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Mini-superspace description

S =

∫
Ω

d4x
√
−gR + Sm (1)

Einstein’s equations

Rµν +
1
2

Rgµν = Tµν (2)

For a spatially homogeneous space-time

ds2 =(Nµ(t)Nµ(t)− N(t)2)dt2 + Nµ(t)σµi (x)dtdx i

+ γαβ(t)σαi (x)σβ(x)dx idx j ,
(3)

with
σαi,j − σαj,i = Cα

µνσ
µ
i σ

ν
i , (4)

Equations (2) reduce to ODEs.
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Without loss of generality Nα(t) = 0.

ds2 = −N(t)2dt2 + γαβ(t)σαi (x)σβ(x)dx idx j , (5)

For some types of systems

L =
1

2N
Gκλµν γ̇κλγ̇µν − N

√
γR+ Lm (6)

is a valid Lagrangian, with

Gκλµν =
1
4
√
γ
(
γκµγλν + γκνγλµ − 2γκλγµν

)
(7)

being the mini-superspace metric.
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Constrained Systems

Prototype mini-superspace Lagrangian

L =
1

2N
Gαβ(q) q̇α q̇β − N V (q) (8)

d + 1 degrees of freedom: vi(t) := (N(t),qα(t)) , α = 1, ...,d

but the Hessian matrix is of rank d

det
(

∂2L
∂v̇i∂v̇j

)
= 0

pα :=
∂L
∂q̇α

=
1
N

Gαβ q̇β pN ≈ 0 (Primary Constraint)
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H = q̇γpγ − L + uNpN

= N
(

1
2

Gαβ(q) pα pβ + V (q)

)
+ uNpN

= NH+ uNpN

(9)

ṗN = {pN ,H} ≈ 0⇒ H =
1
2

Gαβ(q) pα pβ + V (q) ≈ 0

(H Secondary Constraint)

{pN ,H} ≈ 0⇒ pN ,H First Class Constraints
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Variational symmetries of the action
T. Christodoulakis, N. Dimakis and Petros A. Terzis J. Phys. A: Math. Theor. 47 (2014) 095202

Generator of transformations in (t ,q(t),N(t))

X = χ(t ,q,N)
∂

∂t
+ ξα(t ,q,N)

∂

∂qα
+ ω(t ,q,N)

∂

∂N
(10)

k -th prolongation

pr (k)X = X + Φα
t
∂

∂q̇α
+ Ωt

∂

∂Ṅ
+ . . .+ Φα

tk
∂

∂(∂tk qα)
+ Ωtk

∂

∂(∂tk N)
(11)

Φα
tk =

dk

dtk (ξα − χq̇α) + χ
dk+1qα

dtk+1

Ωtk =
dk

dtk

(
ω − χṄ

)
+ χ

dk+1N
dtk+1
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Infinitesimal criterion of invariance

pr (1)X (L) + L
dχ
dt

=
df
dt
, where f = f (t ,q,N)

Final form for the generator

X = X1 + X2

X1 = ξα(q)
∂

∂qα
+ Nτ(q)

∂

∂N
(12)

X2 = χ(t)
∂

∂t
− Nχ̇(t)

∂

∂N
(13)

with £ξGαβ = τ(q)Gαβ and £ξV = −τ(q)V

£ξGαβ = − 1
V

(£ξV ) Gαβ
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Lie-point symmetries of the equations of motion

E0 :=
∂L
∂N

= 0 (14a)

Eα :=
∂L
∂qα

− d
dt

(
∂L
∂q̇α

)
= 0 (14b)

Infinitesimal criterion

pr (1)X (E0) = T (t ,q,N)E0

pr (2)X (Eα)
∣∣
Eα=0 =

(
Pκ

1α(t ,q,N)q̇α + Pκ
2 (t ,q,N)Ṅ + Pκ

3 (t ,q,N)
)

E0
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The Lie - point symmetries of the system are

X = X̃1 + X2

X̃1 = X1 + c
∂

∂N
= ξα(q)

∂

∂qα
+ N(τ(q) + c)

∂

∂N
(16)

X2 = χ(t)
∂

∂t
− Nχ̇(t)

∂

∂N
(17)

with £ξGαβ = τ(q)Gαβ and £ξV = −(τ(q) + 2c)V

£ξGαβ = −
(

1
V

£ξV + c̃
)

Gαβ
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The effective constant potential parametrization

Lapse function scaling: N → n = N V (q)
Equivalent Lagrangian:

L =
1

2n
Gαβ(q) q̇α q̇β − n (18)

with Gαβ := V Gαβ

Variational symmetries

£ξGαβ = 0

Lie-point symmetries of the equations of motion

£ξGαβ = (const.) Gαβ
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Conditional symmetries of phase space

HT = nH+ un pn ≈ 0

H =
1
2

G
αβ

pαpβ + 1 ≈ 0

Assume a quantity Q = Q(t ,q,p)

dQ
dt
≈ 0⇒ ∂Q

∂t
+ {Q,HT} = ωH (19)

If Q is linear in the momenta pα, then

Q = ξαpα +

∫
n(t)ω(q(t))dt (20)

is a conditional symmetry whenever

£ξGαβ = ω(q)Gαβ
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Integrals of motion

ω = 0, ξ is a Killing vector of Gαβ

Q = ξαpα (Variational/Lie-point symmetries)

ω 6= 0
ω = 1, ξ is a Homothetic vector of Gαβ

Q = ξαpα +

∫
n(t)dt (Lie-point symmetry)

ω 6= const .

