Cayley map and Higher Dimensional Representations of Rotations

VELIKO D. DONCHEV, CLEMENTINA D. MLADENOVA and IVAÏLO M. MLADENOV

Geometry, Integrability and Quantization XVIII
Varna, 3-8 June 2016
06.06.2016

The presentation

Summary of the results

The embeddings of the $\mathfrak{s o}(3)$ Lie algebra and the Lie group $\mathrm{SO}(3, \mathbb{R})$ in higher dimensions is an important construction from both mathematical and physical viewpoint. Here we will present a program package for building the generating matrices of the irreducible embeddings of the $\mathfrak{s o}(3)$ Lie algebra within $\mathfrak{s o}(n)$ for arbitrary dimension $n \geq 3$ relying on the algorithm developed recently by CampoamorStrursberg [2015]. We will show also that the Cayley map applied to $\mathcal{C} \in \mathfrak{s o}(n)$ is well defined and generates a subset of $\mathrm{SO}(n)$. Furthermore, we obtain explicit formulas for the images of the Cayley map in all cases.

- This research is made within a bigger project which is about parameterizing Lie groups with small dimension and its application in physics.
- Parameterizations are used to describe Lie groups in an easier and more intuitive way. Let G be a finite dimensional Lie group with Lie algebra \mathfrak{g}. A vector parameterization of G is a map $\mathfrak{g} \rightarrow G$, which is diffeomorphic onto its image. Besides the exponential map, there are other alternatives to achieve parameterization. We make use of the Cayley map

$$
\begin{equation*}
\operatorname{Cay}(X)=(\mathcal{I}+X)(\mathcal{I}-X)^{-1} \tag{1}
\end{equation*}
$$

In Donchev et al, 2015 the Cayley maps for the Lie algebras $\mathfrak{s u}(2)$ and $\mathfrak{s o}(3)$ and the corresponding Lie groups $\operatorname{SU}(2)$ and $\mathrm{SO}(3, \mathbb{R})$ are examined.

The vector-parameter of Gibbs (or Fedorov) is a convenient way to represent proper $\mathrm{SO}(3, \mathbb{R})$ rotations. A rotation of angle θ about an axis \mathbf{n} is represented by the vector $\mathbf{c}=\tan \frac{\theta}{2} \mathbf{n}$. Any proper $S O(3, \mathbb{R})$ rotation is expressed in the terms of \mathbf{c} in the following manner

$$
\mathcal{R}(\mathbf{c})=\frac{2}{1+c^{2}}\left(\begin{array}{ccc}
1+c_{1}^{2} & c_{1} c_{2}-c_{3} & c_{1} c_{3}+c_{2} \tag{2}\\
c_{1} c_{2}+c_{3} & 1+c_{2}^{2} & c_{2} c_{3}-c_{1} \\
c_{1} c_{3}-c_{2} & c_{2} c_{3}+c_{1} & 1+c_{3}^{2}
\end{array}\right)-\mathcal{I} .
$$

However, one has to be careful when half-turns occur because they are not represented by regular Gibbs vectors. We will denote a halfturn about an axis \mathbf{n} by $\mathcal{O}(\mathbf{n})$. The $\mathrm{SO}(3, \mathbb{R})$ matrix that corresponds to $\mathcal{O}(\mathbf{n})$ is given by

$$
\mathcal{R}=2\left(\begin{array}{ccc}
n_{1}^{2} & n_{1} n_{2} & n_{1} n_{3} \tag{3}\\
n_{1} n_{2} & n_{2}^{2} & n_{2} n_{3} \\
n_{1} n_{3} & n_{2} n_{3} & n_{3}^{2}
\end{array}\right)-\mathcal{I}
$$

If \mathbf{c} and a represent the rotations $\mathcal{R}(\mathbf{c}), \mathcal{R}(\mathbf{a})$, the composition law in vector-parameter form is given by

$$
\begin{equation*}
\mathcal{R}(\tilde{\mathbf{c}})=\mathcal{R}(\mathbf{a}) \mathcal{R}(\mathbf{c}), \quad \widetilde{\mathbf{c}}=\widetilde{\mathbf{c}}(\mathbf{a}, \mathbf{c})=\frac{\mathbf{a}+\mathbf{c}+\mathbf{a} \times \mathbf{c}}{1-\mathbf{a} . \mathbf{c}} . \tag{4}
\end{equation*}
$$

Equation (4) is beautiful, simple and computationally cheap. It takes at most 12 multiplications. In comparison the usual multiplication of two quaternions take 16 .

By the means of the Cayley maps of the Lie algebras $\mathfrak{s u}(2)$ and $\mathfrak{s o}(3)$, a vector parameter form [Donchev et all, 2015] of Wigner's group homomorphism $W: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3, \mathbb{R})$ is derived. After pulling back the group multiplication in $\mathrm{SU}(2)$ by the Cayley map $\mathrm{Cay}_{\mathfrak{s u}(2)}: \mathfrak{s u}(2) \rightarrow \mathrm{SU}(2)$, explicit formulae for W and for two sections of W are derived. The derived vector-parameterization of $\mathrm{SU}(2)$ has the advantage to represent all rotations, including the half-turns. Also the derived composition law is always defined. An arbitrary $\mathfrak{s u}(2)$ element is represented in the following way

$$
\begin{equation*}
\mathcal{A}=\mathrm{a}_{1} s_{1}+\mathrm{a}_{2} s_{2}+\mathrm{a}_{3} s_{3}=-\frac{\mathrm{i}}{2} \mathbf{a} \cdot \mathbf{s} \in \mathfrak{s u}(2) \tag{5}
\end{equation*}
$$

$s_{i}=-\frac{\mathrm{i}}{2} \sigma_{i}, i=1,2,3$ and $\sigma_{i}, i=1,2,3$ can be viewed as Paulìs matrices.

