イロン イロン イヨン イヨン

2

# Weyl Manifold, a Quantized Symplectic Manifold

To Professor Kenjiro Okubo.

### Akira Yoshioka Tokyo University of Science

05 June 2015 Varna

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

# **§1. Deformation quantization**

- Weyl manifold naturally emerges when we consider to glue together quantized canonical coordinates by means of quantized canonical transformations, and is deeplly related to deformation quantization.
- Actually, from a Weyl manifold we can construct a deformation quantization, and also from a deformation quantization we obtain a Weyl manifold.
- In this talk we explain an idea of Weyl manifold as a quantized symplectic manifold.

§1. Deformation quantization
0000
00

§1.1. The Moyal product

§2. Weyl manifold

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶

### §1.1. The Moyal product

Weyl manifold is deeply related to deformation quantization. We start by giving a very important example of deformation quantization, the Moyal product.

**Canonical symplectic strucure.** Let us consider 2n dimensional euclidean space  $\mathbb{R}^{2n}$  with coordinates

 $(x_1,\ldots,x_n,y_1,\ldots,y_n)$ 

and the canonical symplectic structure

$$\omega_0 = \sum_{k=1}^n dy_k \wedge dx_k.$$

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

§1. Deformation quantization 00000 00

§1.1. The Moyal product

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

### Poisson biderivation.

Its canonical Poisson bracket is given by

$$\{f,g\}_0 = \sum_{k=1}^n (\partial_{x_k} f \, \partial_{y_k} g - \partial_{y_k} f \, \partial_{x_k} g), \quad f,g \in C^{\infty}(\mathbb{R}^{2n})$$

and this can be written as the Poisson biderivation as

$$=\sum_{k=1}^{n} (f\overleftarrow{\partial}_{x_{k}}\overrightarrow{\partial}_{y_{k}}g - f\overleftarrow{\partial}_{y_{k}}\overrightarrow{\partial}_{x_{k}}g) = f\overleftarrow{\partial}_{x}\cdot\overrightarrow{\partial}_{y}g - f\overleftarrow{\partial}_{y}\cdot\overrightarrow{\partial}_{x}g$$
$$= f(\overleftarrow{\partial}_{x}\cdot\overrightarrow{\partial}_{y} - \overleftarrow{\partial}_{y}\cdot\overrightarrow{\partial}_{x})g = f\overleftarrow{\partial}_{x}\wedge\overrightarrow{\partial}_{y}g.$$

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

### The *l* th power of the Poisson biderivation

is calculated by means of the binomal theorem such as

$$\left(\overleftarrow{\partial}_x \wedge \overrightarrow{\partial}_y\right)^l = \sum_{k=0}^l \binom{l}{k} (-1)^k (\overleftarrow{\partial}_x \cdot \overrightarrow{\partial}_y)^{l-k} (\overleftarrow{\partial}_y \cdot \overrightarrow{\partial}_x)^k$$

which defines a bidifferential operator  $f\left(\overleftarrow{\partial}_x \wedge \overrightarrow{\partial}_y\right)^l g$ .

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

§1. Deformation quantization 000●0 00

§1.1. The Moyal product

### Moyal product \*0

The Moyal product  $*_0$  is given by a formal power series of the Poisson biderivation of the exponential type such that

$$f *_0 g = fg + (\frac{\nu}{2})f(\overleftarrow{\partial}_x \wedge \overrightarrow{\partial}_y)g + \dots + (\frac{\nu}{2})^l \frac{1}{l!}f(\overleftarrow{\partial}_x \wedge \overrightarrow{\partial}_y)^l g + \dots$$
$$= f \exp\left(\frac{\nu}{2}\overleftarrow{\partial}_x \wedge \overrightarrow{\partial}_y\right)g, \quad f, g \in C^{\infty}(\mathbb{R}^{2n}),$$

where v is a formal parameter.

