Alternative Description of Rigid Body Kinematics and Quantum Mechanical Angular Momenta

Danail Brezov ${ }^{1}$, Clementina Mladenova ${ }^{2}$ and Ivaïlo Mladenov ${ }^{3}$

${ }^{1}$ University of Architecture, Civil Engineering and Geodesy
${ }^{2}$ Institute of Mechanics, Bulgarian Academy of Sciences
${ }^{3}$ Institute of Biophysics, Bulgarian Academy of Sciences
Geometry, Integrability and Quantization June 03-08, 2016, Varna, Bulgaria

Two-Axes Decompositions

Given two non-parallel unit vectors $\hat{\mathbf{c}}_{1,2} \in \mathbb{S}^{2}$ the NSC for decomposing

$$
\mathcal{R}(\mathbf{n}, \phi)=\mathcal{R}\left(\hat{\mathbf{c}}_{2}, \phi_{2}\right) \mathcal{R}\left(\hat{\mathbf{c}}_{1}, \phi_{1}\right)
$$

is the coincidence of the matrix entries

$$
r_{21}=g_{21}
$$

and the solution has the form

$$
\phi_{1}=2 \arctan \frac{\left(\mathbf{n}, \hat{\mathbf{c}}_{1} \times \hat{\mathbf{c}}_{2}\right)}{\left(\mathbf{n}, \hat{\mathbf{c}}_{[1}\right) g_{2] 1}}, \quad \phi_{2}=2 \arctan \frac{\left(\mathbf{n}, \hat{\mathbf{c}}_{1} \times \hat{\mathbf{c}}_{2}\right)}{\left(\mathbf{n}, \hat{\mathbf{c}}_{[2}\right) g_{1] 2}}
$$

where we denote

$$
r_{i j}=\left(\hat{\mathbf{c}}_{i}, \mathcal{R}(\mathbf{n}, \phi) \hat{\mathbf{c}}_{j}\right), \quad g_{i j}=\left(\hat{\mathbf{c}}_{i}, \hat{\mathbf{c}}_{j}\right), \quad a_{[i} b_{j]}=a_{i} b_{j}-a_{j} b_{i}
$$

Euler Angles and Conjugation

Consider the Euler decomposition of a rotation $\mathcal{R} \in \mathrm{SO}$ (3)

$$
\mathcal{R}(\mathbf{n}, \phi)=\mathcal{R}\left(\hat{\mathbf{c}}_{1}, \psi\right) \mathcal{R}\left(\hat{\mathbf{c}}_{2}, \vartheta\right) \mathcal{R}\left(\hat{\mathbf{c}}_{1}, \varphi\right)
$$

where ϕ, φ, ϑ and ψ denote the angles and $\mathbf{n}, \hat{\mathbf{c}}_{1,2}$ - the invariant axes (with the Davenport condition $\hat{\mathbf{c}}_{1} \perp \hat{\mathbf{c}}_{2}$). A simple conjugation yields

$$
\mathcal{R}_{1}(\psi) \mathcal{R}_{2}(\vartheta) \mathcal{R}_{1}(\varphi)=\mathcal{R}_{1}(\psi) \mathcal{R}_{2}(\vartheta) \mathcal{R}_{1}^{-1}(\psi) \mathcal{R}_{1}(\varphi+\psi)
$$

so we have an equivalent two-factor decomposition with respect to a (shifted) pair of orthogonal axes

$$
\mathcal{R}(\mathbf{n}, \phi)=\mathcal{R}\left(\mathcal{R}\left(\hat{\mathbf{c}}_{1}, \psi\right) \hat{\mathbf{c}}_{2}, \vartheta\right) \mathcal{R}\left(\hat{\mathbf{c}}_{1}, \varphi+\psi\right) .
$$

