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Gyrodecomposition of Groups

G = BH



Gyrodecomposition of Groups: G = BH.
1

B ⊆ G (B is a subset of the group G )
2

H < G (H is a subgroup of G )
3

Unique (g ∈ G ⇒ g = bh, b ∈ B , h ∈ H)
4

IG ∈ B
5

B = B−1

6
B is normalized by H (hBh−1 ⊆ B)



Any Group Gyrodecomposition
G = BH

Induces a
(1) Binary Operation, ⊕, in B

called Gyroaddition; and
(2) Gyroautomorphisms of the
Gyrogroupoid (B ,⊕), called
gyrations.



b1, b2 ∈ B ⇒ b1b2 ∈ G ⇒ b1b2 = b12h(b1, b2)

Definition

b1⊕b2 = b12

gyr[b1, b2]b3 = h(b1, b2)b3(h(b1, b2))
−1

for all b1, b2, b3 ∈ B .

Here
b1⊕b2 is the gyroaddition of b1 and b2; and

gyr[b1, b2]b3 is the application to b3 of the gyration

gyr[b1, b2] generated by b1 and b2.

The gyrogroupoid (B ,⊕) is a gyrogroup, the
definition of which follows.



Definition

A groupoid (B ,⊕) is a gyrogroup if its binary operation satisfies
the following axioms for all a, b, c ∈ B :

1
0⊕a = a (Left Identity)

2 ⊖a⊕a = 0 (Left Inverse)
3

a⊕(b⊕c) = (a⊕b)⊕gyr[a, b]c (Left Gyroassociative Law)
4

gyr[a, b] ∈ Aut(G ,⊕) (Gyrations are Automorphisms)
5

gyr[a, b] = gyr[a⊕b, b] (Gyration Left Reduction Law)

Definition

A gyrogroup (B ,⊕) is gyrocommutative if its binary operation
satisfies the Gyrocommutative Law
a⊕b = gyr[a, b](b⊕a)



The famous concrete example of a
group gyrodecomposition

is the decomposition of the Lorentz group SO(1, n), n ∈ N, into
boosts and space rotations of time-space coordinates.
Remarkably, the binary operation in the ball

R
n

c = {v ∈ R
n : ‖v‖ < c}

that the gyrodecomposition of the Lorentz group SO(1, n) induces
turns out to be the Einstein addition of relativistically admissible
velocities.
Accordingly the gyrodecomposition of the Lorentz group SO(1, n)
enables us to

1 recover Einstein addition, ⊕, in the ball Rn
c ; and to

2 discover the gyrogroup structure of the resulting Einstein
groupoid (Rn

c ,⊕).



Einstein addition, ⊕, is a binary operation in the c-ball

R
n

c = {v ∈ R
n : ‖v‖ < c}

n = 1, 2, 3, . . ., of the Euclidean n-space R
n. It is given by the

equation

u⊕v =
1

1 + u·v
c2

{

u+
1

γu
v +

1

c2
γu

1 + γu
(u·v)u

}

where

γu =
1

√

1− ‖u‖2
c2

≥ 1



Gyrations in Einstein gyrogroups capture abstractly the special
relativistic effect known as Thomas precession, which we extend to
Thomas gyration. Our use of the prefix “gyro” thus stems from
Thomas gyration.
Gyrations in Einstein gyrogroups (Rn

c ,⊕) are automorphisms of
(Rn

c ,⊕) given in terms of Einstein addition by the equation

gyr[u, v]w = ⊖(u⊕v)⊕{u⊕(v⊕w)}

for all u, v,w ∈ R
n
c .

gyr[u, v] measures the extent of deviation of Einstein addition from
associativity.



The Rich Mathematical Life of
Einstein Addition

u⊕v = gyr[u, v](v⊕u) Gyrocommutative Law

u⊕(v⊕w) = (u⊕v)⊕gyr[u, v]w Left Gyroassociative Law

(u⊕v)⊕w = u⊕(v⊕gyr[v, u]w) Right Gyroassociative Law

gyr[u⊕v, v] = gyr[u, v] Gyration Left Reduction Law

gyr[u, v⊕u] = gyr[u, v] Gyration Right Reduction Law

gyr[⊖u,⊖v] = gyr[u, v] Gyration Even Property

(gyr[u, v])−1 = gyr[v, u] Gyration Inversion Law

for all u, v,w ∈ R
n

c
.