This is also written in general form such that

$$f *_0 g = fg + \nu C_1(f,g) + \nu^2 C_2(f,g) + \dots + \nu^l C_l(f,g) + \dots,$$

where  $C_l(f,g) = f \frac{1}{l!} (\frac{1}{2})^l (\overleftarrow{\partial}_x \wedge \overrightarrow{\partial}_y)^l g$ ,  $l = 1, 2, \cdots$  are bidifferential operators.

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

§1. Deformation quantization ○○○

§1.1. The Moyal product

§2. Weyl manifold

### **Quantized canonical coordinates**

- The Moyal product is naturally extended to the space of all formal power series such as  $f, g \in C^{\infty}(\mathbb{R}^{2n})[[\nu]]$ .
- Then it is easy to see

#### Proposition

The Moyal product is an associative product on the space of formal power series  $C^{\infty}(\mathbb{R}^{2n})[[v]]$ .

The Moyal product  $*_0$  is depending on the canonical coordinates  $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ . Then the associative algebra  $(C^{\infty}(\mathbb{R}^{2n})[[\nu]], *_0)$  can be regarded as quantized canonical coordinates.

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

### §1.2. Deformation quantization on symplectic manifold

Deformation quantization is defined similary as the Moyal product.

Let  $(M, \omega)$  be a symplectic manifold. We consider a binary product on the space of formal power series  $C^{\infty}(M)[[\nu]]$  such that

$$f * g = fg + \nu C_1(f,g) + \nu^2 C_2(f,g) + \dots + \nu^l C_l(f,g) + \dots,$$

where  $C_l(\cdot, \cdot)$  are bidifferential operators from  $C^{\infty}(M) \times C^{\infty}(M)$  to  $C^{\infty}(M)$ .

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

§1.2. Deformation quantization on symplectic manifold

$$f * g = fg + vC_1(f,g) + v^2C_2(f,g) + \dots + v^lC_l(f,g) + \dots,$$

### Definition

A product f \* g is called a deformation quantization of symplectic manifold  $(M, \omega)$  if it is associative on the space  $C^{\infty}(M)[[v]]$  and  $C_1(f, g)$  coincides with the Poisson bracket of  $\omega$ .

Then for a deformation quantization \* of  $(M, \omega)$ , we have an associative algebra  $(C^{\infty}(M)[[\nu]], *)$ , called a deformation quantization algebra.

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

## §2. Weyl manifold

Let  $(M, \omega)$  be a 2n dimensional symplectic manifold.

- 1 A Weyl manifold  $W_M$  is a Weyl algebra bundle over  $(M, \omega)$  with certain properties.
- 2 Weyl manifold has a deep relationship with deformation quantization of symplectic manifold.
- 3 This section is based on the joint work with H. Omori, Y. Maeda.

= nar

イロト イロト イヨト イヨト

§2.1. Idea



- By the Darboux theorem, symplectic manifold can be obtained by patching together the canoical coordinates by canonical transoformations.
- 2 A similar theorem to the Darboux theoerm holds for deformation quantization of symplectic manifolds.

§2.1. Idea

= nar

イロト イロト イヨト イヨト

### **Quantized Darboux theorem**

Suppse we have a deformation quantization \* of the symplectic manifold  $(M, \omega)$ :

$$f * g = fg + \nu C_1(f,g) + \nu^2 C_2(f,g) + \dots + \nu^l C_l(f,g) + \dots$$

We have a "quantized Darboux theorem" as follows.

#### Proposition

On every canonical coordinate neighbourhood U, the star product algebra ( $C^{\infty}(U)[[v]], *$ ) is isomorphic to the Moyal product algebra ( $C^{\infty}(U)[[v]], *_0$ ).

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

I na ∩

イロト イロト イヨト イヨト

### **Deformation quantization and Weyl manifold**

- 1 Simlarly to a symplectic manifod  $(M, \omega)$ , we consider to construct a deformation quantization of  $(M, \omega)$  by patching together quantized canonical coordinates by the algebra isomorphisms.
- 2 But this can be done not directly and not so easily. For this purpose, we first construct a Weyl algebra bundle over  $(M, \omega)$  from which we can obtain a deformation quantization.
- 3 The algebra bundle is called a Weyl manifold.