One Particular Solution

It is not difficult to satisfy the condition $r_{21}=g_{21}$ choosing arbitrary $\hat{\mathbf{c}}_{1}$

$$
\hat{\mathbf{c}}_{2}=\lambda \hat{\mathbf{c}}_{1} \times \mathcal{R}(\mathbf{c}) \hat{\mathbf{c}}_{1}, \quad \lambda=\left(1-r_{11}^{2}\right)^{-1 / 2}
$$

and as for the solutions, we have (note that $\phi_{1}=\vartheta$ and $\phi_{2}=\varphi+\psi$)

$$
\phi_{1}=2 \arctan \rho_{1}, \quad \phi_{2}=\arccos r_{11}
$$

with the notation $\rho_{i}=\tan \frac{\phi}{2}\left(\mathbf{n}, \hat{\mathbf{c}}_{i}\right)$. One exception is the setting

$$
\mathcal{R}(\mathbf{n}, \pi)=2 \mathbf{n} \otimes \mathbf{n}^{t}-\mathcal{I}, \quad \mathbf{n} \perp \hat{\mathbf{c}}_{1}
$$

that yields a one-parameter set of solutions. Choosing $\hat{\mathbf{c}}_{2} \perp \hat{\mathbf{c}}_{1}$ one has

$$
\mathcal{R}(\mathbf{n}, \pi)=\mathcal{R}\left(\hat{\mathbf{c}}_{2}, \pi\right) \mathcal{R}\left(\hat{\mathbf{c}}_{1}, \phi_{1}\right), \quad \phi_{1}=2 \measuredangle\left(\mathbf{c}_{2}, \mathbf{n}\right) .
$$

The Orthonormal Frame

One easily constructs a basis with a third vector

$$
\hat{\mathbf{c}}_{3}=\hat{\mathbf{c}}_{1} \times \hat{\mathbf{c}}_{2}=\lambda\left[r_{11} \mathcal{I}-\mathcal{R}\right] \hat{\mathbf{c}}_{1} .
$$

In order to parameterize the $\mathrm{SO}(3)$ we choose the third coordinate κ as the normal component of the rate, at which $\hat{\mathbf{c}}_{2}$ varies with \mathcal{R}, i.e.,

$$
\hat{\mathbf{c}}_{2}^{\prime}=\kappa^{\prime} \hat{\mathbf{c}}_{1} \times \hat{\mathbf{c}}_{2} .
$$

Kinematics

The $\left\{\phi_{1}, \phi_{2}, \kappa\right\}$ coordinates provide the kinematic equations in the form

$$
\begin{aligned}
& \dot{\phi}_{1}=\Omega_{1}-\Omega_{3} \tan \frac{\phi_{2}}{2} \\
& \dot{\phi}_{2}=\Omega_{2} \\
& \dot{\kappa}=\Omega_{1}+\Omega_{3} \cot \phi_{2}
\end{aligned}
$$

where Ω_{k} denote the components of the angular velocity in the so chosen basis. Inverting the matrix of the above system, one easily obtains

$$
\begin{aligned}
& \Omega_{1}=\dot{w}-\cos v \dot{u} \\
& \Omega_{2}=\dot{v} \\
& \Omega_{3}=\sin v \dot{u}
\end{aligned}
$$

where we make use of the notation $u=\kappa-\phi_{1}, v=\phi_{2}$ and $w=\kappa$.

Dynamics

Consider the free Euler equations for a rotational inertial ellipsoid

$$
\begin{aligned}
\ddot{u} & =-\cot v \dot{u} \dot{v} \\
\ddot{v} & =\mu(\cos v \dot{u}-\dot{w}) \sin v \dot{u} \\
\ddot{w} & =(\mu \sin v-\csc v) \dot{u} \dot{v}
\end{aligned}
$$

with $I_{1}=I_{2}=I$ and $\mu=1-I_{3} / I$. One has $\Omega_{3}=$ const. and

$$
v=a \cos \left(\omega t+\varphi_{\circ}\right)+b, \quad \omega=\mu \Omega_{3}
$$