Q = ξαpα +

∫
n(t)ω(q)dt (Conditional symmetries)

Variational ⊂ Lie-point symmetries ⊂ Conditional symmetries
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Higher order symmetries
Petros A. Terzis, N. Dimakis, T. Christodoulakis, A. Paliathanasis and M. Tsamparlis J. Geom. and Phys. 101 (2016) 52-64

Conditional symmetry of order k + 1 in the momenta

Q = Sκα1...αk pκpα1 ...pαn +

∫
nωα1...αk

∂L
∂q̇α1

...
∂L
∂q̇αn

dt

whenever
S(να1...αn;µ) =

1
2
ω(α1...αnG

µν)

The case S(να1...αn;µ) = 0 corresponds to contact symmetries of
the action

X = Ξκ(n,q, q̇)
∂

∂qκ
+ Ω(n,q, q̇)

∂

∂n

Ξκ = ξκ(q) +
1
n

Sκ
α1

(q)q̇α1 + ...+
1
nk Sκ

α1...αk
(q)q̇α1 ...q̇αk
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Canonical Quantization

pα 7−→ p̂α = −i ~ ∂

∂qα
(21a)

pn 7−→ p̂n = −i ~ ∂

∂n
(21b)

{ , } −→ −i
~

[ , ]

p̂nΨ(q,n) = 0⇒ Ψ = Ψ(q) (22a)

ĤΨ(q) = 0⇒
[
− 1

2µ
∂α(µGαβ∂β) + V (q) +

d − 2
4 (d − 1)

R
]

Ψ = 0

(22b)
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Q̂I := − i

2µ
(µ ξαI ∂α + ∂α µ ξ

α
I ) (23)

Eigenvalue equations

Q̂IΨ = κIΨ, 1 ≤ I ≤ d (d + 1)

2
(24)

{QI ,QJ} = CM
IJQM ⇒ [Q̂I , Q̂J ] = iCM

IJQ̂M

Integrability conditions of (24):

CM
IJ κM = 0 (25)
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Mini-superspace reduction
N. Dimakis, A. Karagiorgos, A. Zampeli, A. Paliathanasis, T. Christodoulakis and Petros A. Terzis To appear in Phys. Rev. D

S =

∫
d4x
√
−g (R + ε φ,µφ

,µ + 2 V (φ))

Einstein’s equation

Rµν −
1
2

Rgµν = Tµν

with
Tµν = ε φ,µφ,ν −

1
2

(ε φ,κφ,κ − 2 V (φ)) gµν

Klein-Gordon equation

ε�φ− V ′(φ) = 0
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Ansatz for the metric

ds2 = −N(t)2dt2 + a(t)2
(

1
1− k r2 dr2 + r2(dθ2 + sin2 θdϕ2)

)
Mini-superspace Lagrangian

L =
2a2

n

(
a2V (φ)− 3k

)(
−6ȧ2 + εa2φ̇2

)
− n (26)

with
n = N

(
2 a
(

a2V (φ)− 3k
))

(27)

2d mini-superspace metric

Gµν = 4 a2
(

a2V (φ)− 3k
)(−6 0

0 εa2

)
(28)
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Conformal vector ξ = ∂
∂φ with a corresponding factor a2V ′(φ)

a2V (φ)−3k .
Integral of motion

Q = pφ +

∫
a(t)2n(t)V ′(φ(t))

a(t)2V (φ(t))− 3k
dt =

∂L
∂φ̇

+

∫
a(t)2n(t)V ′(φ(t))

a(t)2V (φ(t))− 3k
dt

=
4 εa4φ̇

(
a2V (φ)− 3k

)
n

+

∫
a(t)2n(t)V ′(φ(t))

a(t)2V (φ(t))− 3k
dt

Strategy:

re-parametrize n(t)⇒ n(t) =
2ḣ(a2V−3k)

a2V̇
Fix the gauge φ(t) = t ⇒ re-parametrize V (t) in terms of a
new function of t
Solve Q = const. together with ∂L

∂n = 0
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ds2 =
−eωω̇2

36
(

2 eω−6
∫

(ε/ω̇)dt
(

c2 + 3 k
∫ exp(6

∫
(ε/ω̇)dt−ω3 )
ω̇ dt

)
− ke

2ω
3

)dt2

+ eω/3
(

1
1− kr2 dr2 + r2dθ2 + r2 sin2 θdϕ2

)

V (t) =
6 e−ω

ω̇2

[(
ω̇2 − 6 ε

)
×

eω−6
∫

(ε/ω̇)dt

(
c2 + 3 k

∫ exp
(
6
∫

(ε/ω̇)− ω
3 dt
)

ω̇
dt

)
+ 3 k e

2ω
3

]
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Under the time change

φ = t = ±
∫ [

1
6 ε

(
S′′(ω)

S′(ω)
+

1
3

)]1/2

dω

where S(ω) = exp
(
12 k

∫
eF (ω)−ω/3dω

)
− 6 c2

k

ds2 = −eF (ω)dω2 + eω/3
(

1
1− kr2 dr2 + r2dθ2 + r2 sin θdϕ2

)

V (ω) =
1
12

e−F (ω)
(
1− F ′(ω)

)
+ 2 k e−ω/3 (29)
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Equivalent Perfect Fluid formalism

ρφ(t) = Tµνuµuν , uµ =
φ,µ√

−gκλφ,κφ,λ

Pφ(t) =
1
3

Tµνhµν , hµν = gµν + uµuν

k = 0
Pφ = (2F ′(ω)− 1)ρφ

k 6= 0

Pφ =

(
2 eω/3 (3F ′(ω)− 1)

3
(
36 k eF (ω) + eω/3

) − 1
3

)
ρφ
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Final Remarks

Quadratic constrained Lagrangians

All conformal Killing tensors generate integrals of motion.
In the constant potential parametrization:

Killing tensors −→ Noether symmetries
CKTs −→ non-local conditional symmetries

Use of these symmetries at both the classical and
quantum level to achieve integrability
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