Theorem from Donchev, Mladenova \& Mladenov, 2015

Let $\mathcal{U}_{1}(\mathbf{c}), \mathcal{U}_{2}(\mathbf{a}) \in \mathrm{SU}(2)$ are the images of $\mathcal{A}_{1}=\mathbf{c} \cdot \mathbf{s}$ and $\mathcal{A}_{2}=\mathbf{a} \cdot \mathbf{s}$ under the Cayley map where $\mathbf{a}, \mathbf{c} \in \mathbb{R}^{3}$. Let

$$
\begin{equation*}
\mathcal{U}_{3}\left(\langle\mathbf{a}, \mathbf{c}\rangle_{\operatorname{SU}(2)}\right)=\mathcal{U}_{2}(\mathbf{a}) \cdot \mathcal{U}_{1}(\mathbf{c}) \tag{6}
\end{equation*}
$$

denote the composition of $\mathcal{U}_{2}(\mathbf{a})$ and $\mathcal{U}_{1}(\mathbf{c})$ in $\mathrm{SU}(2)$. The corresponding vector-parameter $\tilde{\mathbf{a}} \in \mathbb{R}^{3}$, for which $\operatorname{Cay}_{\mathfrak{s u}(2)}\left(\mathcal{A}_{3}\right)=$ $\mathcal{U}_{3}, \mathcal{A}_{3}=\tilde{\mathbf{a}} \cdot \mathbf{s}$ is

$$
\begin{equation*}
\tilde{\mathbf{a}}=\frac{\left(1-\frac{\mathrm{c}^{2}}{4}\right) \mathbf{a}+\left(1-\frac{a^{2}}{4}\right) \mathbf{c}+4 \frac{\mathbf{a}}{2} \times \frac{\mathbf{c}}{2}}{1-2 \frac{\mathbf{a}}{2} \cdot \frac{\mathbf{c}}{2}+\frac{a^{2}}{4} \frac{c^{2}}{4}} . \tag{7}
\end{equation*}
$$

Product of rotations	Result	Condition	Compound rotation
$\mathcal{R}\left(\mathbf{c}_{2}\right) \mathcal{R}\left(\mathbf{c}_{1}\right)$	$\begin{aligned} \mathbf{c}_{3} & =\frac{\mathbf{c}_{2}+\mathbf{c}_{1}+\mathbf{c}_{2} \times \mathbf{c}_{1}}{1-\mathbf{c}_{2} . \mathbf{c}_{1}}, \\ {\left[\mathbf{n}_{3}\right] } & =\left[\mathbf{c}_{2}+\mathbf{c}_{1}+\mathbf{c}_{2} \times \mathbf{c}_{1}\right], \end{aligned}$	$\begin{aligned} & \mathbf{c}_{2} \cdot \mathbf{c}_{1} \neq 1 \\ & \mathbf{c}_{2} \cdot \mathbf{c}_{1}=1 \end{aligned}$	$\begin{aligned} & \mathcal{R}\left(\mathbf{c}_{3}\right) \\ & \mathcal{O}\left(\mathbf{n}_{3}\right) \end{aligned}$
$\mathcal{R}\left(\mathbf{c}_{2}\right) \mathcal{O}\left(\mathbf{n}_{1}\right)$	$\begin{aligned} & \mathbf{c}_{3}=-\frac{\mathbf{n}_{1}+\mathbf{c}_{2} \times \mathbf{n}_{1}}{\mathbf{c}_{2} \cdot \mathbf{n}_{1}}, \\ & {\left[\mathbf{n}_{3}\right]=\left[\mathbf{n}_{1}+\mathbf{c}_{2} \times \mathbf{n}_{1}\right],} \end{aligned}$	$\begin{aligned} & \mathbf{c}_{2} \cdot \mathbf{n}_{1} \neq 0 \\ & \mathbf{c}_{2} \cdot \mathbf{n}_{1}=0 \end{aligned}$	$\begin{aligned} & \mathcal{R}\left(\mathbf{c}_{3}\right) \\ & \mathcal{O}\left(\mathbf{n}_{3}\right) \\ & \hline \end{aligned}$
$\mathcal{O}\left(\mathbf{n}_{2}\right) \mathcal{R}\left(\mathbf{c}_{1}\right)$	$\begin{aligned} & \mathbf{c}_{3}=-\frac{\mathbf{n}_{2}+\mathbf{n}_{2} \times \mathbf{c}_{1}}{\mathbf{n}_{2} . \mathbf{c}_{1}}, \\ & {\left[\mathbf{n}_{3}\right]=\left[\mathbf{n}_{2}+\mathbf{n}_{2} \times \mathbf{c}_{1}\right],} \end{aligned}$	$\begin{aligned} & \mathbf{n}_{2} \cdot \mathbf{c}_{1} \neq 0 \\ & \mathbf{n}_{2} \cdot \mathbf{c}_{1}=0 \end{aligned}$	$\begin{aligned} & \mathcal{R}\left(\mathbf{c}_{3}\right) \\ & \mathcal{O}\left(\mathbf{n}_{3}\right) \end{aligned}$
$\mathcal{O}\left(\mathbf{n}_{2}\right) \mathcal{O}\left(\mathbf{n}_{1}\right)$	$\begin{aligned} & \mathbf{c}_{3}=-\frac{\mathbf{n}_{2} \times \mathbf{n}_{1}}{\mathbf{n}_{2} . \mathbf{n}_{1}}, \\ & {\left[\mathbf{n}_{3}\right]=\left[\mathbf{n}_{2} \times \mathbf{n}_{1}\right],} \end{aligned}$	$\begin{aligned} & \mathbf{n}_{2} \cdot \mathbf{n}_{1} \neq 0 \\ & \mathbf{n}_{2} \cdot \mathbf{n}_{1}=0 \end{aligned}$	$\begin{aligned} & \mathcal{R}\left(\mathbf{c}_{3}\right) \\ & \mathcal{O}\left(\mathbf{n}_{3}\right) \end{aligned}$