Einstein addition admits scalar multiplication, giving rise to
Einstein gyrovector spaces.
k⊗v = v⊕v . . .⊕v (k terms, k = 1, 2, 3, . . .)
is the Einstein addition of k copies of v ∈ R

n
c

Then

k⊗v =

(

1 +
‖v‖
c

)k

−
(

1− ‖v‖
c

)k

(

1 +
‖v‖
c

)k

+

(

1− ‖v‖
c

)k

cv

‖v‖

Suggestively, Einstein scalar multiplication is defined by this
equation with k ∈ N replaced by r ∈ R.



Definition

Einstein scalar multiplication is given by the equation

r⊗v =

(

1 +
‖v‖
c

)r

−
(

1− ‖v‖
c

)r

(

1 +
‖v‖
c

)r

+

(

1− ‖v‖
c

)r

cv

‖v‖

where r is any scalar, r ∈ R, v ∈ R
n
c , v 6= 0, and r⊗0 = 0, and

with which we use the notation v⊗r = r⊗v.

Example: Einstein half

1
2⊗v =

γv

1 + γv
v



Classical and Relativistic Kinetic Energy of a moving particle with
velocity v relative to a rest frame

Classical Kinetic Energy:

Kcls =
1
2mv2 = (12v)·(mv)

Relativistic Kinetic Energy:

Krel = c2m(γv − 1) = (12⊗v)·(mγvv)

The remarkable analogy that Einstein Scalar Multiplication, ⊗,
captures here is clear.



From Einstein Addition ⊕
E

to Möbius Addition ⊕
M
in the Ball Rn

c

Einstein half is involved in the gyroisomorphism between Einstein
addition and Möbius addition in the ball:

u⊕
M
v = 1

2⊗(2⊗u⊕
E
2⊗v)

u⊕
E
v = 2⊗(12⊗u⊕

M
1
2⊗v)

The Einstein gyrogroup (Rn
c ,⊕E

) and the Möbius gyrogroup
(Rn

c ,⊕M
) are thus gyroisomorphic (that is, they are isomorphic in

the sense of gyrogroups and gyrovector spaces).



Einstein gyrovector spaces (Rn
c ,⊕E

,⊗) form the algebraic setting
for the Beltrami-Klein ball model of hyperbolic geometry,
and
Möbius gyrovector spaces (Rn

c ,⊕M
,⊗) form the algebraic setting

for the Poincaré ball model of hyperbolic geometry,
just as
vector spaces form the algebraic setting for the standard model of
Euclidean geometry.
As a result, analytic hyperbolic geometry can now be studied in full
analogy with the study of analytic Euclidean geometry, as
evidenced from 7 books on analytic hyperbolic geometry published
during 2001 – 2015.
We thus see that gyrogroups and gyrovector spaces play a
universal computational role, which extends far beyond the domain
of Einstein’s special relativity theory.



a

b

ma,b =
γaa+γ

b
b

γa+γ
b

p ‖a⊖ma,b‖ = ‖b⊖ma,b‖

d⊖(a,p)⊕d⊖(p,b) = d⊖(a,b)

a⊕(⊖a⊕b)⊗t

0 ≤ t ≤ 1

Figure: ⊕ = ⊕
E
. A gyroline in an Einstein gyrovector plane



a

b

ma,b

p ‖a⊖ma,b‖ = ‖b⊖ma,b‖

d⊖(a,p)⊕d⊖(p,b) = d⊖(a,b)

a⊕(⊖a⊕b)⊗t

0 ≤ t ≤ 1

Figure: ⊕ = ⊕
M
. A gyroline in a Möbius gyrovector plane.



◮

◮

a

b

c

α

cosα =
⊖a⊕b

‖⊖a⊕b‖·
⊖a⊕c

‖⊖a⊕c‖

Figure: ⊕ = ⊕ . The Hyperbolic Angle in the Einstein gyrovector plane



u

v

w

v′

w′

α

cosα =
⊖u⊕v

‖⊖u⊕v‖·
⊖u⊕w

‖⊖u⊕w‖

Figure: ⊕ = ⊕
M
. A Möbius angle α generated by the two intersecting



Covariance of Barycentric Coordinate

Representations:

Let

P =

∑

N

k=1 mkAk
∑

N

k=1 mk

(1)

be the barycentric coordinate representation of a point P ∈ R
n in a

Euclidean n-space R
n with respect to a pointwise independent set

S = {A1, . . . ,AN} ⊂ R
n. The barycentric coordinate

representation (1) is covariant, that is,

X + P =

∑

N

k=1 mk(X + Ak)
∑

N

k=1 mk

(2)

for all X ∈ R
n, and

RP =

∑

N

k=1 mkRAk
∑

N

k=1 mk

(3)

for all R ∈ SO(n).



