Lorentzian surfaces in semi-Euclidean spaces and their Gauss map

Nurettin Cenk Turgay

Istanbul Technical University, Turkey (TÜBİTAK Project Number: 114F199)

XIIth International Conference Geometry, Integrability and Quantization

June 5-10, 2015

Acknowledgements

We would like to present the results obtained in

- E.Ö. Canfes, M. 'On the Gauss map of minimal Lorentzian surfaces in 4-dimensional semi-Euclidean spaces' (submitted)
- M., 'Some classifications of Lorentzian surfaces with finite type Gauss map in the Minkowski 4-space' (accepted) J. Aust. Math. Soc
- Y. Fu and M., 'Complete classification of biconservative hypersurfaces with diagonalizable shape operator in Minkowski 4-space'(submitted)

114F199

This work was obtained during the TÜBİTAK 1001 project (Project Name: "Y_EUCL2TIP", Project Number: 114F199).

- Gauss map of Lorentzian surfaces
 - Pointwise 1-type Gauss map
 - Minimal Lorentzian surfaces
 - Semi-Euclidean space \mathbb{E}_2^4
- 2 Biconservative hypersurfaces
 - Biharmonic submanifolds
 - Hypersurfaces with diagonalizable shape operator
- Other problems
 - Biconservative hypersurfaces
 - A family of hypersurfaces
 - Hypersurfaces with vanishing Gauss-Kronecker curvature

Notation

• \mathbb{E}_{t}^{m} semi-Euclidean *m*-space with the canonical semi-Euclidean metric tensor of index t given by

$$\langle \ , \ \rangle = \langle \ , \ \rangle_t^m = -\sum_{i=1}^t dx_i^2 + \sum_{j=t+1}^m dx_j^2,$$

- $M \hookrightarrow \mathbb{E}_t^m$: A (semi-)Riemannian submanifold of \mathbb{E}_t^m ,
- $\widetilde{\nabla}$ and ∇ : Levi-Civita connections of $\mathbb{E}_{\varepsilon}^m$ and M,
- h: Second fundemental form of M, $||h||^2$ 'squared' norm of h,
- $A_{\mathcal{E}}$: Shape operator along ξ , D: Normal connection,
- R. R^D : Curvature tensor and normal curvature tensor of M,
- Δ: Laplace operator of M.

Basic Equations

- Gauss formula $\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y)$,
- Weingarten formula $\widetilde{\nabla}_X \xi = -A_{\xi}(X) + D_X \xi$,
- Gauss equation $R(X, Y, Z, W) = \langle h(Y, Z), h(X, W) \rangle \langle h(X, Z), h(Y, W) \rangle$,
- Codazzi equation $(\bar{\nabla}_X h)(Y, Z) = (\bar{\nabla}_Y h)(X, Z)$,
- Ricci equation $\langle R^D(X,Y)\xi,\eta\rangle=\langle [A_\xi,A_\eta]X,Y\rangle$.

Section 1:

Gauss map of Lorentzian surfaces in 4-dimensional semi-Euclidean spaces

Gauss map

Now, let $M_r^n \hookrightarrow \mathbb{E}_t^m$ be oriented.

Gauss map

Now, let $M_r^n \hookrightarrow \mathbb{E}_t^m$ be oriented. Consider a local orthonormal frame field $\{e_1, e_2, \dots, e_n\}$ of the tangent space of M.

Now, let $M_r^n \hookrightarrow \mathbb{E}_t^m$ be oriented. Consider a local orthonormal frame field $\{e_1, e_2, \dots, e_n\}$ of the tangent space of M. The (tangent) Gauss map of M is defined by

$$u: M \to G(n,m) \subset \Lambda^{m,n} \cong \mathbb{E}_{S}^{N}$$
 $p \mapsto \nu(p) = (e_{1} \wedge e_{2} \wedge \ldots \wedge e_{n})(p).$

Gauss map

Now, let $M_r^n \hookrightarrow \mathbb{E}_t^m$ be oriented. Consider a local orthonormal frame field $\{e_1, e_2, \dots, e_n\}$ of the tangent space of M. The (tangent) Gauss map of M is defined by

$$\nu: M \to G(n,m) \subset \Lambda^{m,n} \cong \mathbb{E}_{S}^{N}$$

$$p \mapsto \nu(p) = (e_{1} \wedge e_{2} \wedge \ldots \wedge e_{n})(p).$$

Note that, we have either
$$\underbrace{\nu(M) \subset \mathbb{S}_S^{N-1}(1)}_{r}$$
 or $\underbrace{\nu(M) \subset \mathbb{H}_{S-1}^{N-1}(-1)}_{r}$.

