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VELIKO D. DONCHEV, CLEMENTINA D. MLADENOVA and IVAÏLO M. MLADENOVCayley map and Higher Dimensional Representations of Rotations



Introduction and Prerequisites
The embedding so(3) ↪→ so(n) and examples

The Cayley map and higher order representations of rotations

Vector-parameter forms of SO(3,R) and SU(2)
Vector-parameter forms of SO(2,1) and SU(1,1)
More benefits of the Cayley map

The presentation

Summary of the results

The embeddings of the so(3) Lie algebra and the Lie group SO(3,R)
in higher dimensions is an important construction from both math-
ematical and physical viewpoint. Here we will present a program
package for building the generating matrices of the irreducible em-
beddings of the so(3) Lie algebra within so(n) for arbitrary dimension
n ≥ 3 relying on the algorithm developed recently by Campoamor-
Strursberg [2015]. We will show also that the Cayley map applied
to C ∈ so(n) is well defined and generates a subset of SO(n). Fur-
thermore, we obtain explicit formulas for the images of the Cayley
map in all cases.
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This research is made within a bigger project which is about
parameterizing Lie groups with small dimension and its
application in physics.

Parameterizations are used to describe Lie groups in an easier
and more intuitive way. Let G be a finite dimensional Lie
group with Lie algebra g. A vector parameterization of G is a
map g→ G , which is diffeomorphic onto its image. Besides
the exponential map, there are other alternatives to achieve
parameterization. We make use of the Cayley map

Cay(X) = (I + X)(I − X)−1. (1)
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In Donchev et al, 2015 the Cayley maps for the Lie algebras su(2)
and so(3) and the corresponding Lie groups SU(2) and SO(3,R)
are examined.

The vector-parameter of Gibbs (or Fedorov) is a convenient way to
represent proper SO(3,R) rotations. A rotation of angle θ about an

axis n is represented by the vector c = tan
θ

2
n. Any proper SO(3,R)

rotation is expressed in the terms of c in the following manner

R(c) =
2

1 + c2

 1 + c21 c1c2 − c3 c1c3 + c2
c1c2 + c3 1 + c22 c2c3 − c1
c1c3 − c2 c2c3 + c1 1 + c23

− I. (2)
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However, one has to be careful when half-turns occur because they
are not represented by regular Gibbs vectors. We will denote a half-
turn about an axis n byO(n). The SO(3,R) matrix that corresponds
to O(n) is given by

R = 2

 n21 n1n2 n1n3
n1n2 n22 n2n3
n1n3 n2n3 n23

− I. (3)

If c and a represent the rotations R(c),R(a), the composition law
in vector-parameter form is given by

R(c̃ ) = R(a)R(c), c̃ = c̃ (a, c) =
a + c + a× c

1− a.c
· (4)

Equation (4) is beautiful, simple and computationally cheap. It takes
at most 12 multiplications. In comparison the usual multiplication
of two quaternions take 16.
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By the means of the Cayley maps of the Lie algebras su(2) and
so(3), a vector parameter form [Donchev et all, 2015] of Wigner’s
group homomorphism W : SU(2) → SO(3,R) is derived. After
pulling back the group multiplication in SU(2) by the Cayley map
Caysu(2) : su(2) → SU(2), explicit formulae for W and for two
sections of W are derived. The derived vector-parameterization of
SU(2) has the advantage to represent all rotations, including the
half-turns. Also the derived composition law is always defined.
An arbitrary su(2) element is represented in the following way

A = a1s1 + a2s2 + a3s3 = − i

2
a · s ∈ su(2) (5)

si = − i

2
σi , i = 1, 2, 3 and σi , i = 1, 2, 3 can be viewed as Pauli’s

matrices.
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Theorem from Donchev, Mladenova & Mladenov, 2015

Let U1(c),U2(a) ∈ SU(2) are the images of A1 = c ·s and A2 = a ·s
under the Cayley map where a, c ∈ R3. Let

U3(〈a, c〉SU(2)) = U2(a).U1(c) (6)

denote the composition of U2(a) and U1(c) in SU(2). The cor-
responding vector-parameter ã ∈ R3, for which Caysu(2)(A3) =
U3, A3 = ã · s is

ã =

(
1− c2

4

)
a +

(
1− a2

4

)
c + 4

a

2
× c

2

1− 2
a

2
· c

2
+

a2

4

c2

4

· (7)
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Product of
rotations Result Condition Compound

rotation

R(c2)R(c1)
c3 =

c2 + c1 + c2 × c1
1− c2.c1

, c2.c1 6= 1 R(c3)

