

To each Bohr-Sommerfeld torus

Qm1,...,mn = {p ∈ P | Aj (p) = mj h̄ for j = 1, ..., n},

we may associate a non-zero distribution section σm1,...,mn given by

σm1,...,mn (p) =

= exp

(
−i(

n

∑
j=1
mj ϕj

)
δ(A1(p)−m1 h̄)...δ(An(p)−mn h̄)σ0(p).

The collection {σm1,...,mn} of sections of L forms a basis of an infinite
dimensional vector space E, in which we may define a scalar product
(. | .) such that the basis {σm1,...,mn} is orthonormal.
The Hilbert space H of distribution sections in E with of finite norm
is the space of quantum states of Bohr-Sommerfeld quantization.
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Inclusion of half-forms

In the preceding lectures we saw that, for the cotangent bundle
polarization, we have to consider sections of L⊗

√
∧nF in order to

get the Schrödinger quantum mechanics of a free particle.

For a completely integrable Hamiltonian system, replacing sections of
L by sections of L⊗

√
∧nF gives modified Bohr-Sommerfeld

conditions ∫ 2π

0
Ajdϕj = (mj + εj ) h,

where εj ∈ {0, 12} generates the holonomy group of the flat partial
connection in

√
∧nF restricted to the orbit Oj .
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Bohr-Sommerfeld quantization

The space C∞
F (P0) of functions f ∈ C∞(P0) such that Xf preserves

the polarization F = D ⊗C coincides with the space C∞(P0)F of
functions that are constant along D.

Thus, quantizable functions in the Bohr-Sommerfeld theory are
smooth functions of the action variables A1, ...,An.

For each j = 1, ..., n, the quantum operator QAj corresponding to Aj
is diagonal in the basis {σm1,...,mn} and

QAjσm1,...,mn = mj h̄σm1,...,mn .

A single particle in R3 with spherically symmetric Hamiltonian H is
completely integrable with the commuting variables J3, |J | and H,
where |J | is the length of the angular momentum vector. The
Bohr-Sommerfeld quantization gives the spectra of quantum
operators QJ3 , Q|J | and QH but it does not allow for quantization of
the position variables x and the momentum variables p.
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Problems with Bohr-Sommerfeld quantization

In the formulation given above, only functions of the momenta Aj are
quantizable in the Bohr-Sommerfeld.

Recall the quotation from Dirac’s lecture:
“So Heisenberg said that the Bohr orbits are not very important. The
things that are observed, or which are connected closely with the
observed quantities, are all associated with two Bohr orbits and not
with one Bohr orbit: two instead of one.”

In other words, the problem with Bohr-Sommerfeld quantization is
that the operators, which we obtain by quantization of dynamical
variables do not act transitively on the space of states.

On the other hand, the Bohr-Sommerfeld conditions, as well as their
modifications due to half-forms imply that the orthonormal basis
{σm1,...,mn} in H is locally a lattice.
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Completely integrable systems

If {σm1,...,mn} is a lattice, we have well defined operators
corresponding to shifting along the generators of the lattice.
For each i = 1, ..., n, let

m = {m1, ...,mi−1,mi ,mi+1, ...,mn}
mi = {m1, ...,mi−1,mi − 1,mi+1, ...,mn}
mi = {m1, ...,mi−1,mi + 1,mi+1, ...,mn}.

We can define shifting operators ai and a†
i by

aiσm = σmi and a
†
i σm = σmi .

The Poisson bracket relations between actions and angles are
{e−ıϕk ,Aj} = −ıδkj e−ıϕk . Hence, Dirac’s quantization conditions
[Qf1 ,Qf2 ] = ı h̄Q{f1,f2} suggest the identification

ak = Qe−ıϕk and a†
k = Qe ıϕk .
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Shifting operators

The basic vectors σm introduced above have supports in an open
subset P0 of (P, ω) with independent action-angle variables.
In order to extend our discussion to the whole (P, ω) we consider
functions χk = rke

−ıϕk , where the coeffi cient rk depends only on the
actions and vanishes at the points at which e ıϕk is undefined.
Using the Poisson bracket relations {χk ,Aj} = −ıδkj χk and Dirac’s
quantization conditions [Qχk ,QAj ] = δkj h̄Qχk , we get for every basic
vector σm of H,

QAj (Qχjσm) = h̄(mj − 1)Qχjσm.