If $H\left(\mathbf{c}_{1}\right), H\left(\mathbf{c}_{1}\right)$ are two $\mathrm{SO}(2,1)$ elements represented by the vector parameters and $\mathbf{c}_{1}, \mathbf{c}_{2}$ and $\mathbf{c}_{1} \cdot\left(\eta \mathbf{c}_{1}\right) \neq 1, \mathbf{c}_{2} \cdot\left(\eta \mathbf{c}_{2}\right) \neq 1$ and $1+$ $\mathbf{c}_{2} .\left(\eta \mathbf{c}_{1}\right) \neq 0$. Then
$H\left(\mathbf{c}_{3}\right)=H\left(\mathbf{c}_{2}\right) H\left(\mathbf{c}_{1}\right), \quad \mathbf{c}_{3}=\left\langle\mathbf{c}_{2}, \mathbf{c}_{1}\right\rangle_{\mathrm{SO}(2,1)}=\frac{\mathbf{c}_{2}+\mathbf{c}_{1}+\mathbf{c}_{2} \curlywedge \mathbf{c}_{1}}{1+\mathbf{c}_{2} \cdot\left(\eta \mathbf{c}_{1}\right)}$
where $\mathbf{c}_{2} \curlywedge \mathbf{c}_{1}:=\eta\left(\mathbf{c}_{2} \times \mathbf{c}_{1}\right)$. Equation (8) is the vector-parameter form of $\mathrm{SO}(2,1)$ obtained by the parameterization given by the Cayley map. The same result was obtained independently by usage of pseudo-quaternions.

Pseudo half-turns are also not covered by this parameterization. Also, the case $\mathbf{c}_{2} \cdot\left(\eta \mathbf{c}_{1}\right)=-1$ is not covered, which corresponds to the result being a pseudo half-turn. In Donchev et all [2015] the Cayley map in the covering group $\operatorname{SU}(1,1)$ is used to extend this composition law.

Theorem from Donchev, Mladenova \& Mladenov, 2015

Let $M, \mathcal{A} \in \mathfrak{s u}(1,1)$
$M=\mathbf{m} . \mathbf{E}, \quad \mathbf{m}=\left(m_{1}, m_{2}, m_{3}\right), \quad \mathcal{A}=\mathbf{a} . \mathbf{E}, \quad \mathbf{a}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)$
be such that $\Delta_{\mathbf{m}} \neq 0, \Delta_{\mathbf{a}} \neq 0$ and

$$
\begin{equation*}
(\mathbf{a} \cdot(\eta \mathbf{a}))(\mathbf{m} \cdot(\eta \mathbf{m}))+8 \mathbf{a} \cdot(\eta \mathbf{m})+16 \neq 0 \tag{9}
\end{equation*}
$$

Let $\mathcal{L}(\mathbf{m})=\operatorname{Cay}_{\mathfrak{s u}(1,1)}(M), \mathcal{W}(\mathbf{a})=\operatorname{Cay}_{\mathfrak{s u}(1,1)}(\mathcal{A})$. Then, if $\tilde{\mathcal{L}}=\mathcal{W} \cdot \mathcal{L}$ is the composition of the images in $\operatorname{SU}(1,1)$ then $\tilde{\mathcal{L}}=\operatorname{Cay}_{\mathfrak{s u}(1,1)}(\tilde{\mathcal{A}})$ where $\tilde{\mathcal{A}}=\tilde{\mathbf{m}} . \mathbf{E}$ and

$$
\begin{equation*}
\tilde{\mathbf{m}}=\frac{\left(1+\frac{\mathbf{m}}{2} \cdot\left(\eta \frac{\mathbf{m}}{2}\right)\right) \mathbf{a}+\left(1+\frac{\mathbf{a}}{2} \cdot\left(\eta \frac{\mathbf{a}}{2}\right)\right) \mathbf{m}+\mathbf{a} \curlywedge \mathbf{m}}{1+2 \frac{\mathbf{a}}{2} \cdot\left(\eta \frac{\mathbf{m}}{2}\right)+\left(\frac{\mathbf{a}}{2} \cdot\left(\eta \frac{\mathbf{a}}{2}\right)\right)\left(\frac{\mathbf{m}}{2} \cdot\left(\eta \frac{\mathbf{m}}{2}\right)\right)} \tag{10}
\end{equation*}
$$