Covariance of Gyrobarycentric Coordinate

Representations:

Let

P =

∑

N

k=1 mkγAk
Ak

∑

N

k=1 mkγAk

(4)

be a gyrobarycentric coordinate representation of a point P ∈ R
n
c

in an Einstein gyrovector space (Rn
c ,⊕,⊗) with respect to a

pointwise independent set S = {A1, . . . ,AN} ⊂ R
n
c .

Then

X⊕P =

∑

N

k=1 mkγX⊕Ak
(X⊕Ak)

∑

N

k=1 mkγX⊕Ak

(5)

and

RP =

∑

N

k=1 mkγRAk
RAk

∑

N

k=1 mkγRAk

(6)



From
gyrodecomposition of Groups
to
bi-gyrodecomposition of Groups

Past (1988 – 2015) and future (2015 – )

Each Lorentz transformation group SO(1, n), n > 1, in a
pseudo-Euclidean space of signature (1, n) possesses a
gyrodecomposition

SO(1, n) = BH

This gyrodecomposition along with the 1988 parametric realization
of Lorentz transformations in pseudo-Euclidean spaces of signature
(1, n), n > 1, opened the door to the exploration of group
gyrodecomposition.



The 1988 – 2015 exploration of the group gyrodecomposition, in
turn, resulted in the discovery of the algebraic gyrostructures,
gyrogroup and gyrovector space.

These gyrostructures play a universal computational role that
extends far beyond the domain of Einstein’s special relativity
theory.

Of particular interest are applications in the hyperbolic geometry of
Lobachevsky and Bolyai, resulting in the equation

{Hyperbolic Geometry} = {gyroeuclidean Geometry}



Each Lorentz transformation group SO(1, n), n > 1, in a
pseudo-Euclidean space of signature (1, n) possesses a
gyrodecomposition

SO(1, n) = BH

The exploration of the gyrodecomposition is far reaching.

Similarly:

Each Lorentz transformation group SO(m, n), m, n > 1, in a
pseudo-Euclidean space of signature (m, n) possesses a
bi-gyrodecomposition

SO(m, n) = HLBHR

The exploration of the bi-gyrodecomposition is far reaching.



Guided by analogies with the 1988 – 2015 exploration of the group
gyrodecomposition

G = BH

that was suggested by the Lorentz group gyrodecomposition

SO(1, n) = BH

our first step in the exploration of group bi-gyrodecomposition

G = HLBHR

is to study the special case of the bi-gyrodecomposition

SO(m, n) = HLBHR

m, n > 1.



The study of the bi-gyrodecomposition

SO(m, n) = HLBHR

m, n > 1, is based on the novel
Parametric Realization of the Lorentz Transformation Group in
Pseudo-Euclidean Spaces of signature (m, n), m, n > 1.

This is in full analogy with:

The 1988 study of the gyrodecomposition

SO(1, n) = BH

n > 1, which was based on the 1988 – novel
Parametric Realization of the Lorentz Transformation Group in
Pseudo-Euclidean Spaces of signature (1, n), n > 1.



Parametric Realization of the boost in SO(1, n) (STR)

B(v1)B(v2) = B(v1⊕v2)H(v1, v2)

v1, v2 ∈ R
n×1 = R

n.
The application of two successive boosts is equivalent to the
application of a single boost and a Thomas gyration of space
coordinates.
Einstein velocity addition, ⊕, is involved.
The space of the parameter v is the ball Rn

c of all relativistically
admissible velocities,

R
n

c = {v ∈ R
n : ‖v‖ < c}

The resulting Einstein groupoid (Rn
c ,⊕) is a gyrocommutative

gyrogroup.



Hence,

1 the parametric realization of the boost in SO(1, n) (STR)

B(v), v ∈ R
n

c

and

2 the gyrodecomposition of the Lorentz group

SO(1, n) = B(v)H

are rewarding for the following two reasons:
They enable us to

1 recover Einstein addition, ⊕, in the ball Rn
c ; and to

2 discover the gyrogroup structure of the resulting Einstein
groupoid (Rn

c ,⊕).



The parametric realization of the bi-boost B(P) in SO(m, n)

B(P) =

(
√
Im + P tP P t

P
√
In + PP t

)

∈ R
(m+n)×(m+n)

P ∈ R
n×m, m, n ∈ N.