Gauss map

Now, let $M_r^n \hookrightarrow \mathbb{E}_t^m$ be oriented. Consider a local orthonormal frame field $\{e_1, e_2, \ldots, e_n\}$ of the tangent space of M. The (tangent) Gauss map of M is defined by

$$u: M \to G(n,m) \subset \Lambda^{m,n} \cong \mathbb{E}_S^N$$
 $p \mapsto \nu(p) = (e_1 \wedge e_2 \wedge \ldots \wedge e_n)(p).$

Note that, we have either
$$\underbrace{\nu(M) \subset \mathbb{S}_{S}^{N-1}(1)}_{r}$$
 or $\underbrace{\nu(M) \subset \mathbb{H}_{S-1}^{N-1}(-1)}_{r}$.

Remark: Codimension 1

If codimension of M is one, then one may put $(e_1 \wedge e_2 \wedge \ldots \wedge e_n) = N$ to get the definition of classical Gauss map of (hyper)surfaces, where N is the unit normal vector field of M.

Pointwise 1-type Gauss map

Let M be an oriented (semi)-Riemannian submanifold of \mathbb{E}_t^m and ν its Gauss map. Then,

Let M be an oriented (semi)-Riemannian submanifold of \mathbb{E}_t^m and ν its Gauss map. Then,

1-type Gauss map

$$\Delta \nu = \lambda (\nu + C)$$

Let M be an oriented (semi)-Riemannian submanifold of \mathbb{E}_t^m and ν its Gauss map. Then,

1-type Gauss map

$$\Delta \nu = \lambda (\nu + C)$$

Pointwise 1-type Gauss map

(Proper) pointwise 1-type Gauss map if

$$\Delta \nu = f(\nu + C)$$

(non-constant) function f

Pointwise 1-type Gauss map

Let M be an oriented (semi)-Riemannian submanifold of \mathbb{E}_t^m and ν its Gauss map. Then,

1-type Gauss map

$$\Delta \nu = \lambda (\nu + C)$$

Pointwise 1-type Gauss map

(Proper) pointwise 1-type Gauss map if

$$\Delta \nu = f(\nu + C)$$

(non-constant) function f

A pointwise 1-type Gauss map is said to be

• of the first kind if C = 0 ($\Delta \nu = f \nu$),

Pointwise 1-type Gauss map

Let M be an oriented (semi)-Riemannian submanifold of \mathbb{E}_t^m and ν its Gauss map. Then,

1-type Gauss map

$$\Delta \nu = \lambda (\nu + C)$$

Pointwise 1-type Gauss map

(Proper) pointwise 1-type Gauss map if

$$\Delta \nu = f(\nu + C)$$

(non-constant) function f

A pointwise 1-type Gauss map is said to be

- of the first kind if C = 0 ($\Delta \nu = f \nu$),
- of the second kind if $C \neq 0$ and $f \neq 0$

Section 1.2:

Minimal Lorentzian surfaces in 4-dimensional semi-Euclidean spaces

Let M be a Lorentzian surface in \mathbb{E}_r^4 , r=1,2.. Consider a local pseudo-orthonormal frame field f_1, f_2 of the tangent space of M.

Lorentzian surfaces

Let M be a Lorentzian surface in \mathbb{E}_r^4 , r=1,2.. Consider a local pseudo-orthonormal frame field f_1 , f_2 of the tangent space of M. $(\langle f_1, f_1 \rangle = \langle f_2, f_2 \rangle = 0, \quad \langle f_1, f_2 \rangle = -1)$

• Mean curvature vector: $H = \frac{1}{2} \operatorname{tr} h = -h(f_1, f_2)$,

- Mean curvature vector: $H = \frac{1}{2} \operatorname{tr} h = -h(f_1, f_2)$,
- Gaussian Curvature: $K = R(f_1, f_2, f_2, f_1)$,

Lorentzian surfaces

- Mean curvature vector: $H = \frac{1}{2} \operatorname{tr} h = -h(f_1, f_2)$,
- Gaussian Curvature: $K = R(f_1, f_2, f_2, f_1)$,
- Normal Curvature: $K^D = R^D(f_1, f_2; e_3, e_4)$,

Lorentzian surfaces

- Mean curvature vector: $H = \frac{1}{2} \operatorname{tr} h = -h(f_1, f_2)$,
- Gaussian Curvature: $K = R(f_1, f_2, f_2, f_1)$,
- Normal Curvature: $K^D = R^D(f_1, f_2; e_3, e_4)$,
- Laplace operator: $\Delta = f_1 f_2 + f_2 f_1 \nabla_{f_1} f_2 \nabla_{f_2} f_1$.