Product of pseudo rotation	Compound rotations	Conditions	Results
$\mathcal{R}_{h}\left(\mathbf{c}_{2}\right) \mathcal{R}_{h}\left(\mathbf{c}_{1}\right)$	$\mathcal{R}_{h}(\mathbf{c})$	$\mathbf{c}_{2} \cdot \eta \mathbf{c}_{1} \neq-1$	$\mathbf{c}=\frac{\mathbf{c}_{2}+\mathbf{c}_{1}+\mathbf{c}_{2} \curlywedge \mathbf{c}_{1}}{1+\mathbf{c}_{2} \cdot \eta \mathbf{c}_{1}}$
	$\mathcal{O}_{h}(\mathbf{m})$	$\mathbf{c}_{2} \cdot \eta \mathbf{c}_{1}=-1$	$\mathbf{m}=-2 \frac{\eta \mathbf{c}_{2}+\eta \mathbf{c}_{1}-\left(\eta \mathbf{c}_{2}\right) \curlywedge\left(\eta \mathbf{c}_{1}\right)}{\sqrt{1-\mathbf{c}_{2} \cdot \eta \mathbf{c}_{2}} \sqrt{1-\mathbf{c}_{1} \cdot \eta \mathbf{c}_{1}}}$
$\mathcal{O}_{h}\left(\mathbf{m}_{2}\right) \mathcal{R}_{h}\left(\mathbf{c}_{1}\right)$	$\mathcal{R}_{h}(\mathbf{c})$	$\mathbf{m}_{2} \cdot \mathbf{c}_{1} \neq 0$	$\mathbf{c}=\eta \frac{\mathbf{m}_{2}-\mathbf{m}_{2} \curlywedge\left(\eta \mathbf{c}_{1}\right)}{\mathbf{m}_{2} \cdot \mathbf{c}_{1}}$
	$\mathcal{O}_{h}(\mathbf{m})$	$\mathbf{m}_{2} \cdot \mathbf{c}_{1}=0$	$\mathbf{m}=-\frac{\mathbf{m}_{2}-\mathbf{m}_{2} \curlywedge\left(\eta \mathbf{c}_{1}\right)}{\sqrt{1-\mathbf{c}_{1} \cdot \eta \mathbf{c}_{1}}}$
$\mathcal{R}_{h}\left(\mathbf{c}_{2}\right) \mathcal{O}_{h}\left(\mathbf{m}_{1}\right)$	$\mathcal{R}_{h}(\mathbf{c})$	$\mathbf{c}_{2} \cdot \mathbf{m}_{1} \neq 0$	$\mathbf{c}=\eta \frac{\mathbf{m}_{1}-\left(\eta \mathbf{c}_{2}\right) \curlywedge \mathbf{m}_{1}}{\mathbf{c}_{2} \cdot \mathbf{m}_{1}}$
	$\mathcal{O}_{h}(\mathbf{m})$	$\mathbf{c}_{2} \cdot \mathbf{m}_{1}=0$	$\mathbf{m}=-\frac{\mathbf{m}_{1}-\left(\eta \mathbf{c}_{2}\right) \curlywedge \mathbf{m}_{1}}{\sqrt{1-\mathbf{c}_{2} \cdot \eta \mathbf{c}_{2}}}$
$\mathcal{O}_{h}\left(\mathbf{m}_{2}\right) \mathcal{O}_{h}\left(\mathbf{m}_{1}\right)$	$\mathcal{R}_{h}(\mathbf{c})$	$\mathbf{m}_{1} \neq \mathbf{m}_{2}$	$\mathbf{c}=-\frac{\mathbf{m}_{2} \times \mathbf{m}_{1}}{\mathbf{m}_{2} \cdot \eta \mathbf{m}_{1}}$
\mathbf{I}	$\mathbf{m}_{1}=\mathbf{m}_{2}$	$\mathbf{c}=\mathbf{0}$	

The obtained parameterizations of $\mathrm{SO}(3, \mathbb{R}), \mathrm{SU}(2), \mathrm{SO}(2,1)$ and $\mathrm{SU}(1,1)$ via the Cayley map led also to the following additional results:

■ One needs at most 12 multiplications and 18 additions to perform the extended composition law. In comparison, the standard quaternion multiplications takes 16 multiplications.

- Explicit form of Cartan's theorem is obtained for $\operatorname{SO}(3, \mathbb{R})$ using the extended vector-parameter form.
- Explicit form of Cartan's theorem is formulated and proved for the hyperbolic $\mathrm{SO}(2,1)$ elements. An arbitrary such element is decomposed into product of two pseudo half-turns.
- The problem for taking a square root in $\mathrm{SO}(2,1)$ is fully and explicitly solved.