[n3] = [c2 + c1 + c2 × c1], c2.c1 = 1 O(n3)

R(c2)O(n1)
c3 = −n1 + c2 × n1

c2.n1
, c2.n1 6= 0 R(c3)

[n3] = [n1 + c2 × n1], c2.n1 = 0 O(n3)

O(n2)R(c1)
c3 = −n2 + n2 × c1

n2.c1
, n2.c1 6= 0 R(c3)

[n3] = [n2 + n2 × c1], n2.c1 = 0 O(n3)

O(n2)O(n1)
c3 = −n2 × n1

n2.n1
, n2.n1 6= 0 R(c3)

[n3] = [n2 × n1], n2.n1 = 0 O(n3)
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If H(c1),H(c1) are two SO(2,1) elements represented by the vector
parameters and c1, c2 and c1.(ηc1) 6= 1, c2.(ηc2) 6= 1 and 1 +
c2.(ηc1) 6= 0. Then

H(c3) = H(c2)H(c1), c3 = 〈c2, c1〉SO(2,1) =
c2 + c1 + c2 f c1

1 + c2.(ηc1)
(8)

where c2 f c1 := η(c2 × c1). Equation (8) is the vector-parameter
form of SO(2,1) obtained by the parameterization given by the Cay-
ley map. The same result was obtained independently by usage of
pseudo-quaternions.

Pseudo half-turns are also not covered by this parameterization.
Also, the case c2.(ηc1) = −1 is not covered, which corresponds to
the result being a pseudo half-turn. In Donchev et all [2015] the
Cayley map in the covering group SU(1, 1) is used to extend this
composition law.
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Theorem from Donchev, Mladenova & Mladenov, 2015

Let M,A ∈ su(1, 1)

M = m.E, m = (m1,m2,m3), A = a.E, a = (a1, a2, a3)

be such that ∆m 6= 0,∆a 6= 0 and

(a.(ηa))(m.(ηm)) + 8a.(ηm) + 16 6= 0. (9)

Let L(m) = Caysu(1,1)(M),W(a) = Caysu(1,1)(A). Then, if

L̃ = W.L is the composition of the images in SU(1, 1) then
L̃ = Caysu(1,1)(Ã) where Ã = m̃.E and

m̃ =
(1 +

m

2
· (ηm

2
))a + (1 +

a

2
· (ηa

2
))m + afm

1 + 2
a

2
· (ηm

2
) +

(a

2
· (ηa

2
)
)(m

2
· (ηm

2
)
) · (10)

VELIKO D. DONCHEV, CLEMENTINA D. MLADENOVA and IVAÏLO M. MLADENOVCayley map and Higher Dimensional Representations of Rotations



Introduction and Prerequisites
The embedding so(3) ↪→ so(n) and examples

The Cayley map and higher order representations of rotations

Vector-parameter forms of SO(3,R) and SU(2)
Vector-parameter forms of SO(2,1) and SU(1,1)
More benefits of the Cayley map

Product of
pseudo
rotation

Compound
rotations Conditions Results

Rh(c2)Rh(c1)
Rh(c) c2.ηc1 6= −1 c =

c2 + c1 + c2 f c1
1 + c2.ηc1

Oh(m) c2.ηc1 = −1 m = −2
ηc2 + ηc1 − (ηc2)f (ηc1)√

1− c2.ηc2
√

1− c1.ηc1

Oh(m2)Rh(c1)
Rh(c) m2.c1 6= 0 c = η

m2 −m2 f (ηc1)

m2.c1

Oh(m) m2.c1 = 0 m = −m2 −m2 f (ηc1)√
1− c1.ηc1

Rh(c2)Oh(m1)
Rh(c) c2.m1 6= 0 c = η

m1 − (ηc2)fm1

c2.m1

Oh(m) c2.m1 = 0 m = −m1 − (ηc2)fm1√
1− c2.ηc2

Oh(m2)Oh(m1)
Rh(c) m1 6= m2 c = −m2 ×m1

m2.ηm1

I m1 = m2 c = 0
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The obtained parameterizations of SO(3,R), SU(2),SO(2, 1) and
SU(1, 1) via the Cayley map led also to the following additional
results:

One needs at most 12 multiplications and 18 additions to per-
form the extended composition law. In comparison, the stan-
dard quaternion multiplications takes 16 multiplications.