^a Let M be a Lorentzian surface in a semi-Euclidean space \mathbb{E}_r^q . Then, there exist local coordinates (s,t) such that the induced metric is of the form $g=-m^2(dsdt+dtds)$.

- ^a Let M be a Lorentzian surface in a semi-Euclidean space \mathbb{E}_r^q . Then, there exist local coordinates (s, t) such that the induced metric is of the form $g = -m^2(dsdt + dtds)$. Moreover,
 - The Levi-Civita connection of M satisfies $\nabla_{\partial_s} \partial_t = 0$,

^a Let M be a Lorentzian surface in a semi-Euclidean space \mathbb{E}_r^q . Then, there exist local coordinates (s, t) such that the induced metric is of the form $g = -m^2(dsdt + dtds)$. Moreover,

- The Levi-Civita connection of M satisfies $\nabla_{\partial_c}\partial_t = 0$,
- Second fundemental form satisfies $h(\partial_s, \partial_t) = -m^2 H$.

^aSee [Chen, 'Dependence of the Gauss-Codazzi equations and the Ricci equation of Lorentz surface'].

^a Let M be a Lorentzian surface in a semi-Euclidean space \mathbb{E}_r^q . Then, there exist local coordinates (s, t) such that the induced metric is of the form $g = -m^2(dsdt + dtds)$. Moreover,

- The Levi-Civita connection of M satisfies $\nabla_{\partial_c}\partial_t = 0$,
- Second fundamental form satisfies $h(\partial_s, \partial_t) = -m^2 H$.

^aSee [Chen, 'Dependence of the Gauss-Codazzi equations and the Ricci equation of Lorentz surface'].

Corollary

$$H = 0 \Leftrightarrow \widetilde{\nabla}_{\partial_s} \partial_t = 0$$

Minimal Lorentzian surfaces

Theorem

^a Every minimal Lorentzian surface in \mathbb{E}_s^m is locally congruent to a translation surface defined by

$$x(s,t) = \alpha(s) + \beta(t),$$

where $\alpha(s)$ and $\beta(t)$ are two null curves.

^aSee [Y. Fu and Z.-H. Hou, J. Math. Anal. Appl., 371, 25–40 (2010).].

Gauss map of Lorentzian minimal surfaces in the space \mathbb{E}_2^4

See [M., 'Some classifications of Lorentzian surfaces with finite type Gauss map in the Minkowski 4-space' (accepted) J. Aust. Math. Soc.].

Lorentzian Surfaces in E⁴

Let M_1^2 be a minimal surface in \mathbb{E}_2^4 . Consider the local frame field $f_1, f_2; f_3, f_4$. Note that we have $h(f_1, f_2) = 0$ because of minimality of M.

Lorentzian Surfaces in \mathbb{E}_2^4

Let M_1^2 be a minimal surface in \mathbb{E}_2^4 . Consider the local frame field $f_1, f_2; f_3, f_4$. Note that we have $h(f_1, f_2) = 0$ because of minimality of M.

Then its tangent Gauss map ν is defined by

$$u: M \rightarrow \mathbb{H}_3^5(-1) \subset \mathbb{E}_4^6$$
 $\rho \mapsto \nu(\rho) = (f_1 \wedge f_2)(\rho).$

Lorentzian Surfaces in E

Let M_1^2 be a minimal surface in \mathbb{E}_2^4 . Consider the local frame field $f_1, f_2; f_3, f_4$. Note that we have $h(f_1, f_2) = 0$ because of minimality of M.