Recall the standard \mathbb{R}-basis $\mathrm{J}_{3}=\left\{\mathrm{J}_{3 \mid 1}, \mathrm{~J}_{3 \mid 2}, \mathrm{~J}_{3 \mid 3}\right\}$ of $\mathfrak{s o}(3)$
$J_{3 \mid 1}=\left(\begin{array}{rrr}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right), J_{3 \mid 2}=\left(\begin{array}{rrr}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right), J_{3 \mid 3}=\left(\begin{array}{rrr}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
Recall that an embedding $j: \mathfrak{g} \hookrightarrow \tilde{\mathfrak{g}}$ of Lie algebras is called irreducible [Dynkin, 1952] if the lowest dimensional irreducible representation Г of $\tilde{\mathfrak{g}}$ remains irreducible when restricted to \mathfrak{g}.

Campoamor-Stursberg, 2015 derived explicit formulas for real irreducible representations of the algebra $\mathfrak{s o}(3)$ into $\mathfrak{s o}(n)$ for $n \geq 3$. To do this, he uses the explicit embedding $\mathfrak{s l}(2, \mathbb{C}) \hookrightarrow \mathfrak{s l}(n, \mathbb{C})$.

Let us denote the constructed in [Campoamor, 2015] embedding by

$$
\begin{equation*}
j_{n}: \mathfrak{s o}(3) \hookrightarrow \mathfrak{s o}(n) \tag{11}
\end{equation*}
$$

Its nature is different in terms of the different parity of n. Three different cases can be considered:

■ $n=2 m+1$ for $m \in \mathbb{N}$
■ $n=4 r+2$ for $r \in \mathbb{N}$

- $n=4 r+2$ for $r \in \frac{1}{2} \mathbb{N}$.

Let us denote by $\mathrm{J}_{i \mid n}, i=1,2,3, \mathrm{~J}_{n}=\left\{\mathrm{J}_{n \mid 1}, \mathrm{~J}_{n \mid 2}, \mathrm{~J}_{n \mid 3}\right\}$ the images of $J_{3 \mid i}, i=1,2,3$ under the embedding j_{n}. Let us denote the coefficients

$$
\begin{equation*}
a_{l}^{m}=\sqrt{\frac{l(2 m+1-l)}{4}}, \quad 0 \leq l \leq m . \tag{12}
\end{equation*}
$$

Here we present refined formulas for computing $J_{n \mid 1}, J_{n \mid 2}, J_{n \mid 3}$ for all $n \geq 3$.

For $n=2 m+1, m \in \mathbb{N}$ we have

$$
\begin{aligned}
\left(J_{n \mid 1}\right)_{k, l} & =\left(\delta_{k+1}^{\prime} a_{\left[\frac{k}{2}\right]}^{m}+\delta_{k}^{I+3} a_{\left[\frac{k-2}{2}\right]}^{m}\right)\left(\frac{1+(-1)^{k}}{2}\right)+\left(\delta_{n}^{\prime} \delta_{k}^{n-1}-\delta_{n-1}^{\prime} \delta_{k}^{n}\right) \\
& \times\left(a_{m}^{m}+\sqrt{\frac{m^{2}+m}{2}}\right)-\left(\delta_{k+3}^{\prime} a_{\left[\frac{k+1}{2}\right]}^{m}+\delta_{k}^{\prime+1} a_{\left[\frac{k-1}{2}\right]}^{m}\right)\left(\frac{1+(-1)^{k-1}}{2}\right) \\
\left(J_{n \mid 2}\right)_{k, l} & =\left(\delta_{n}^{\prime} \delta_{k}^{n-2}-\delta_{n-2}^{\prime} \delta_{k}^{n}\right)\left(a_{m}^{m}+\sqrt{\frac{m^{2}+m}{2}}\right)-\left(\delta_{k+2}^{\prime} a_{\left[\frac{k+1}{2}\right]}^{m}+\delta_{k}^{I+2} a_{\left[\frac{k-1}{2}\right]}^{m}\right) \\
\left(J_{n \mid 3}\right)_{k, l} & =\frac{\left(1+(-1)^{k}\right) \delta_{k}^{l+1}(n+1-k)-\left(1+(-1)^{k-1}\right) \delta_{l}^{k+1}(n-k)}{4}
\end{aligned}
$$

where $1 \leq k, I \leq n$ and $[x]$ denotes the integer part of x.

For $n=4 r+2, r=\frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$ and $1 \leq k, I \leq n$

$$
\begin{aligned}
\left(\mathrm{J}_{n \mid 1}\right)_{k, l} & =\left(\delta_{k+3}^{l} a_{\left[\frac{k+1}{2}\right]}^{r}+\delta_{k}^{I+1} a_{\left[\frac{k-1}{2}\right]}^{r}\right)\left(\frac{1+(-1)^{k-1}}{2}\right) \\
& -\left(\frac{1+(-1)^{k}}{2}\right)\left(\delta_{k+1}^{l} a_{\left[\frac{k}{2}\right]}^{r}+\delta_{k}^{I+3} a_{\left[\frac{k-2}{2}\right]}^{r}\right) \\
\left(\mathrm{J}_{n \mid 2}\right)_{k, l} & =\delta_{k+2}^{\prime} a_{\left[\frac{k+1}{2}\right]}^{r}+\delta_{k}^{I+2} a_{\left[\frac{k-1}{r}\right]}^{r} \\
\left(\mathrm{~J}_{n \mid 3}\right)_{k, l} & =\frac{\left(1+(-1)^{k}\right) \delta_{k}^{I+1}(n+1-k)-\left(1+(-1)^{k-1}\right) \delta_{l}^{k+1}(n-k)}{4} .
\end{aligned}
$$

