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Notation

• Em
t semi-Euclidean m-space with the canonical semi-Euclidean

metric tensor of index t given by

〈 , 〉 = 〈 , 〉mt = −
t∑

i=1

dx2i +
m∑

j=t+1

dx2j ,

• M ↪→ Em
t : A (semi-)Riemannian submanifold of Em

t ,

• ∇̃ and ∇: Levi-Civita connections of Em
s and M,

• h: Second fundemental form of M, ‖h‖2 ‘squared’ norm of h,

• Aξ: Shape operator along ξ, D: Normal connection,

• R, RD : Curvature tensor and normal curvature tensor of M,

• ∆: Laplace operator of M.
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Basic Equations

• Gauss formula ∇̃XY = ∇XY + h(X ,Y ),

• Weingarten formula ∇̃X ξ = −Aξ(X ) + DX ξ,

• Gauss equation
R(X ,Y ,Z ,W ) = 〈h(Y ,Z ), h(X ,W )〉 − 〈h(X ,Z ), h(Y ,W )〉,

• Codazzi equation (∇̄Xh)(Y ,Z ) = (∇̄Y h)(X ,Z ),

• Ricci equation 〈RD(X ,Y )ξ, η〉 = 〈[Aξ,Aη]X ,Y 〉.
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Section 1:

Gauss map of Lorentzian surfaces in

4-dimensional semi-Euclidean spaces
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Gauss map

Now, let Mn
r ↪→ Em

t be oriented.

Consider a local orthonormal
frame field {e1, e2, . . . , en} of the tangent space of M.
The (tangent) Gauss map of M is defined by

ν : M → G (n,m) ⊂ Λm,n ∼= EN
S

p 7→ ν(p) = (e1 ∧ e2 ∧ . . . ∧ en)(p).

Note that, we have either ν(M) ⊂ SN−1
S (1)︸ ︷︷ ︸

r is even

or ν(M) ⊂ HN−1
S−1 (−1)︸ ︷︷ ︸

r is odd

.

Remark: Codimension 1

If codimension of M is one, then one may put (e1 ∧ e2∧
. . . ∧ en) = N to get the definition of classical Gauss map of
(hyper)surfaces, where N is the unit normal vector field of M.
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Pointwise 1-type Gauss map

Let M be an oriented (semi)-Riemannian submanifold of Em
t and ν

its Gauss map. Then,

1-type Gauss map

∆ν = λ(ν + C )

Pointwise 1-type Gauss map

(Proper) pointwise 1-type Gauss map if

∆ν = f (ν + C )

(non-constant) function f

A pointwise 1-type Gauss map is said to be
• of the first kind if C = 0 (∆ν = f ν),
• of the second kind if C 6= 0 and f 6= 0

(∆ν = f (ν + C ), C 6= 0),

Turgay, N. C. Varna’15 8 / 37



Gauss map of Lorentzian surfaces Biconservative hypersurfaces Other problems References

Pointwise 1-type Gauss map

Let M be an oriented (semi)-Riemannian submanifold of Em
t and ν

its Gauss map. Then,

1-type Gauss map

∆ν = λ(ν + C )

Pointwise 1-type Gauss map

(Proper) pointwise 1-type Gauss map if

∆ν = f (ν + C )

(non-constant) function f

A pointwise 1-type Gauss map is said to be
• of the first kind if C = 0 (∆ν = f ν),
• of the second kind if C 6= 0 and f 6= 0

(∆ν = f (ν + C ), C 6= 0),

Turgay, N. C. Varna’15 8 / 37



Gauss map of Lorentzian surfaces Biconservative hypersurfaces Other problems References

Pointwise 1-type Gauss map

Let M be an oriented (semi)-Riemannian submanifold of Em
t and ν

its Gauss map. Then,

1-type Gauss map

∆ν = λ(ν + C )

Pointwise 1-type Gauss map

(Proper) pointwise 1-type Gauss map if

∆ν = f (ν + C )

(non-constant) function f

A pointwise 1-type Gauss map is said to be
• of the first kind if C = 0 (∆ν = f ν),
• of the second kind if C 6= 0 and f 6= 0

(∆ν = f (ν + C ), C 6= 0),

Turgay, N. C. Varna’15 8 / 37



Gauss map of Lorentzian surfaces Biconservative hypersurfaces Other problems References

Pointwise 1-type Gauss map

Let M be an oriented (semi)-Riemannian submanifold of Em
t and ν

its Gauss map. Then,

1-type Gauss map

∆ν = λ(ν + C )