Then its tangent Gauss map ν is defined by

$$u: M \rightarrow \mathbb{H}_3^5(-1) \subset \mathbb{E}_4^6$$
 $\rho \mapsto \nu(\rho) = (f_1 \wedge f_2)(\rho).$

The Gauss map ν of M satisfies

$$\Delta \nu = 2K\nu + 2h(f_1, f_1) \wedge h(f_2, f_2), \tag{1}$$

Lorentzian Surfaces with $\Delta \nu = f \nu$

We have $\Delta \nu = f \nu \Leftrightarrow f \nu = 2K \nu + 2h(f_1, f_1) \wedge h(f_2, f_2)$ Thus, we have

Corollary

 $\Delta \nu = f \nu$ if and only if $h(f_1, f_1) \wedge h(f_2, f_2) = 0$. In this case, f = 2K

Lorentzian Surfaces with $\Delta \nu = f \nu$

We have $\Delta \nu = f \nu \Leftrightarrow f \nu = 2K \nu + 2h(f_1, f_1) \wedge h(f_2, f_2)$ Thus, we have

Corollary

$$\Delta
u = f
u$$
 if and only if $h(f_1, f_1) \wedge h(f_2, f_2) = 0$. In this case, $f = 2K$

or, equivalently,

$$(\Delta \nu = f \nu) \Leftrightarrow h(f_1, f_1) = \zeta h(f_2, f_2).$$

We have $\Delta \nu = f \nu \Leftrightarrow f \nu = 2K\nu + 2h(f_1, f_1) \wedge h(f_2, f_2)$ Thus, we have

Corollary

 $\Delta \nu = f \nu$ if and only if $h(f_1, f_1) \wedge h(f_2, f_2) = 0$. In this case, f = 2K

or, equivalently,

$$(\Delta \nu = f \nu) \Leftrightarrow h(f_1, f_1) = \zeta h(f_2, f_2).$$

Note that we have 3 cases.

- $h(f_1, f_1) = h(f_2, f_2) = 0$ (In this case M totally geodesic in \mathbb{E}_2^4);
- 2 $h(f_1, f_1) = 0, h(f_2, f_2) \neq 0;$
- **3** $h(f_1, f_1) = \zeta h(f_2, f_2), \zeta$ is non-zero:
 - $h(f_1, f_1)$ and $h(f_2, f_2)$ are casual and linearly dependent;
 - $h(f_1, f_1)$ and $h(f_2, f_2)$ are light-like and linearly dependent.

Case 2

 $h(f_1, f_1) = 0$. In this case, we obtain M is congruent to

$$x(s,t) = s\eta_0 + \beta(t), \tag{2}$$

where η_0 is a constant light-like vector and β is a null curve in \mathbb{E}_2^4 .

Case 2

 $h(f_1, f_1) = 0$. In this case, we obtain M is congruent to

$$x(s,t) = s\eta_0 + \beta(t), \tag{2}$$

where η_0 is a constant light-like vector and β is a null curve in \mathbb{E}^4_2 .

Remark

The hypersurface given in (2) has the following property:

Case 2

 $h(f_1, f_1) = 0$. In this case, we obtain M is congruent to

$$x(s,t) = s\eta_0 + \beta(t), \tag{2}$$

where η_0 is a constant light-like vector and β is a null curve in \mathbb{E}^4_2 .

Remark

The hypersurface given in (2) has the following property: It has degenerated relative null space

$$\mathcal{N}_{\mathcal{D}}(M) = \{ X \in T_{\mathcal{D}}M | h(X,Y) = 0, \text{ for all } Y \in T_{\mathcal{D}}M \}.$$

Case 3a

 $h(f_1, f_1) = \zeta h(f_2, f_2)$ are non-vanishing and they not light-like. In this case, we obtain that M is lying on a hyperplane of \mathbb{E}_2^4 by the following way.

Case 3a

 $h(f_1, f_1) = \zeta h(f_2, f_2)$ are non-vanishing and they not light-like. In this case, we obtain that M is lying on a hyperplane of \mathbb{E}_2^4 by the following way.

By the assumption, we see that we may re-define s,t as $e_3 = h(\partial_s, \partial_s) = \pm h(\partial_t, \partial_t)$ for a unit normal vector field e_3 .

Case 3a

 $h(f_1, f_1) = \zeta h(f_2, f_2)$ are non-vanishing and they not light-like. In this case, we obtain that M is lying on a hyperplane of \mathbb{E}_2^4 by the following way.

By the assumption, we see that we may re-define s, t as $e_3 = h(\partial_s, \partial_s) = \pm h(\partial_t, \partial_t)$ for a unit normal vector field e_3 . An instance of Codazzi equation yields that e_3 is parallel. Thus, $De_4 = 0$, where e_4 is perpendicular to e_3 .

Case 3a

 $h(f_1, f_1) = \zeta h(f_2, f_2)$ are non-vanishing and they not light-like. In this case, we obtain that M is lying on a hyperplane of \mathbb{E}_2^4 by the following way.