The kinematic equations then yield directly

$$
\Omega_{1}(t)=a \omega \cos \left(\omega t+\varphi_{\circ}\right), \quad \Omega_{2}(t)=-a \omega \sin \left(\omega t+\varphi_{\circ}\right)
$$

while for the u and v variables one ends up with

$$
u=\mp \frac{1}{\mu} \int \frac{\csc v \mathrm{~d} v}{\sqrt{a^{2}-(v-b)^{2}}}, \quad w=\mp \frac{1}{\mu} \int \frac{\cot v+\mu(v-b)}{\sqrt{a^{2}-(v-b)^{2}}} \mathrm{~d} v
$$

Infinitesimal Variations

Infinitesimal left and right deck transformations yield the differential

$$
\mathrm{d} \phi=\sin \phi\left(\csc \phi_{1} \mathrm{~d} \phi_{1}+\frac{1-\cos \phi_{2}}{\cos \phi_{1}-\cos \phi} \csc \phi_{2} \mathrm{~d} \phi_{2}+\csc \phi_{1} \csc \phi_{2} \mathrm{~d} \kappa\right)
$$

as well as the components of the angular momentum operator

$$
\begin{aligned}
& L_{1}=\frac{\partial}{\partial \phi_{1}} \\
& L_{2}=\sin \phi_{1} \tan \frac{\phi_{2}}{2} \frac{\partial}{\partial \phi_{1}}+\cos \phi_{1} \frac{\partial}{\partial \phi_{2}}+\sin \phi_{1} \csc \phi_{2} \frac{\partial}{\partial \kappa} \\
& L_{3}=\cos \phi_{1} \tan \frac{\phi_{2}}{2} \frac{\partial}{\partial \phi_{1}}-\sin \phi_{1} \frac{\partial}{\partial \phi_{2}}+\cos \phi_{1} \csc \phi_{2} \frac{\partial}{\partial \kappa} .
\end{aligned}
$$

The Laplacian

The associated Laplace operator (quantum Hamiltonian) has the form

$$
\Delta=\sec ^{2} \frac{\phi_{2}}{2} \frac{\partial^{2}}{\partial \phi_{1}^{2}}+\frac{\partial^{2}}{\partial \phi_{2}^{2}}-\tan \frac{\phi_{2}}{2} \frac{\partial}{\partial \phi_{2}}+\csc ^{2} \phi_{2} \frac{\partial^{2}}{\partial \kappa^{2}}
$$

Using the notation $\left(\phi_{1}, \phi_{2}\right) \rightarrow(\alpha, \vartheta)$ one may rewrite the above as

$$
\Delta=\sec ^{2} \frac{\vartheta}{2}\left[\frac{\partial^{2}}{\partial \alpha^{2}}+\frac{\partial}{\partial \vartheta}\left(\cos ^{2} \frac{\vartheta}{2} \frac{\partial}{\partial \vartheta}\right)\right]+\csc ^{2} \vartheta \frac{\partial^{2}}{\partial \kappa^{2}} .
$$

For $\kappa=$ const. we obtain the restriction on the quadric $r_{21}=g_{21}$

$$
\Delta_{0}=\sec ^{2} \frac{\vartheta}{2} \frac{\partial^{2}}{\partial \alpha^{2}}+\frac{\partial^{2}}{\partial \vartheta^{2}}-\tan \frac{\vartheta}{2} \frac{\partial}{\partial \vartheta} .
$$

The Hyperbolic Case

The factors $\epsilon_{k}=\hat{\mathbf{c}}_{k}^{2}$ distinguish between space-like ($\epsilon_{k}=1$), time-like $\left(\epsilon_{k}=-1\right)$ and light-like $\left(\epsilon_{k}=0\right)$ vectors in $\mathbb{R}^{2,1}$. We may denote

$$
\tau=\tanh \frac{\phi}{2}(\epsilon=1), \quad \tau=\tan \frac{\phi}{2}(\epsilon=-1), \quad \tau=\frac{\phi}{2}(\epsilon=0)
$$

thus unifying angles and rapidities. Note also the isotropic singularity

Theorem

If $\hat{\mathbf{c}}_{1,2} \in \mathbf{c}_{\circ}^{\perp}$ with $\mathbf{c}_{\circ}^{2}=0$, we may decompose a pseudo-rotation

$$
\Lambda(\mathbf{n}, \tau)=\Lambda\left(\hat{\mathbf{c}}_{2}, \tau_{2}\right) \wedge\left(\hat{\mathbf{c}}_{1}, \tau_{1}\right), \quad \Lambda \in \operatorname{SO}(2,1)
$$

if and only if $\mathbf{n} \in \mathbf{c}_{\circ}^{\perp}$ lies the same tangent plane to the null cone.