Pointwise 1-type Gauss map

(Proper) pointwise 1-type Gauss map if

∆ν = f (ν + C )

(non-constant) function f

A pointwise 1-type Gauss map is said to be
• of the first kind if C = 0 (∆ν = f ν),

• of the second kind if C 6= 0 and f 6= 0
(∆ν = f (ν + C ), C 6= 0),

Turgay, N. C. Varna’15 8 / 37



Gauss map of Lorentzian surfaces Biconservative hypersurfaces Other problems References

Pointwise 1-type Gauss map

Let M be an oriented (semi)-Riemannian submanifold of Em
t and ν

its Gauss map. Then,

1-type Gauss map

∆ν = λ(ν + C )

Pointwise 1-type Gauss map

(Proper) pointwise 1-type Gauss map if

∆ν = f (ν + C )

(non-constant) function f

A pointwise 1-type Gauss map is said to be
• of the first kind if C = 0 (∆ν = f ν),
• of the second kind if C 6= 0 and f 6= 0

(∆ν = f (ν + C ), C 6= 0),Turgay, N. C. Varna’15 8 / 37



Gauss map of Lorentzian surfaces Biconservative hypersurfaces Other problems References

Section 1.2:

Minimal Lorentzian surfaces in 4-dimensional

semi-Euclidean spaces
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Lorentzian surfaces

Let M be a Lorentzian surface in E4
r , r = 1, 2.. Consider a local

pseudo-orthonormal frame field f1, f2 of the tangent space of M.

(〈f1, f1〉 = 〈f2, f2〉 = 0, 〈f1, f2〉 = −1)

• Mean curvature vector: H = 1
2trh = −h(f1, f2),

• Gaussian Curvature: K = R(f1, f2, f2, f1),

• Normal Curvature: KD = RD(f1, f2; e3, e4),

• Laplace operator: ∆ = f1f2 + f2f1 −∇f1f2 −∇f2f1.

Turgay, N. C. Varna’15 10 / 37
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Local coordinates on Lorentzian surfaces

Theorem
a Let M be a Lorentzian surface in a semi-Euclidean space Eq

r .
Then, there exist local coordinates (s, t) such that the induced
metric is of the form g = −m2(dsdt + dtds).

Moreover,

• The Levi-Civita connection of M satisfies ∇∂s∂t = 0,

• Second fundemental form satisfies h(∂s , ∂t) = −m2H.

aSee [Chen, ‘Dependence of the Gauss-Codazzi equations and the Ricci
equation of Lorentz surface’].

Corollary

H = 0 ⇔ ∇̃∂s∂t = 0

Turgay, N. C. Varna’15 11 / 37
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Minimal Lorentzian surfaces

Theorem
a Every minimal Lorentzian surface in Em

s is locally congruent to a
translation surface defined by

x(s, t) = α(s) + β(t),

where α(s) and β(t) are two null curves.

aSee [Y. Fu and Z.-H. Hou, J. Math. Anal. Appl., 371, 25–40 (2010).].
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Section 1.3:

Gauss map of Lorentzian minimal surfaces in

the space E4
2

See [M., ‘Some classifications of Lorentzian surfaces with finite type

Gauss map in the Minkowski 4-space’(accepted) J. Aust. Math. Soc.].
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Lorentzian Surfaces in E4
2

Let M2
1 be a minimal surface in E4

2. Consider the local frame field
f1, f2; f3, f4. Note that we have h(f1, f2) = 0 because of minimality
of M.

Then its tangent Gauss map ν is defined by

ν : M → H5
3(−1) ⊂ E6

4

p 7→ ν(p) = (f1 ∧ f2)(p).

The Gauss map ν of M satisfies

∆ν = 2Kν + 2h(f1, f1) ∧ h(f2, f2), (1)

Turgay, N. C. Varna’15 14 / 37
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Lorentzian Surfaces with ∆ν = f ν

We have ∆ν = f ν ⇔ f ν = 2Kν + 2h(f1, f1) ∧ h(f2, f2)
Thus, we have

Corollary

∆ν = f ν if and only if h(f1, f1)∧ h(f2, f2) = 0. In this case, f = 2K

or, equivalently,
(∆ν = f ν)⇔ h(f1, f1) = ζh(f2, f2).
Note that we have 3 cases.