By the assumption, we see that we may re-define s, t as $e_3 = h(\partial_s, \partial_s) = \pm h(\partial_t, \partial_t)$ for a unit normal vector field e_3 . An instance of Codazzi equation yields that e_3 is parallel. Thus, $De_4 = 0$, where e_4 is perpendicular to e_3 . Moreover, we have $A_4 = 0$ because of $e_3 = h(\partial_s, \partial_s) = \pm h(\partial_t, \partial_t)$. Hence e_4 is constant which completes the proof.

Case 3b

 $h(f_1, f_1), h(f_2, f_2) \neq 0, h(f_1, f_1) = \zeta h(f_2, f_2)$ and they are light-like.

Case 3b

 $h(f_1, f_1), h(f_2, f_2) \neq 0, h(f_1, f_1) = \zeta h(f_2, f_2)$ and they are light-like. In this case, we obtain that M is lying on a degenerated hyperplane of \mathbb{E}_2^4 and it is congruent to

$$x(s,t) = \left(\phi_1(s) + \phi_2(t), \frac{\sqrt{2}}{2}(s+t), \frac{\sqrt{2}}{2}(s-t), \phi_1(s) + \phi_2(t)\right)$$

for some smooth functions ϕ_1 and ϕ_2 .

 A surface with degenerated relative null space given $x(s,t) = s\eta_0 + \beta(t)$

Lorentzian minimal surfaces with $\Delta \nu = f \nu$

Let M be a Lorentzian minimal surface in \mathbb{E}_2^4 . Then, they have pointwise 1-type Gauss map of the first kind iff

 A surface with degenerated relative null space given $x(s,t) = s\eta_0 + \beta(t) ((h(f_1,f_1) = 0);$

- A surface with degenerated relative null space given $x(s,t) = s\eta_0 + \beta(t) ((h(f_1,f_1) = 0);$
- A minimal Lorentzian surface lying in a hyperplane \mathbb{E}_2^3 of \mathbb{E}_2^4

- A surface with degenerated relative null space given $x(s,t) = s\eta_0 + \beta(t) ((h(f_1,f_1) = 0);$
- A minimal Lorentzian surface lying in a hyperplane \mathbb{E}_2^3 of \mathbb{E}_2^4 $(h(f_1, f_1))$ is time-like);

- A surface with degenerated relative null space given $x(s,t) = s\eta_0 + \beta(t) ((h(f_1,f_1) = 0);$
- A minimal Lorentzian surface lying in a hyperplane \mathbb{E}_2^3 of \mathbb{E}_2^4 $(h(f_1, f_1))$ is time-like);
- A minimal Lorentzian surface lying in a hyperplane \mathbb{E}^3_1 of \mathbb{E}^4_2

- A surface with degenerated relative null space given $x(s,t) = s\eta_0 + \beta(t) \left(\frac{h(f_1,f_1)}{s} = 0 \right);$
- A minimal Lorentzian surface lying in a hyperplane \mathbb{E}_2^3 of \mathbb{E}_2^4 $(h(f_1, f_1)$ is time-like);
- A minimal Lorentzian surface lying in a hyperplane \mathbb{E}_1^3 of \mathbb{E}_2^4 $(h(f_1, f_1)$ is space-like).

Lorentzian minimal surfaces with $\Delta \nu = f \nu$

Let M be a Lorentzian minimal surface in \mathbb{E}_2^4 . Then, they have pointwise 1-type Gauss map of the first kind iff

- A surface with degenerated relative null space given $x(s,t) = s\eta_0 + \beta(t)$ ($(h(f_1,f_1) = 0)$);
- A minimal Lorentzian surface lying in a hyperplane \mathbb{E}_2^3 of \mathbb{E}_2^4 $(h(f_1, f_1)$ is time-like);
- A minimal Lorentzian surface lying in a hyperplane \mathbb{E}_1^3 of \mathbb{E}_2^4 $(h(f_1, f_1)$ is space-like).
- A minimal Lorentzian surface given by

$$x(s,t) = \left(\phi_1(s) + \phi_2(t), \frac{\sqrt{2}}{2}(s+t), \frac{\sqrt{2}}{2}(s-t), \phi_1(s) + \phi_2(t)\right)$$

Lorentzian minimal surfaces with $\Delta \nu = f \nu$

Let M be a Lorentzian minimal surface in \mathbb{E}_2^4 . Then, they have pointwise 1-type Gauss map of the first kind iff