Explicit form of Cartan’s theorem is obtained for SO(3,R) using
the extended vector-parameter form.

Explicit form of Cartan’s theorem is formulated and proved for
the hyperbolic SO(2, 1) elements. An arbitrary such element is
decomposed into product of two pseudo half-turns.

The problem for taking a square root in SO(2, 1) is fully and
explicitly solved.
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Recall the standard R-basis J3 = {J3|1, J3|2, J3|3} of so(3)

J3|1 =

 0 0 0
0 0 −1
0 1 0

 , J3|2 =

 0 0 1
0 0 0
−1 0 0

 , J3|3 =

 0 −1 0
1 0 0
0 0 0

 .

Recall that an embedding j : g ↪→ g̃ of Lie algebras is called irre-
ducible [Dynkin, 1952] if the lowest dimensional irreducible repre-
sentation Γ of g̃ remains irreducible when restricted to g.

Campoamor-Stursberg, 2015 derived explicit formulas for real irre-
ducible representations of the algebra so(3) into so(n) for n ≥ 3.
To do this, he uses the explicit embedding sl (2,C) ↪→ sl (n,C).
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Let us denote the constructed in [Campoamor, 2015] embedding by

jn : so(3) ↪→ so(n) (11)

Its nature is different in terms of the different parity of n. Three
different cases can be considered:

n = 2m + 1 for m ∈ N
n = 4r + 2 for r ∈ N
n = 4r + 2 for r ∈ 1

2
N.

Let us denote by Ji |n, i = 1, 2, 3, Jn = {Jn|1, Jn|2, Jn|3} the images
of J3|i , i = 1, 2, 3 under the embedding jn. Let us denote the coeffi-
cients

aml =

√
l(2m + 1− l)

4
, 0 ≤ l ≤ m. (12)

Here we present refined formulas for computing Jn|1, Jn|2, Jn|3 for
all n ≥ 3.
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For n = 2m + 1,m ∈ N we have

(Jn|1)k,l = (δlk+1a
m

[ k
2 ] + δl+3

k am[ k−2
2 ])

(
1 + (−1)k

2

)
+ (δlnδ

n−1
k − δln−1δnk )

(13)

×

(
amm +

√
m2 + m

2

)
− (δlk+3a

m

[ k+1
2 ] + δl+1

k am[ k−1
2 ])

(
1 + (−1)k−1

2

)

(Jn|2)k,l = (δlnδ
n−2
k − δln−2δnk )

(
amm +

√
m2 + m

2

)
− (δlk+2a

m

[ k+1
2 ] + δl+2

k am[ k−1
2 ])

(Jn|3)k,l =
(1 + (−1)k)δl+1

k (n + 1− k)− (1 + (−1)k−1)δk+1
l (n − k)

4

where 1 ≤ k, l ≤ n and [x ] denotes the integer part of x .
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For n = 4r + 2, r = 1
2 , 1,

3
2 , 2, . . . and 1 ≤ k, l ≤ n

(Jn|1)k,l = (δlk+3a
r
[ k+1

2 ] + δl+1
k ar[ k−1

2 ])

(
1 + (−1)k−1

2

)
−
(

1 + (−1)k

2

)
(δlk+1a

r
[ k2 ] + δl+3

k ar[ k−2
2 ])

(14)
(Jn|2)k,l = δlk+2a

r
[ k+1

2 ] + δl+2
k ar[ k−1

2 ]

(Jn|3)k,l =
(1 + (−1)k)δl+1

k (n + 1− k)− (1 + (−1)k−1)δk+1
l (n − k)

4
.

Besides the correction of the technical errors we changed the signs
of Jn|1 and Jn|2 (this is an automorphism of so(3)) in order to
ensure consistency with the case n = 3.
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c.J4 =
1

2


0 −c3 −c2 −c1

c3 0 c1 −c2
c2 −c1 0 c3
c1 c2 −c3 0

 . (15)

c.J5 =


0 −2c3 c2 c1 0

2c3 0 −c1 c2 0

−c2 c1 0 −c3 −
√

3c2
−c1 −c2 c3 0

√
3c1

0 0
√

3c2 −
√

3c1 0

 . (16)

c.J6 =
1√
2



0 −
√

2c3 −c2 −c1 0 0√
2c3 0 c1 −c2 0 0
c2 −c1 0 0 −c2 −c1
c1 c2 0 0 c1 −c2
0 0 c2 −c1 0