B(P)

(

t

x

)

=

(

t′

x′

)

t, t′ ∈ R
m, x, x′ ∈ R

n.

t2 − x2 = (t′)2 − (x′)2

B(P)

(

t1

x1

)

·B(P)

(

t2

x2

)

=

(

t1

x1

)

·
(

t2

x2

)

= t1·t2 − x1·x2



The parametric realization of the Lorentz group SO(m, n)

Λ =

(

Om 0m,n

0n,m In

)(
√
Im + P tP P t

P
√
In + PP t

)(

Im 0m,n

0n,m On

)

On : P → OnP

Om : P → POm

(On,Om) : P → OnPOm

The three parameters of the (m, n)-Lorentz transformation
Λ ∈ SO(m, n) are:

1 Om ∈ SO(m)

2 On ∈ SO(n)

3 P ∈ R
n×m



Parametric Realization of the bi-boost in SO(m, n)

B(P1)B(P2) = HL(P1,P2)B(P1⊕P2)HR(P1,P2)

P1,P2 ∈ R
n×m.

The application of two successive bi-boosts is equivalent to the
application of a single bi-boost and

1 a Thomas gyration of space-like coordinates (coming from
HR); and

2 a Thomas gyration of time-like coordinates (coming from HL).

A novel binary operation, ⊕, between real n ×m matrices is
involved.
The space of the parameter P is the space R

n×m of all real n ×m

matrices.
The resulting groupoid (Rn×m,⊕) is a bi-gyrocommutative
bi-gyrogroup.



Hence,

1 the parametric realization of the bi-boost in SO(m, n)

B(P), P ∈ R
n×m

and

2 the bi-gyrodecomposition of the Lorentz group

SO(m, n) = HLB(P)HR

are rewarding for the following two reasons:
They enable us to

1 discover a binary operation, ⊕, in the space of all real n ×m

matrices and to

2 discover the bi-gyrogroup structure of the resulting groupoid
(Rn×m,⊕).



The study of the bi-gyrodecomposition

SO(m, n) = HLBHR

m, n > 1, leads to our discovery of the two novel algebraic
structures

bi-gyrogroup and bi-gyrovector space,
which play a universal computational role that extends far beyond
the domain of Lorentz groups,
including Generalized Analytic Hyperbolic Geometry,

just as:

The 1988 – 2015 study of the gyrodecomposition

SO(1, n) = BH

n > 1, led us to the discovery of the algebraic structures
gyrogroup and gyrovector space.



Our study of the
Parametric Realization of the Lorentz Transformation Group in
Pseudo-Euclidean Spaces of signature (m, n), m, n > 1,
leads us to the discovery of the novel bi-gyrogroup and
bi-gyrovector space structures.

Naturally, a bi-gyrogroup involves two families of gyrations,
left gyrations and right gyrations ,

as opposed to

a gyrogroup, which involves a single family of gyrations.



Moreover, in full analogy with the equation

{Hyperbolic Geometry} = {gyroeuclidean Geometry}

we will have the equation

{Generalized Hyperbolic Geometry} = {bi-gyroeuclidean
Geometry}



The definition of the resulting
bi-gyrogroup

follows



Definition

A groupoid (B ,⊕) is a bi-gyrogroup if its binary operation satisfies
the following axioms for all a, b, c ∈ B :

1
0⊕a = a (Left Identity)

2 ⊖a⊕a = 0 (Left Inverse)
3

a⊕(b⊕c) = (a⊕b)⊕lgyr[a, b]crgyr[b, a]
(Left bi-gyroassociative Law)

4
lgyr[a, b], rgyr[a, b] ∈ Aut(G ,⊕)

(bi-gyrations are Automorphisms)
5

rgyr[a, b] = rgyr[a⊕b, b] and lgyr[a, b] = lgyr[a⊕b, b]
(Bi-gyration Left Reduction Law)



Definition

A bi-gyrogroup (B ,⊕) is bi-gyrocommutative if its binary
operation satisfies the Bi-gyrocommutative Law

a⊕b = lgyr[a, b](b⊕a)rgyr[b, a]

A presentation of the concrete example of a bi-gyrocommutative
bi-gyrogroup that results from the bi-gyrodecomposition of Lorentz
groups in Pseudo-Euclidean Spaces of signature (m, n), m, n > 1,
appears in
A.A. Ungar, Parametric Realization of the Lorentz Transformation

Group in Pseudo-Euclidean Spaces.

A presentation that captures abstractly the notion of the
bi-gyrogroup that results from a group bi-gyrodecomposition
appears in
T. Suksumran and A.A. Ungar, Bi-gyrogroup: The Group-like

Structure Induced by Bi-decomposition of Groups.



Thank You