- A surface with degenerated relative null space given $x(s,t) = s\eta_0 + \beta(t)$ ($(h(f_1,f_1) = 0)$);
- A minimal Lorentzian surface lying in a hyperplane \mathbb{E}_2^3 of \mathbb{E}_2^4 $(h(f_1, f_1)$ is time-like);
- A minimal Lorentzian surface lying in a hyperplane \mathbb{E}_1^3 of \mathbb{E}_2^4 $(h(f_1, f_1)$ is space-like).
- A minimal Lorentzian surface given by

$$x(s,t) = \left(\phi_1(s) + \phi_2(t), \frac{\sqrt{2}}{2}(s+t), \frac{\sqrt{2}}{2}(s-t), \phi_1(s) + \phi_2(t)\right)$$

 $(h(f_1, f_1))$ is light-like).

Hence, we have

Theorem

Let M be a minimal Lorentzian surface properly contained by the semi-Euclidean space \mathbb{E}_2^4 . Then, the following statements are equivalent.

Classification Theorem

Hence, we have

Theorem

Let M be a minimal Lorentzian surface properly contained by the semi-Euclidean space \mathbb{E}_2^4 . Then, the following statements are equivalent.

- (i) M has pointwise 1-type Gauss map of the first kind $(\Delta \nu = f \nu)$;
- (ii) M has harmonic Gauss map $(\Delta \nu = 0)$;

Classification Theorem

Hence, we have

Theorem

Let M be a minimal Lorentzian surface properly contained by the semi-Euclidean space \mathbb{E}_2^4 . Then, the following statements are equivalent.

- (i) M has pointwise 1-type Gauss map of the first kind $(\Delta \nu = f \nu)$;
- (ii) M has harmonic Gauss map $(\Delta \nu = 0)$;
- (iii) M is congruent to one of following surfaces

$$x(s,t) = s\eta_0 + \beta(t),$$

 $x(s,t) = \left(\phi_1(s) + \phi_2(t), \frac{\sqrt{2}}{2}(s+t), \frac{\sqrt{2}}{2}(s-t), \phi_1(s) + \phi_2(t)\right).$

Proposition

Let *M* be a minimal Lorentzian surface properly contained by the semi-Euclidean space \mathbb{E}_2^4 .

Proposition

Let *M* be a minimal Lorentzian surface properly contained by the semi-Euclidean space \mathbb{E}_2^4 . Then, $\Delta \nu = f(\nu + C)$ if and only if

Proposition

Let M be a minimal Lorentzian surface properly contained by the semi-Euclidean space \mathbb{E}_2^4 . Then, $\Delta \nu = f(\nu + C)$ if and only if $h(f_1, f_1)$ and $h(f_2, f_2)$ are light-like and linearly independent.

Classification of such surfaces:

$$x(s,t) = (\phi_1(s) + \phi_2(t), s + t, s + \cos c \ t + \sin c \ \phi_2(t),$$

 $\phi_1(s) - \sin c \ t + \cos c \ \phi_2(t))$

Section 2:

Biconservative hypersurfaces in the Minkowski space \mathbb{E}^4_1

See [Fu and M., 'Complete classification of biconservative hypersurfaces with diagonalizable shape operator in Minkowski 4-space' (submitted)].

Biharmonic submanifolds

Let M be an n-dimensional (semi-)Riemannian submanifold of a (semi-)Euclidean space.

Biharmonic submanifold

M is said to be biharmonic if $\Delta^2 x = 0$

Let M be an n-dimensional (semi-)Riemannian submanifold of a (semi-)Euclidean space.

Biharmonic submanifold

M is said to be biharmonic if $\Delta^2 x = 0$

The following formula is well-known.

Laplace-Beltrami formula

 $\Delta x = \varepsilon nH$, where H is the mean curvature vector of M.

Chen's conjecture

A direct corollary of Laplace-Beltrami formula

Corollary

If M is minimal, then it is biharmonic.

Chen's conjecture

A direct corollary of Laplace-Beltrami formula

Corollary

If M is minimal, then it is biharmonic.

Thus, the following open problem arises:

Chen's Biharmonic Conjecture

Let M be a submanifold of an Euclidean space. Then, it is biharmonic if and only if it is minimal

Now, consider a (semi-)Riemannian hypersurface M be of a (semi-)Euclidean space and let H denote its first mean curvature.