#### §2.2. Weyl manifold

# §2.2. Weyl manifold

In order to define a Weyl manifold, we need a formal Weyl algebra.

### Formal Weyl algebra

A formal Weyl algebra *W* is the set of all formal power series of elements  $v, X_1, \ldots, X_n, Y_1, \ldots, Y_n$ ,

$$W = \mathbb{C}[[\nu, X_1, \dots, X_n, Y_1, \dots, Y_n]]$$

with the product  $\hat{*}$  such that

$$F \hat{*} G = F \exp\left(\frac{\nu}{2} \overleftarrow{\partial}_X \wedge \overrightarrow{\partial}_Y\right) G$$
  
=  $FG + (\frac{\nu}{2}) F(\overleftarrow{\partial}_X \wedge \overrightarrow{\partial}_Y) G + \dots + (\frac{\nu}{2})^l \frac{1}{l!} F(\overleftarrow{\partial}_X \wedge \overrightarrow{\partial}_Y)^l G + \dots$ 

for 
$$F = \sum_{l\alpha} a_{l\alpha} v^l Z^{\alpha}$$
,  $G = \sum_{m\beta} b_{m\beta} v^m Z^{\beta} \in W$ .

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

Here use notations for simplicity such that

$$z = (z_1, \dots, z_{2n}) = (x_1, \dots, x_n, y_1, \dots, y_n)$$
$$Z = (Z_1, \dots, Z_{2n}) = (X_1, \dots, X_n, Y_1, \dots, Y_n)$$

The formal Weyl algebra *W* is an associative algebra satisfying the canonical commutation relation

$$[X_j, Y_k]_* = \nu \delta_{jk}, \quad [X_j, X_k]_* = [Y_j, Y_k]_* = 0, \quad j, k = 1, 2, \dots, n.$$

Here the bracket  $[\cdot, \cdot]_*$  is the commutator of W;  $[F, G]_* = F \hat{*} G - G \hat{*} F, F, G \in W.$ 

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

# **Weyl function**

# Let *U* be an open subset of $\mathbb{R}^{2n}$ .

We consider to embed a function f on U into a formal Weyl algebra W. The embedding is called a Weyl continuation of function f denoted by f<sup>#</sup> such that

$$f^{\#}(z) = \sum_{\alpha} \frac{1}{\alpha!} \partial_z^{\alpha} f(z) Z^{\alpha}, \quad z \in U.$$

- The Weyl continuation  $f^{\#}(z)$  is called a Weyl function of f and gives a section of the trivial Weyl algebra bundle  $U \times W = W_U$ .
- We denote the set of all Weyl functions by  $\mathcal{F}(W_U)$ .
- $\mathcal{F}(W_U)$  is naturally equipped with the multiplication  $\hat{*}$  and becomes an associative algebra.

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

∃ 990

イロト イロト イヨト イヨト

§2.2. Weyl manifold

### It is direct to see

Proposition

### the Weyl continuation gives an algebra isomorphism

$$\#: (C^\infty(U)[[\nu]], *_0) \to (\mathcal{F}(W_U), \hat{*})$$

namely

$$(f *_0 g)^{\#} = f^{\#} \hat{*} g^{\#}, \quad \forall f, g.$$

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶

# Weyl diffeomorphism

- 1 Instead of gluing local quantized canonical coordinates  $(C^{\infty}(U)[[\nu]], *_0)$ , we glue the Weyl function algebras  $(\mathcal{F}(W_U), \hat{*})$ .
- 2 Since  $\mathcal{F}(W_U)$  is a certain class of sections of the trivial budle  $W_U = U \times W$ , we consider the following bundle isomorphism.