√
2c3

0 0 c1 c2 −
√

2c3 0

 (17)
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We will consider the Cayley defined on Im jn, i.e.,

Cay(C) = (I + C)(I − C)−1 (18)

for arbitrary Im jn 3 C = c.Jn = c1.Jn|1 + c2.Jn|2 + c3.Jn|3, where

c = (c1, c2, c3), c2 = c21 + c22 + c23 = |c|2 = c2. (19)

We will derive explicit formulas for (18) in the different cases for
the parity of n ≥ 3.
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Let n = 2m+1,m ≥ 1. The characteristic polynomial of an arbitrary
matrix C = c.Jn is [Fedorov, Campoamor]

−p2m+1(λ) = λ(λ2 + 12c2) . . . (λ2 + m2c2) = λ

m∏
t=1

(λ2 + t2c2)

= λ2m+1 + α2m−1c2λ2m−1 + . . .+ α1c2mλ (20)

= λ2m+1 +
m∑
t=1

α2m+1−2tc
2tλ2m+1−2t

where α1, α3, . . . α2m−1 are the coefficients of the polynomial p2m+1. One
can derive formulas for them using Vieta ’s formulas for the polynomial

g(µ) = µm + α2m−1µ
m−1 + α2m−3µ

m−2 + . . .+ α3µ+ α1 (21)

obtained by
−p2m+1(λ)

λc2m
after a substitution of

λ2

c2
for µ. This is the

polynomial of degree m with simple roots −12,−22, . . .−m2, i.e., g(µ) =
(µ+ 12) . . . (µ+ m2).
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We have that

α2m+1−2t =
∑

1≤i1<...<it≤m
i21 . . . i

2
t , t = 1, 2, . . . ,m. (22)

For example, the closed forms of α1, α2m−3, α2m−1 for m ≥ 2 are
α1 = (m!)2,

α2m−1 =
m(m + 1)(2m + 1)

6
, α2m−3 =

m(m2 − 1)(4m2 − 1)(5m + 6)

180
·

More explicit expressions and relations for the coefficients α2m+1−2t , t =
1, . . . ,m can be sought via the usage of Bernouli coefficients and

the generalized harmonic coefficients Hm,2 =
m∑
s=1

1

m2
. For example,

α3 = (m!)2Hm,2.
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Theorem 1

For an arbitrary n = 2m + 1,m ≥ 1 the Cayley map (18) is
well-defined on Im jn and the following explicit formula holds true

Cay(C) = I + 2
m−1∑
s=0

1 +
m−s−1∑
k=1

α2k+1c2m−2k

1 + α2m−1c2 + . . .+ α1c2m
(C2s+1 + C2s+2).

(23)
for all C = c.Jn ∈ Im jn. Also, the map Cay takes values in SO(n).
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Example: n = 5

In the special case n = 5 the characteristic polynomial of the matix
C5 = c.J5 form (16) is

p5(λ) = −λ5 − 4c2λ3 − 5c4λ

and the explicit formula for the Cayley map reads as

Cayso(5)�so(3)(C) = I+2
5c2 + 1

4c4 + 5c2 + 1
(C+C2)+2

1

4c4 + 5c2 + 1
(C3+C4).

(24)
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Proof of Theorem 3, I

We need to prove that I − C is invertable and to find an explicit
formula for it. We will seek a formula for (I − C)−1 via the ansatz

(I − C)−1 = x0I + x1C + . . . x2mC2m. (25)

We seek such numbers x0, . . . x2m that I = (I−C)(I−C)−1. Taking
into account (20) we calculate

I = (I − C)(x0I + x1C + . . .+ x2mC2m)

=x0I + (x1 − x0)C + (x2 − x1)C2 + . . .+ (x2m − x2m−1)C2m − x2mC2m+1

=x0I + (x1 − x0 + x2mα1c2m)C + (x2 − x1)C2 + . . . (26)

+ (x2m−1 − x2m−2 + x2mα2m−1c2)C2m−1 + (x2m − x2m−1)C2m

=x0I +
m−1∑
s=0

(x2s+1 − x2s + x2mα2s+1c2m−2s)C2s+1 +
m−1∑
s=0

(x2s+2 − x2s+1)C2s+2.
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Proof of Theorem 3, II

From (26) we directly obtain a linear system of equations for the
unknown x0, . . . , x2m consisting of 2m + 1 equations which can be
split into the following two parts:

x2 = x1
x4 = x3

. . .
x2m = x2m−1

and

x0 = 1
x1 − x0 = −x2mα1c2m

x3 − x2 = −x2mα3c2m−2

. . .
x2m−1 − x2m−2 = −x2mα2m−1c2.