The Monodromy Matrix

The quantum mechanical monodromy matrix

$$
\mathcal{M}=\left(\begin{array}{cc}
1 / \bar{t} & -\bar{r} / \bar{t} \\
-r / t & 1 / t
\end{array}\right) \in \operatorname{SU}(1,1)
$$

relates left and right free particle asymptotic solutions

$$
\begin{array}{lll}
\Psi(k, x) \sim \mathrm{e}^{\mathrm{i} k x}+r(k) \mathrm{e}^{-\mathrm{i} k x}, & & x \rightarrow-\infty \\
\Psi(k, x) \sim t(k) \mathrm{e}^{\mathrm{i} k x}, & & x \rightarrow \infty .
\end{array}
$$

In a standard split-quaternion basis \mathcal{M} may be decomposed as

$$
\mathcal{M} \rightarrow \zeta_{\mathcal{M}}=(\Re(t),-\Re(r \bar{t}), \Im(r \bar{t}), \Im(t))^{t}
$$

associating $t \in \mathbb{R}$ with pure boosts and $r=0$ with pure rotations.

Decomposition of Scattering Potentials

Choosing $\hat{\mathbf{c}}_{1}$ to be aligned with the z-axis we find

$$
\phi_{1}=2 \theta, \quad \theta=\arg (t)
$$

as well as

$$
\tau_{2}=\sqrt{1-|t|^{2}} \quad \Rightarrow \quad \phi_{2}=2 \operatorname{arccosh}|t|^{-1}
$$

which finally yields

$$
\mathcal{M}=\frac{1}{|t|}\left(\begin{array}{cc}
1 & -\bar{r} \mathrm{e}^{2 \mathrm{i} \theta} \\
-r \mathrm{e}^{-2 \mathrm{i} \theta} & 1
\end{array}\right)\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i} \theta} & 0 \\
0 & \mathrm{e}^{-\mathrm{i} \theta}
\end{array}\right)
$$

and we decompose the monodromy into a product of a pure phase shift and a phase preserving scattering.

Extension to $\mathrm{SO}(3,1)$

The local isomorphism

$$
\mathrm{SO}^{+}(3,1) \cong \mathrm{SO}(3, \mathbb{C})
$$

allows for extending via complexification e.g using biquaternions.
The existence of invariant axes is ensured by the Plücker relations

$$
(\Re \tau \mathbf{n}, \Im \tau \mathbf{n})=\left(\Re \tau_{k} \hat{\mathbf{c}}_{k}, \Im \tau_{k} \hat{\mathbf{c}}_{k}\right)=0
$$

and decomposability with real scalar parameters demands

$$
\left(\Re \tau \mathbf{n}, \Im \tau_{k} \hat{\mathbf{c}}_{k}\right)+\left(\Re \tau_{k} \hat{\mathbf{c}}_{k}, \Im \tau \mathbf{n}\right)=0
$$

which projects the problem to a three-dimensional hyperplane.
Similar arguments (and Plücker relations) hold for the groups

$$
\mathrm{SO}(4), \quad \mathrm{SO}(2,2), \quad \mathrm{SO}^{*}(4)
$$

Thomas Precession and Wigner Little Groups

Consider the generalized Rodrigues' vector for $\mathrm{SO}(3,1)$

$$
\mathbf{c}=\tau \mathbf{n}=\boldsymbol{\alpha}+\mathrm{i} \beta \in \mathbb{C P}^{3} .
$$