Biconservative hypersurfaces

M is said to be biconservative if $(\Delta^2 x)^T = 0$

^aSome authors have used the term 'H-Hypersurface'

Now, consider a (semi-)Riemannian hypersurface M be of a (semi-)Euclidean space and let H denote its first mean curvature.

Biconservative hypersurfaces

M is said to be biconservative if $(\Delta^2 x)^T = 0$

^aSome authors have used the term 'H-Hypersurface'

Note that by a direct computation using Laplace-Beltrami formula, we have

Corollary

M is biconservative if and only if $S(\nabla H) = cH\nabla H$, where c is a 'constant' depending on the index and dimension of M.

It is well-known that the shape operator of a hypersurface in \mathbb{E}^4_1 takes one of the following 4 forms.

$$\begin{aligned} & \text{Case II. } S = \left(\begin{array}{ccc} k_1 & 0 & 0 \\ 0 & k_2 & 0 \\ 0 & 0 & k_3 \end{array} \right), & \text{Case II. } S = \left(\begin{array}{ccc} k_1 & 1 & 0 \\ 0 & k_1 & 0 \\ 0 & 0 & k_3 \end{array} \right), \\ & \text{Case III. } S = \left(\begin{array}{ccc} k_1 & 0 & 0 \\ 0 & k_1 & 1 \\ -1 & 0 & k_1 \end{array} \right), & \text{Case IV. } S = \left(\begin{array}{ccc} k_1 & -\nu & 0 \\ \nu & k_1 & 1 \\ -1 & 0 & k_3 \end{array} \right), \end{aligned}$$

for some smooth functions k_1 , k_2 , k_3 , k_4 and ν .

We have obtained the following families of biconservative hypersurfaces with diagonalizable shape operator.

Two distinct principal curvatures

- $x_1(s, t, u) = (f_1(s), s \cos t \sin u, s \sin t \sin u, s \cos u);$
- $x_2(s, t, u) = (s \sinh u \sin t, s \cosh u \sin t, s \cos t, f_2(s));$
- $x_3(s, t, u) = (s \cosh t, s \sinh t \sin u, \sinh t \cos u, f_3(s));$
- $x_4(s, t, u) =$ $(\frac{1}{2}s(t^2+u^2)+s+f_4(s), st, su, \frac{1}{2}s(t^2+u^2)+f_4(s)).$

Zero Gauss-Kronecker Curvature

- A generalized cylinder $M_0^2 \times \mathbb{E}_1^1$ where M is a biconservative surface in \mathbb{E}^3 :
- A generalized cylinder $M_0^2 \times \mathbb{E}^1$ where M is a biconservative Riemannian surface in \mathbb{E}_1^3 ;
- A generalized cylinder $M_1^2 \times \mathbb{E}^1$, where M is a biconservative Lorentzian surface in \mathbb{E}^3_1 .

Three distinct principal curvatures

- $x_1(s, t, u) = (s \cosh t, s \sinh t, f_1(s) \cos u, f_1(s) \sin u);$
- $x_2(s, t, u) = (s \sinh t, s \cosh t, f_2(s) \cos u, f_2(s) \sin u);$
- A hypersurface in \mathbb{E}_1^4 given by

$$x_3(s,t,u) = \left(\frac{1}{2}s(t^2+u^2) + au^2 + s + \phi(s), st, (s+2a)u, \frac{1}{2}s(t^2+u^2) + au^2 + \phi(s)\right), \quad a \neq 0.$$
(3)

Section 3:

Other problems

Biconservative hypersurfaces

Problem

Classify all biconservative hypersurfaces in \mathbb{E}^4_1 with non-diagonalizable shape operator.

Problem

Classify all biconservative hypersurfaces in \mathbb{E}_1^4 with non-diagonalizable shape operator.

In other words, classify all hypersurfaces with the shape operator

$$S = \left(\begin{array}{ccc} -\frac{9H}{4} & 1 & 0\\ 0 & -\frac{9H}{4} & 0\\ 0 & 0 & 3H/2 \end{array}\right).$$

and

Biconservative hypersurfaces

Problem

Classify all biconservative hypersurfaces in \mathbb{E}^4_1 with non-diagonalizable shape operator.