(27)
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Proof of Theorem 3, III

Step by step we obtain x0 = 1

x2 = x1 = 1− x2mα1c2m

x4 = x3 = 1− x2m(α1c2m + α3c2m−2)
. . .
x2m = x2m−1 = 1− x2m(α1c2m + α3c2m−2 + . . .+ α2m−1c2)

(28)

Summing up all of equations in (27), we obtain

x2m = x2m−1 = 1− x2m(α2m−1c2 + . . .+ α1c2m)

= 1 + x2m(p2m+1(1) + 1)

and thus

x2m = − 1

p2m+1(1)
=

1

1 + α2m−1c2 + . . .+ α1c2m
·
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Proof of Theorem 3, IV

Note that

−p2m+1(1) = p2m+1(−1) = (1 + c2)(1 + 4c2) . . . (1 + m2c2) > 0

for all c ∈ R3. Substituting this result in (28) gives

x2 = x1 =
1 + α2m−1c2 + . . .+ α3c2m−2

1 + α2m−1c2 + . . .+ α1c2m

x4 = x3 =
1 + α2m−1c2 + . . .+ α5c2m−4

1 + α2m−1c2 + . . .+ α1c2m
. . .

x2m = x2m−1 =
1

1 + α2m−1c2 + . . .+ α1c2m

(29)

We just obtained that for all c ∈ R3 (I − C)−1 exists and

(I − C)−1 = I +
m−1∑
s=0

1 +
m−s−1∑
k=1

α2k+1c2m−2k

1 + α2m−1c2 + . . .+ α1c2m
(C2s+1 + C2s+2).

(30)
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Proof of Theorem 3, V

Now it is a straightforward, but tedious calculation of to calculate
(I + C)(I − C)−1 as a polynomial of C, which leads to the formula
(23). It is curious that formulae for (I − C)−1 and Cay(C) are so
alike. We are left to prove that (I+C)(I−C)−1 is an SO(n) matrix.
Using the fact that Ct = −C and the fact that the matrices I − C
and I + C commute. we obtain

((I + C)(I − C)−1)t(I + C)(I − C)−1 =((I − C)−1)t(I + C)t(I + C)(I − C)−1

= (I + C)−1(I − C)(I + C)(I − C)−1 = (I + C)−1(I + C)(I − C)(I − C)−1

= I.

Furthermore

det (I + C)(I − C)−1 =
det (I + C)

det (I − C)
=

det (I + C)

det (I + C)t
= 1.

The proof is complete.
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The case of even dimension

Let n = 4r + 2, r ∈ N. The characteristic polynomial of an arbitrary
matrix C = c.Jn is

p4r+2(λ) = λ2(λ2 + 12c2)2(λ2 + 22c2)2 . . . (λ2 + r2c2)2 = λ2
r∏

t=1

(λ2 + t2c2)2

= λ4r+2 + β4rc
2λ4r + . . .+ β2c4rλ2 (31)

= λ4r+2 +
2r∑
t=1

β4r+2−2tc
2tλ4r+2−2t

where 1, β2, β4, . . . β4r are the coefficients of the polynomial p4r+2. One
can derive formulas for them using Vieta ’s formulas for the polynomial

h(ν) = ν2r + β4rµ
2ν−1 + . . . β4ν + β2 (32)

obtained by
p4r+2(λ)

λ2
after a substitution of

λ2

c2
for µ2 = ν. The distinct

roots of h are −12,−22, . . . ,−r2 and all of them are with a multiplicity of
two.
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Theorem 2

For an arbitrary n = 4r + 2, r ∈ N the Cayley map (18) is
well-defined on Im jn and the following explicit formula holds true:

Cay(C) = I + 2C + 2
r∑

s=1

1 +
2r−2s−1∑

k=1

β2k+2c4r−2k

1 + β4rc2 + . . .+ β2c4r
(C2s + C2s+1).