1 h(f1, f1) = h(f2, f2) = 0 (In this case M totally geodesic in E4
2);

2 h(f1, f1) = 0, h(f2, f2) 6= 0;
3 h(f1, f1) = ζh(f2, f2), ζ is non-zero:

• h(f1, f1) and h(f2, f2) are casual and linearly dependent;
• h(f1, f1) and h(f2, f2) are light-like and linearly dependent.

Turgay, N. C. Varna’15 15 / 37
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Lorentzian Surfaces with ∆ν = f ν

Case 2

h(f1, f1) = 0. In this case, we obtain M is congruent to

x(s, t) = sη0 + β(t), (2)

where η0 is a constant light-like vector and β is a null curve in E4
2.

Remark

The hypersurface given in (2) has the following property:
It has degenerated relative null space
Np(M) = {X ∈ TpM|h(X ,Y ) = 0, for all Y ∈ TpM}.

Turgay, N. C. Varna’15 16 / 37
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Remark

The hypersurface given in (2) has the following property:
It has degenerated relative null space
Np(M) = {X ∈ TpM|h(X ,Y ) = 0, for all Y ∈ TpM}.
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Lorentzian Surfaces with ∆ν = f ν

Case 3a

h(f1, f1) = ζh(f2, f2) are non-vanishing and they not light-like. In
this case, we obtain that M is lying on a hyperplane of E4

2 by the
following way.

By the assumption, we see that we may re-define s, t as
e3 = h(∂s , ∂s) = ±h(∂t , ∂t) for a unit normal vector field e3.
An instance of Codazzi equation yields that e3 is parallel. Thus,
De4 = 0, where e4 is perpendicular to e3. Moreover, we have
A4 = 0 because of e3 = h(∂s , ∂s) = ±h(∂t , ∂t). Hence e4 is
constant which completes the proof.
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Lorentzian Surfaces with ∆ν = f ν

Case 3b

h(f1, f1), h(f2, f2) 6= 0, h(f1, f1) = ζh(f2, f2) and they are light-like.

In this case, we obtain that M is lying on a degenerated
hyperplane of E4

2 and it is congruent to

x(s, t) =

(
φ1(s) + φ2(t),

√
2

2
(s + t),

√
2

2
(s − t), φ1(s) + φ2(t)

)

for some smooth functions φ1 and φ2.
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Lorentzian minimal surfaces with ∆ν = f ν

Let M be a Lorentzian minimal surface in E4
2. Then, they have

pointwise 1-type Gauss map of the first kind iff

• A surface with degenerated relative null space given
x(s, t) = sη0 + β(t)

((h(f1, f1) = 0);

• A minimal Lorentzian surface lying in a hyperplane E3
2 of E4

2

(h(f1, f1) is time-like);

• A minimal Lorentzian surface lying in a hyperplane E3
1 of E4

2

(h(f1, f1) is space-like).

• A minimal Lorentzian surface given by

x(s, t) =

(
φ1(s) + φ2(t),

√
2

2
(s + t),

√
2

2
(s − t), φ1(s) + φ2(t)

)

(h(f1, f1) is light-like).
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Classification Theorem

Hence, we have

Theorem

Let M be a minimal Lorentzian surface properly contained by the
semi-Euclidean space E4

2. Then, the following statements are
equivalent.

(i) M has pointwise 1-type Gauss map of the first kind
(∆ν = f ν);

(ii) M has harmonic Gauss map (∆ν = 0);

(iii) M is congruent to one of following surfaces

x(s, t) =sη0 + β(t),

x(s, t) =

(
φ1(s) + φ2(t),

√
2

2
(s + t),

√
2

2
(s − t), φ1(s) + φ2(t)

)
.
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Lorentzian Surfaces with ∆ν = f (ν + C )

Proposition

Let M be a minimal Lorentzian surface properly contained by the
semi-Euclidean space E4

2.

Then, ∆ν = f (ν + C ) if and only if
h(f1, f1) and h(f2, f2) are light-like and linearly independent.

Classification of such surfaces:

x(s, t) = (φ1(s) + φ2(t), s + t, s + cos c t + sin c φ2(t),

φ1(s)− sin c t + cos c φ2(t))

Turgay, N. C. Varna’15 21 / 37
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Section 2:

Biconservative hypersurfaces in the

Minkowski space E4
1

See [Fu and M., ‘Complete classification of biconservative hypersurfaces

with diagonalizable shape operator in Minkowski 4-space’(submitted)].
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Biharmonic submanifolds

Let M be an n-dimensional (semi-)Riemannian submanifold of a
(semi-)Euclidean space.

Biharmonic submanifold

M is said to be biharmonic if ∆2x = 0

The following formula is well-known.