Besides the correction of the technical errors we changed the signs of $\mathbf{J}_{n \mid 1}$ and $\mathbf{J}_{n \mid 2}$ (this is an automorphism of $\mathfrak{s o}(3)$) in order to ensure consistency with the case $n=3$.

$$
\begin{align*}
& \text { c. } J_{4}=\frac{1}{2}\left(\begin{array}{rrrr}
0 & -c_{3} & -c_{2} & -c_{1} \\
c_{3} & 0 & c_{1} & -c_{2} \\
c_{2} & -c_{1} & 0 & c_{3} \\
c_{1} & c_{2} & -c_{3} & 0
\end{array}\right) . \tag{15}\\
&{\text { c. } \mathbf{J}_{5}}=\left(\begin{array}{ccccc}
0 & -2 c_{3} & c_{2} & c_{1} & 0 \\
2 c_{3} & 0 & -c_{1} & c_{2} & 0 \\
-c_{2} & c_{1} & 0 & -c_{3} & -\sqrt{3} c_{2} \\
-c_{1} & -c_{2} & c_{3} & 0 & \sqrt{3} c_{1} \\
0 & 0 & \sqrt{3} c_{2} & -\sqrt{3} c_{1} & 0
\end{array}\right) . \tag{16}\\
& \text { c. } J_{6}= \frac{1}{\sqrt{2}}\left(\begin{array}{cccccc}
0 & -\sqrt{2} c_{3} & -c_{2} & -c_{1} & 0 & 0 \\
\sqrt{2} c_{3} & 0 & c_{1} & -c_{2} & 0 & 0 \\
c_{2} & -c_{1} & 0 & 0 & -c_{2} & -c_{1} \\
c_{1} & c_{2} & 0 & 0 & c_{1} & -c_{2} \\
0 & 0 & c_{2} & -c_{1} & 0 & \sqrt{2} c_{3} \\
0 & 0 & c_{1} & c_{2} & -\sqrt{2} c_{3} & 0
\end{array}\right) \tag{17}
\end{align*}
$$

We will consider the Cayley defined on Im j_{n}, i.e.,

$$
\begin{equation*}
\operatorname{Cay}(\mathcal{C})=(\mathcal{I}+\mathcal{C})(\mathcal{I}-\mathcal{C})^{-1} \tag{18}
\end{equation*}
$$

for arbitrary $\operatorname{Im} j_{n} \ni \mathcal{C}=\mathbf{c} . J_{n}=c_{1} \cdot J_{n \mid 1}+c_{2} . J_{n \mid 2}+c_{3} . J_{n \mid 3}$, where

$$
\begin{equation*}
\mathbf{c}=\left(c_{1}, c_{2}, c_{3}\right), \quad \mathbf{c}^{2}=c_{1}^{2}+c_{2}^{2}+c_{3}^{2}=|\mathbf{c}|^{2}=c^{2} . \tag{19}
\end{equation*}
$$

We will derive explicit formulas for (18) in the different cases for the parity of $n \geq 3$.

Let $n=2 m+1, m \geq 1$. The characteristic polynomial of an arbitrary matrix $\mathcal{C}=\mathbf{c} . \mathbf{J}_{n}$ is [Fedorov, Campoamor]

$$
\begin{align*}
-p_{2 m+1}(\lambda) & =\lambda\left(\lambda^{2}+1^{2} c^{2}\right) \ldots\left(\lambda^{2}+m^{2} c^{2}\right)=\lambda \prod_{t=1}^{m}\left(\lambda^{2}+t^{2} c^{2}\right) \\
& =\lambda^{2 m+1}+\alpha_{2 m-1} c^{2} \lambda^{2 m-1}+\ldots+\alpha_{1} c^{2 m} \lambda \tag{20}\\
& =\lambda^{2 m+1}+\sum_{t=1}^{m} \alpha_{2 m+1-2 t} c^{2 t} \lambda^{2 m+1-2 t}
\end{align*}
$$

where $\alpha_{1}, \alpha_{3}, \ldots \alpha_{2 m-1}$ are the coefficients of the polynomial $p_{2 m+1}$. One can derive formulas for them using Vieta's formulas for the polynomial

$$
\begin{equation*}
g(\mu)=\mu^{m}+\alpha_{2 m-1} \mu^{m-1}+\alpha_{2 m-3} \mu^{m-2}+\ldots+\alpha_{3} \mu+\alpha_{1} \tag{21}
\end{equation*}
$$

obtained by $\frac{-p_{2 m+1}(\lambda)}{\lambda c^{2 m}}$ after a substitution of $\frac{\lambda^{2}}{c^{2}}$ for μ. This is the polynomial of degree m with simple roots $-1^{2},-2^{2}, \ldots-m^{2}$, i.e., $g(\mu)=$ $\left(\mu+1^{2}\right) \ldots\left(\mu+m^{2}\right)$.