(33)
for all C = c.Jn ∈ Im jn. Also, the map Cay takes values in SO(n).
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Example: n = 6

In the special case n = 6 the characteristic polynomial of the matix
C6 = c.J6 form (16) is

p6(λ) = λ6 + 2c2λ4 + c4λ2

and the explicit formula for the Cayley map reads as

Cayso(6)�so(3)(C) = I+2C+
2c2 + 1

1 + 2c2 + c4
(C2+C3)+2

1

1 + 2c2 + c4
(C4+C5).

(34)
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Let r1 =
2k − 1

2
, k ≥ 1 be a half-integer. Then n = 4

2k − 1

2
+ 2 =

4r for r ∈ N. In these series we will obtain all representations in
dimensions n that are multiple of 4. The characteristic polynomial
of an arbitrary matrix C = c.Jn is

p4r (λ) =
r∏

t=1

(λ2 + (
2t − 1

2
)2c2)2 (35)

= λ4r + γ4r−2c2λ4r−2 + . . .+ γ0c4rλ0 = λ4r+2 +
2r∑
t=1

γ4r−2tc
2tλ4r−2t .

Expressions for the coefficients 1, γ4r−2, γ4r−4, . . . γ2 of the polynomial
p4r+2 can be obtained using Vieta ’s formulas for the polynomial

u(ν) = ν2r + γ4r−2µ
2ν−1 + . . . γ4ν

1 + γ2 (36)

obtained by
p4r (λ)

c4r
after a substitution of

λ2

c2
for µ2 = ν. The distinct

roots of u are −(
1

2
)2,−(

3

2
)2, . . . ,−(

r

2
)2 and all of them are with a multi-

plicity of two.
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Theorem 3

For an arbitrary n = 4r + 2, r ∈ N the Cayley map (18) is
well-defined on Im jn and the following explicit formula holds true:

Cay(C) = −I+2
r∑

s=0

1 +
2r−2s−1∑

k=1

γ2kc4r−2k

1 + γ4r−2c2 + . . .+ γ0c4r
(C2s+C2s+1). (37)

for all C = c.Jn ∈ Im jn. Also, the map Cay takes values in SO(n).
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The special case n = 4

The Hamilton–Cayley theorem for C reads as

C4 +
c2

2
C2 +

c4

16
I = O ⇒ C4 = −c2

2
C2 − c4

16
I. (38)

Despite this fact one directly can check that in this special case

(n = 4) we have also the stronger equality C2 =
c2

4
I. Using this, let

us find an explicit expression for the Cayley map Cay as a polynomial
of degree 1 instead of 3 as expected from Theorem 37. We have

that (I − C)−1 =
4

4 + c2
(I + C), which leads to

Cay(C) = (I + C)(I − C)−1 =
4− c2

4 + c2
I +

8

4 + c2
C. (39)

Obviously, the Cayley map is defined for all c ∈ R3.
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How do we can extract the vector c from a given matrix R4(c) =
Cay(C)? We have that

trR4(c) = 3
4− c2

4 + c2
⇒ 1

4 + c2
=

3− trR4(c)

24
(40)

and thus if we consider A = R4(c) − Rt
4(c) =

16

4 + c2
C than we

have

2C(c) =
3

3− trR4(c)
A (41)

and c = −2(C1,4, C1,3, C1,2).
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Let C = c.J4 and A = a.J4 be two arbitrary elements of Im j4. Let
Rc and Ra be the images of these matrices under the Cayley map,
i.e.,

Rc = Cay(C), Ra = Cay(A).

Let R = RaRc be their composition in SO(4). We want to find an
element C̃ = c̃.J4 such that Cay(C̃) = R = Rc̃.
Let us note that the direct calculation gives

A.C = −a.c

4
I +

a× c

2
· J4. (42)

This leads to very similar calculations as in the case of SU(2) vector
parameter. They lead to the following composition of SO(3,R)
matrices in SO(4)

c̃ = 〈a, c〉Cay=j4 =

(
1− c2

4

)
a +

(
1− a2

4

)
c + 4

a

2
× c

2

1− 2
a

2
· c

2
+

a2

4

c2

4

· (43)
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Further development

We need to check if the SO(3,R) half-turns are realized as
SO(n) matrices for n ≥ 4 via the Cayley map applied for the
embedded so(3) algebra into so(n).

We will investigate what is the composition law for n > 4

We will investigate if there are efficient formulas to extract
the matrix C generating the three-dimensional rotation matrix
Rn(c) ∈ SO(n)

We will investigate if some important operators’
representations in dimension n > 3 are more convenient.
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