In the Plücker setting $\alpha \perp \beta$ we may write

$$
\Lambda(\boldsymbol{\alpha}+\mathrm{i} \boldsymbol{\beta})=\Lambda\left(\mathrm{i} \tilde{\boldsymbol{\beta}}_{+}\right) \wedge(\boldsymbol{\alpha})=\Lambda(\boldsymbol{\alpha}) \wedge\left(\mathrm{i} \tilde{\boldsymbol{\beta}}_{-}\right), \quad \tilde{\boldsymbol{\beta}}_{ \pm}=\frac{\mathcal{I} \pm \boldsymbol{\alpha}^{\times}}{1+\boldsymbol{\alpha}^{2}} \boldsymbol{\beta}
$$

One example is the Thomas precession, in which

$$
\boldsymbol{\alpha}=\frac{\boldsymbol{\beta}_{1} \times \boldsymbol{\beta}_{2}}{1+\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}}, \quad \boldsymbol{\beta}=\frac{\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}}{1+\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}}
$$

where $\mathrm{i} \boldsymbol{\beta}_{1,2}$ are the Rodrigues' vectors of the two consecutive boosts.

A Numerical Example

Consider a proper Lorentz transformation

$$
\Lambda=\frac{1}{5}\left(\begin{array}{rrrr}
-6 & 2 & -1 & -4 \\
-4 & -3 & -6 & -6 \\
-3 & -4 & 2 & -2 \\
6 & 2 & 4 & 9
\end{array}\right)
$$

and let us choose $\hat{\mathbf{c}}_{1}=(1+\mathrm{i}, 1-\mathrm{i}, 1)$, so that $\Lambda\left(\hat{\mathbf{c}}_{1}, \tau_{1}\right)$ preserves

$$
\varsigma=(1,1,1,0)^{t} .
$$

Then, we easily obtain $\Lambda=\Lambda_{2} \Lambda_{1}$ with
$\Lambda_{1}=\frac{1}{17}\left(\begin{array}{rrrr}-15 & 8 & 24 & 24 \\ -8 & -15 & 40 & 40 \\ 40 & 24 & -47 & -64 \\ -40 & -24 & 64 & 81\end{array}\right), \quad \Lambda_{2}=\frac{1}{85}\left(\begin{array}{rrrr}178 & 138 & -401 & -452 \\ 36 & 77 & -334 & -334 \\ 109 & 224 & -438 & -506 \\ -194 & -278 & 676 & 761\end{array}\right)$.

Rational Coordinates

Given a rotation matrix $\mathcal{R} \in S O(3)$ with rational coefficients and a rational unit vector $\hat{\mathbf{c}}_{1}$ we may construct $\hat{\mathbf{c}}_{2}=\hat{\mathbf{c}}_{1} \times \mathcal{R} \hat{\mathbf{c}}$, which yields

$$
\tau_{1}=\rho_{1}, \quad \tau_{2}=\frac{1}{1+r_{11}}
$$

in the Euclidean case and

$$
\tau_{1}=\epsilon_{1}^{-1} \rho_{1}, \quad \tau_{2}=\left(\epsilon_{1}+r_{11}\right)^{-1}
$$

for $\operatorname{SO}(3,1)$, so the two factors are rational as well.

Recommended Readings

Re Brezov D., Mladenova C. and Mladenov I., Two-Axes Decompositions of (Pseudo-) Rotations and Some of Their Applications, AIP Conf. Proc. 1629 (2014) 226-234.

圊 Brezov D., Mladenova C. and Mladenov I., New Forms of the Equations of the Attitude Kinematics, Proc. Appl. Math. Mech. 14 (2014) 87-88.
(1. Tsiotras P. and Longuski J., A New Parameterization of the Attitude Kinematics, J. Austron. Sci. 43 (1995) 243-262.

Brezov D., Mladenova C. and Mladenov I., Variations of (Pseudo-) Rotations and the Laplace-Beltrami Operator on Homogeneous Spaces, AIP Conf. Proc. 1684 (2015) 080002-1-080002-13.

围 Brezov D., Mladenova C. and Mladenov I., The Geometry of Pythagorean Quadruples and Rational Decomposition of Pseudo-Rotations, In: Proc. BGSIAM 2013, Sofia 2013, pp 176-1

Thank You!

THANKS FOR YOUR PATIENCE!