We have that

$$
\begin{equation*}
\alpha_{2 m+1-2 t}=\sum_{1 \leq i_{1}<\ldots<i_{t} \leq m} i_{1}^{2} \ldots i_{t}^{2}, \quad t=1,2, \ldots, m . \tag{22}
\end{equation*}
$$

For example, the closed forms of $\alpha_{1}, \alpha_{2 m-3}, \alpha_{2 m-1}$ for $m \geq 2$ are $\alpha_{1}=(m!)^{2}$,
$\alpha_{2 m-1}=\frac{m(m+1)(2 m+1)}{6}, \quad \alpha_{2 m-3}=\frac{m\left(m^{2}-1\right)\left(4 m^{2}-1\right)(5 m+6)}{180}$.
More explicit expressions and relations for the coefficients $\alpha_{2 m+1-2 t}, t=$ $1, \ldots, m$ can be sought via the usage of Bernouli coefficients and the generalized harmonic coefficients $H_{m, 2}=\sum_{s=1}^{m} \frac{1}{m^{2}}$. For example, $\alpha_{3}=(m!)^{2} H_{m, 2}$.

Theorem 1

For an arbitrary $n=2 m+1, m \geq 1$ the Cayley map (18) is well-defined on $\operatorname{Im} j_{n}$ and the following explicit formula holds true

$$
\begin{equation*}
\operatorname{Cay}(\mathcal{C})=\mathcal{I}+2 \sum_{s=0}^{m-1} \frac{1+\sum_{k=1}^{m-s-1} \alpha_{2 k+1} c^{2 m-2 k}}{1+\alpha_{2 m-1} c^{2}+\ldots+\alpha_{1} c^{2 m}}\left(\mathcal{C}^{2 s+1}+\mathcal{C}^{2 s+2}\right) \tag{23}
\end{equation*}
$$

for all $\mathcal{C}=\mathbf{c} . \mathbf{J}_{n} \in \operatorname{Im} j_{n}$. Also, the map Cay takes values in $\mathrm{SO}(n)$.

Example: $n=5$

In the special case $n=5$ the characteristic polynomial of the matix $\mathcal{C}_{5}=\mathbf{c} . \mathrm{J}_{5}$ form (16) is

$$
p_{5}(\lambda)=-\lambda^{5}-4 c^{2} \lambda^{3}-5 c^{4} \lambda
$$

and the explicit formula for the Cayley map reads as
$\operatorname{Cay}_{\mathfrak{s o}(5) \mid \mathfrak{s o}(3)}(\mathcal{C})=\mathcal{I}+2 \frac{5 c^{2}+1}{4 c^{4}+5 c^{2}+1}\left(\mathcal{C}+\mathcal{C}^{2}\right)+2 \frac{1}{4 c^{4}+5 c^{2}+1}\left(\mathcal{C}^{3}+\mathcal{C}^{4}\right)$.

Proof of Theorem 3, I

We need to prove that $\mathcal{I}-\mathcal{C}$ is invertable and to find an explicit formula for it. We will seek a formula for $(\mathcal{I}-\mathcal{C})^{-1}$ via the ansatz

$$
\begin{equation*}
(\mathcal{I}-\mathcal{C})^{-1}=x_{0} \mathcal{I}+x_{1} \mathcal{C}+\ldots x_{2 m} \mathcal{C}^{2 m} \tag{25}
\end{equation*}
$$

We seek such numbers $x_{0}, \ldots x_{2 m}$ that $\mathcal{I}=(\mathcal{I}-\mathcal{C})(\mathcal{I}-\mathcal{C})^{-1}$. Taking into account (20) we calculate

$$
\begin{align*}
\mathcal{I}= & (\mathcal{I}-\mathcal{C})\left(x_{0} \mathcal{I}+x_{1} \mathcal{C}+\ldots+x_{2 m} \mathcal{C}^{2 m}\right) \\
= & x_{0} \mathcal{I}+\left(x_{1}-x_{0}\right) \mathcal{C}+\left(x_{2}-x_{1}\right) \mathcal{C}^{2}+\ldots+\left(x_{2 m}-x_{2 m-1}\right) \mathcal{C}^{2 m}-x_{2 m} \mathcal{C}^{2 m+1} \\
= & x_{0} \mathcal{I}+\left(x_{1}-x_{0}+x_{2 m} \alpha_{1} c^{2 m}\right) \mathcal{C}+\left(x_{2}-x_{1}\right) \mathcal{C}^{2}+\ldots \tag{26}\\
& +\left(x_{2 m-1}-x_{2 m-2}+x_{2 m} \alpha_{2 m-1} c^{2}\right) \mathcal{C}^{2 m-1}+\left(x_{2 m}-x_{2 m-1}\right) \mathcal{C}^{2 m} \\
= & x_{0} \mathcal{I}+\sum_{s=0}^{m-1}\left(x_{2 s+1}-x_{2 s}+x_{2 m} \alpha_{2 s+1} c^{2 m-2 s}\right) \mathcal{C}^{2 s+1}+\sum_{s=0}^{m-1}\left(x_{2 s+2}-x_{2 s+1}\right) \mathcal{C}^{2 s+2} .
\end{align*}
$$