### Definition

A bundle isomorphism  $\Phi: W_U \to W_{U'}$  with induced map  $\phi: U \to U'$  is called a Weyl diffeomorphism when

(*i*) 
$$\Phi(v) = v$$
.

(*ii*) 
$$\Phi^* \mathcal{F}(W_{U'}) = \mathcal{F}(W_U).$$

$$(iii) \ \Phi^*f^\# = (\phi^*f)^\# + O(\nu^2), \ f \in C^\infty(U')[[\nu]].$$

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶

As to the induced map of Weyl diffeomorpism we have the following.

#### Lemma

The induced map  $\phi : U \to U'$  of a Weyl differomorphism  $\Phi : W_U \to W_{U'}$  is a canonical transformation.

### On the other hand, we have

#### Theorem

For a canonical transformation  $\phi : U \to U'$ , there exists a Weyl diffeomorphism  $\Phi : W_U \to W_{U'}$  with induced map  $\phi$ .

The Weyl diffeomorphism  $\Phi: W_U \to W_{U'}$  is regarded as a quantized canonical transformation.

イロン 不得 とうほう うほう

# Existence of Weyl manifold and deformation quantizaiton

- We take canoical coordinete systems {(U<sub>α</sub>, z<sub>α</sub>)}<sub>α∈Λ</sub> for a symplectic manifold (M, ω). Then (M, ω) is given by patching together {(U<sub>α</sub>, z<sub>α</sub>)}<sub>α∈Λ</sub> by canonical transformations φ<sub>αβ</sub> between U<sub>α</sub> and U<sub>β</sub>.
- 2 Then we can take Weyl diffeomorphisms  $\Phi_{\alpha\beta}$  between trivial bundles  $W_{U_{\alpha}}$  and  $W_{U_{\beta}}$  by quantizing the canoical transformations  $\phi_{\alpha\beta}$ .
- **3** We glue local trivializations  $\{W_{U_{\alpha}}\}_{\alpha \in \Lambda}$  by the Weyl diffeomorphisms  $\Phi_{\alpha\beta}$  and then we obtain

#### Theorem

For any symplectic manifold  $(M, \omega)$ , there exists a Weyl manifold  $W_M$ .

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

▲□▶▲□▶▲目▶▲目▶ 目 のQの

# **Deformation quantization**

From a Weyl manifold we can obtain a deformation quantization of the symplectic manifold in the following way.

- By Weyl diffeomorphisms  $\Phi_{\alpha\beta}$ , the local Weyl functions  $\mathcal{F}(W_{U_{\alpha}})$  are also glued togher to give global Weyl functions, which are subsets of sections of the Weyl manifold  $W_M$ .
- We denote this algebra of the global Weyl functions by  $(\mathcal{F}(W_M), \hat{*})$  called a Weyl function algebra on M.
- Then we have

#### Theorem

We have a  $\mathbb{C}[[v]]$ -linear map  $\sigma : C^{\infty}(M)[[v]] \to \mathcal{F}(W_M)$ .

э.

イロン イロン イヨン イヨン

■ By means of this linear isomorphism we can define an associative product on *C*<sup>∞</sup>(*M*)[[*v*]] by

$$f \ast g = \sigma^{-1}(\sigma(f) \hat{\ast} \sigma(g)).$$

- By expanding this assciative product in the power of ν we see that the prouct \* is a deformation quantization of (M, ω).
- Namely we have

#### Theorem

For every symplectic manifold  $(M, \omega)$ , there exists a deformation quantization of the symplectic manifold.

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

= 990

イロト イロト イヨト イヨト

### Thank you very much for your attention!

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science

= 990

イロン イロン イヨン イヨン

### Reference

Hideki Omori, Yoshiaki Maeda, Akira Yoshioka,

Weyl manifolds and deformation quantization, Adv. Math. 85, 224-255 (1991)

To Professor Kenjiro Okubo. Akira Yoshioka Tokyo University of Science