Thus, Qχjσm is proportional to σmj . Similarly Qχ̄jσm is proportional
to σmj .

Hence, Qχj and Qχ̄j act as shifting operators,

Qχjσm = bm,jσmj and Qχ̄jσm = cm,jσmj

for some coeffi cients bm,j and cm,j .
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Determination of shifting operators

Qχjσm = bm,jσmj and Qχ̄jσm = cm,jσmj

We can use Dirac’s quantization conditions

[Qχj ,Qχk ] = ı h̄Q{χj ,χk } and [Qχj ,Qχ̄k ] = ı h̄Q{χj ,χ̄k }

the identification
Q†

χj
= Qχ̄j

to determine the coeffi cients bm,j and cm,j , which must satisfy the
boundary conditions:
bm,j = 0 if Qmj = ∅ and cm,j = 0 if Qmj = ∅.

We refer to the Bohr-Sommerfeld quantization enriched by the
introduction of shifting operators as the Bohr-Sommerfeld-Heisenberg
quantization.
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Examples

The phase space of the 1-dimensional harmonic oscillator is P = R2

with coordinates (p, q) and the symplectic form ω = p ∧ q. The
Hamiltonian is H = 1

2 (p
2 + q2), In polar coordinates

(p, q) = (r cos ϕ, r sin ϕ), where r =
√
p2 + q2 and ϕ = tan qp , we

have ω = H ∧ dϕ. Here H = 1
2 r
2 is the action variable, while ϕ is

the corresponding angle. Choosing χ = re−ıϕ and χ̄ = re iϕ leads to
the Bargmann-Fock quantization. It should be noted that r =

√
2H

is not a smooth function of H, but χ is in C∞(P).

The Bohr-Sommerfeld-Heisenberg quantization applied to the
2-dimensional harmonic oscillator gives its full quantum theory
including a quantization representation of SU(2).

In the same way we can quantize co-adjoint orbits of SO(3) and
obtain the corresponding irreducible unitary representations.

At present, Richard Cushman and I are working on the
BSH-quantization of the mathematical pendulum.
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Remarks

Note that completely integrable Hamiltonian systems lead to real
polarizations with singularities.

The main problem for the BSH-quantization is to find a way of taking
these singularities into account.

The aim is to obtain a consistent quantum theory with quantum
operators acting transitively of the Hilbert space of states.

Each type of singularity requires individual attention.

Additional problem: the presence of quantum monodromy.

Only when we have solved problems posed by many individual
systems, we can claim that we have a suffi ciently general theory.
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Further topics

Cohomological quantization of completely integrable systems

Commutation of quantization and reduction.

Index approach to quantization.

Independence of polarization.

Observability of half-form corrections.

Toeplitz quantization and semi-classical approximations.

Connections with “hard” symplectic topology.
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R. Cushman and J. Śniatycki, “ Bohr-Sommerfeld-Heisenberg theory in
geometric quantization” J. Fixed Point Theory Appl. 13 (2013) 3-24.
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J. Śniatycki (University of Calgary) June 5 - 10, Varna, Bulgaria 68 / 70



A. A. Kirillov, Unitrary representations of nilpotent Lie groups,
Uspekhi Mat. Nauk 17 (1962) 57-110.

A. A. Kirillov, Lectures on the orbit method, American Mathematical
Society, 2004, Providence, Rhode Island.

B. Kostant, “Orbits, symplectic structures, and representation
theory”. Proc. US-Japan Seminar in Differential Geometry, Kyoto
(1965), Nippon Hyoronsha, Tokyo, 1966.

B. Kostant, “Quantization and unitary representations”. In Modern
Analysis and Applications, Lecture Notes in Mathematics, vol. 170,
pp. 87-207, Springer, Berlin-Heidelberg-New York, 1970.

M. Planck, On the Law of Distribution of Energy in the Normal
Spectrum, Annalen der Physik, 4 (1901) 553.

Robinson P.L., Rawnsley J.H., The metaplectic representation,
MpC-structures and geometric quantization, Memoirs of the A.M.S.,
81, no. 410 (1989).
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