Laplace-Beltrami formula

∆x = εnH, where H is the mean curvature vector of M.
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Chen’s conjecture

A direct corollary of Laplace-Beltrami formula

Corollary

If M is minimal, then it is biharmonic.

Thus, the following open problem arises:

Chen’s Biharmonic Conjecture

Let M be a submanifold of an Euclidean space. Then, it is
biharmonic if and only if it is minimal

Turgay, N. C. Varna’15 24 / 37
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Biconservative hypersurfaces

Now, consider a (semi-)Riemannian hypersurface M be of a
(semi-)Euclidean space and let H denote its first mean curvature.

Biconservative hypersurfaces

M is said to be biconservativea if (∆2x)T = 0

aSome authors have used the term ‘H-Hypersurface’

Note that by a direct computation using Laplace-Beltrami formula,
we have

Corollary

M is biconservative if and only if S(∇H) = cH∇H, where c is a
‘constant’ depending on the index and dimension of M.
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Hypersurfaces in E4
1

It is well-known that the shape operator of a hypersurface in E4
1

takes one of the following 4 forms.

Case I. S =

 k1 0 0
0 k2 0
0 0 k3

 , Case II. S =

 k1 1 0
0 k1 0
0 0 k3

 ,

Case III. S =

 k1 0 0
0 k1 1
−1 0 k1

 , Case IV. S =

 k1 −ν 0
ν k1 1
−1 0 k3

 ,

for some smooth functions k1, k2, k3, k4 and ν.
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Biconservative hypersurfaces in E4
1

We have obtained the following families of biconservative
hypersurfaces with diagonalizable shape operator.

Two distinct principal curvatures

• x1(s, t, u) = (f1(s), s cos t sin u, s sin t sin u, s cos u);

• x2(s, t, u) = (ssinhu sin t, scoshu sin t, s cos t, f2(s));

• x3(s, t, u) = (scosht, ssinht sin u, sinht cos u, f3(s));

• x4(s, t, u) =(
1
2s(t2 + u2) + s + f4(s), st, su, 12s(t2 + u2) + f4(s)

)
.
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Biconservative hypersurfaces in E4
1

Zero Gauss-Kronecker Curvature

• A generalized cylinder M2
0 × E1

1 where M is a biconservative
surface in E3;

• A generalized cylinder M2
0 × E1 where M is a biconservative

Riemannian surface in E3
1;

• A generalized cylinder M2
1 × E1, where M is a biconservative

Lorentzian surface in E3
1.
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Biconservative hypersurfaces in E4
1

Three distinct principal curvatures

• x1(s, t, u) = (scosht, ssinht, f1(s) cos u, f1(s) sin u);

• x2(s, t, u) = (ssinht, scosht, f2(s) cos u, f2(s) sin u);

• A hypersurface in E4
1 given by

x3(s, t, u) =

(
1

2
s(t2 + u2) + au2 + s + φ(s), st, (s + 2a)u,

1

2
s(t2 + u2) + au2 + φ(s)

)
, a 6= 0.

(3)
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Section 3:

Other problems
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Biconservative hypersurfaces

Problem

Classify all biconservative hypersurfaces in E4
1 with

non-diagonalizable shape operator.

In other words, classify all hypersurfaces with the shape operator

S =

 −9H
4 1 0

0 −9H
4 0

0 0 3H/2

 .

and

S =

 −9H
4 −ν 0

ν −9H
4 0

0 0 3H/2

 .
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A family of hypersurfaces

Consider the hypersurface given by

x(s, t̃) =

(
s|t̃|2

2
+ ã · t̃ + s + φ(s), st̃,

s|t̃|2

2
+ ã · t̃ + φ(s)

)
for a smooth function φ, where t̃ = (t1, t2, . . . , tn) and
ã = (a1, a2, . . . , an).

The shape operator of this hypersurface is

S = diag(k1(s), k2(s), . . . , kn(s)).
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Hypersurfaces with vanishing Gauss-Kronecker curvature

Let α(w) be a smooth, regular, space-like curve in S31(1) ⊂ E4
1 and

A(w), B(w) form an orthogonal frame field for the normal space
of α in S31(1).

Consider the hypersurface in E4
1 given by

x(s, v ,w) = sα(w) + c
(

cos
v

c
A(w) + sin

v

c
B(w)

)
.

The shape operator of this hypersurface is

S = diag(0,−1/c , k3(s, v ,w)).
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THANK YOU
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