In other words, classify all hypersurfaces with the shape operator

$$S = \left(\begin{array}{ccc} -\frac{9H}{4} & 1 & 0\\ 0 & -\frac{9H}{4} & 0\\ 0 & 0 & 3H/2 \end{array}\right).$$

and

$$S = \begin{pmatrix} -\frac{9H}{4} & -\nu & 0\\ \nu & -\frac{9H}{4} & 0\\ 0 & 0 & 3H/2 \end{pmatrix}.$$

A family of hypersurfaces

Consider the hypersurface given by

$$x(s,\widetilde{t}) = \left(\frac{s|\widetilde{t}|^2}{2} + \widetilde{a} \cdot \widetilde{t} + s + \phi(s), \ s\widetilde{t}, \ \frac{s|\widetilde{t}|^2}{2} + \widetilde{a} \cdot \widetilde{t} + \phi(s)\right)$$

for a smooth function ϕ , where $\widetilde{t} = (t_1, t_2, \dots, t_n)$ and $\widetilde{a} = (a_1, a_2, \ldots, a_n).$

Consider the hypersurface given by

 $x(s,\widetilde{t}) = \left(\frac{s|\widetilde{t}|^2}{2} + \widetilde{a} \cdot \widetilde{t} + s + \phi(s), \ s\widetilde{t}, \ \frac{s|\widetilde{t}|^2}{2} + \widetilde{a} \cdot \widetilde{t} + \phi(s)\right)$

for a smooth function ϕ , where $\widetilde{t} = (t_1, t_2, \dots, t_n)$ and $\widetilde{a} = (a_1, a_2, \ldots, a_n).$

The shape operator of this hypersurface is

$$S = \operatorname{diag}(k_1(s), k_2(s), \ldots, k_n(s)).$$

Hypersurfaces with vanishing Gauss-Kronecker curvature

Let $\alpha(w)$ be a smooth, regular, space-like curve in $\mathbb{S}^3_1(1) \subset \mathbb{E}^4_1$ and A(w), B(w) form an orthogonal frame field for the normal space of α in $\mathbb{S}^3_1(1)$.

Let $\alpha(w)$ be a smooth, regular, space-like curve in $\mathbb{S}^3_1(1) \subset \mathbb{E}^4_1$ and A(w), B(w) form an orthogonal frame field for the normal space of α in $\mathbb{S}^3_1(1)$.

Consider the hypersurface in \mathbb{E}_1^4 given by

$$x(s, v, w) = s\alpha(w) + c\left(\cos\frac{v}{c}A(w) + \sin\frac{v}{c}B(w)\right).$$

Hypersurfaces with vanishing Gauss-Kronecker curvature

Let $\alpha(w)$ be a smooth, regular, space-like curve in $\mathbb{S}^3_1(1) \subset \mathbb{E}^4_1$ and A(w), B(w) form an orthogonal frame field for the normal space of α in $\mathbb{S}^3_1(1)$.

Consider the hypersurface in \mathbb{E}_1^4 given by

$$x(s, v, w) = s\alpha(w) + c\left(\cos\frac{v}{c}A(w) + \sin\frac{v}{c}B(w)\right).$$

The shape operator of this hypersurface is

$$S = diag(0, -1/c, k_3(s, v, w)).$$

Other problems

Reference

THANK YOU

Referances I

- Chen, B.-Y., Total Mean Curvature and Submanifold of Finite Type, Second edition, World Scientific, 2014.
- Chen, B. Y., Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17 (1991), no. 2. 169-188.
- Chen, B. Y., Morvan, J. M. and Nore, T., Energy, tension and finite type maps. Kodai Math. J. 9, 1986, pp. 406-418.
- Dursun, U., Hypersurfaces with pointwise 1-type Gauss map in Lorentz-Minkowski space, Proc. Est. Acad. Sci. 58, 2009, 146-161.

Referances II

- Dursun, U. and Bektas, B., Spacelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space \mathbb{E}_1^4 with Pointwise 1-Type Gauss Map, Math Phys Anal Geom, 2014. 17:247-263.
- Hasanis, T., Vlachos, I., Hypersurfaces in E⁴ with harmonic mean curvature vector field, Math Nachr, 172 (1995), 145-169.
- Milousheva, V., Marginally trapped surfaces with pointwise 1-type Gauss map in Minkowski 4-space, Int. J. Geom. 2, 2013. 34-43.

Referances III

- Turgay, N. C., On the marginally trapped surfaces in 4-dimensional space-times with finite type Gauss map, GenRelativGravit (2014) 46:1621
- Turgay, N. C., H-hypersurfaces with 3 distinct principal curvatures in the Euclidean spaces (accepted, to print) Ann. Mat. Pura Appl., DOI: 10.1007/s10231-014-0445-z.