Proof of Theorem 3, II

From (26) we directly obtain a linear system of equations for the unknown $x_{0}, \ldots, x_{2 m}$ consisting of $2 m+1$ equations which can be split into the following two parts:

$$
\begin{array}{rlrlrl}
x_{2} & =x_{1} & & & x_{0} & \tag{27}\\
x_{4} & =x_{3} & \text { and } & x_{0} & & =-x_{2 m} \alpha_{1} c^{2 m} \\
x_{3} & -x_{2} & =-x_{2 m} \alpha_{3} c^{2 m-2} \\
& \cdots & & & & \\
x_{2 m} & =x_{2 m-1} & x_{2 m-1} & -x_{2 m-2} & =-x_{2 m} \alpha_{2 m-1} c^{2}
\end{array}
$$

Proof of Theorem 3, III

Step by step we obtain $x_{0}=1$

$$
\begin{array}{rl}
x_{2} & =x_{1} \\
x_{4} & =x_{3} \\
x_{3} & 1-x_{2 m} \alpha_{1} c^{2 m} \tag{28}\\
\ldots & \\
x_{2 m} & =x_{2 m-1} \\
\left.=1-x_{2 m} c^{2 m}+\alpha_{3} c^{2 m-2}\right) \\
\left.c^{2 m}+\alpha_{3} c^{2 m-2}+\ldots+\alpha_{2 m-1} c^{2}\right)
\end{array}
$$

Summing up all of equations in (27), we obtain

$$
\begin{aligned}
x_{2 m} & =x_{2 m-1}=1-x_{2 m}\left(\alpha_{2 m-1} c^{2}+\ldots+\alpha_{1} c^{2 m}\right) \\
& =1+x_{2 m}\left(p_{2 m+1}(1)+1\right)
\end{aligned}
$$

and thus

$$
x_{2 m}=-\frac{1}{p_{2 m+1}(1)}=\frac{1}{1+\alpha_{2 m-1} c^{2}+\ldots+\alpha_{1} c^{2 m}} .
$$

Proof of Theorem 3, IV

Note that
$-p_{2 m+1}(1)=p_{2 m+1}(-1)=\left(1+c^{2}\right)\left(1+4 c^{2}\right) \ldots\left(1+m^{2} c^{2}\right)>0$
for all $\mathbf{c} \in \mathbb{R}^{3}$. Substituting this result in (28) gives

$$
\begin{align*}
& x_{2}=x_{1}=\frac{1+\alpha_{2 m-1} c^{2}+\ldots+\alpha_{3} c^{2 m-2}}{1+\alpha_{2 m-1} c^{2}+\ldots+\alpha_{1} c^{2 m}} \\
& x_{4}=x_{3}=\frac{1+\alpha_{2 m-1} c^{2}+\ldots+\alpha_{5} c^{2 m-4}}{1+\alpha_{2 m-1} c^{2}+\ldots+\alpha_{1} c^{2 m}} \tag{29}\\
& x_{2 m}=x_{2 m-1}=\frac{1}{1+\alpha_{2 m-1} c^{2}+\ldots+\alpha_{1} c^{2 m}}
\end{align*}
$$

We just obtained that for all $\mathbf{c} \in \mathbb{R}^{3}(\mathcal{I}-\mathcal{C})^{-1}$ exists and

$$
(\mathcal{I}-\mathcal{C})^{-1}=\mathcal{I}+\sum_{s=0}^{m-1} \frac{1+\sum_{k=1}^{m-s-1} \alpha_{2 k+1} c^{2 m-2 k}}{1+\alpha_{2 m-1} c^{2}+\ldots+\alpha_{1} c^{2 m}}\left(\mathcal{C}^{2 s+1}+\mathcal{C}^{2 s+2}\right)
$$

Proof of Theorem 3, V

Now it is a straightforward, but tedious calculation of to calculate $(\mathcal{I}+\mathcal{C})(\mathcal{I}-\mathcal{C})^{-1}$ as a polynomial of \mathcal{C}, which leads to the formula (23). It is curious that formulae for $(\mathcal{I}-\mathcal{C})^{-1}$ and $\operatorname{Cay}(\mathcal{C})$ are so alike. We are left to prove that $(\mathcal{I}+\mathcal{C})(\mathcal{I}-\mathcal{C})^{-1}$ is an $\mathrm{SO}(n)$ matrix. Using the fact that $\mathcal{C}^{t}=-\mathcal{C}$ and the fact that the matrices $\mathcal{I}-\mathcal{C}$ and $\mathcal{I}+\mathcal{C}$ commute. we obtain
$\left((\mathcal{I}+\mathcal{C})(\mathcal{I}-\mathcal{C})^{-1}\right)^{t}(\mathcal{I}+\mathcal{C})(\mathcal{I}-\mathcal{C})^{-1}=\left((\mathcal{I}-\mathcal{C})^{-1}\right)^{t}(\mathcal{I}+\mathcal{C})^{t}(\mathcal{I}+\mathcal{C})(\mathcal{I}-\mathcal{C})^{-1}$ $=(\mathcal{I}+\mathcal{C})^{-1}(\mathcal{I}-\mathcal{C})(\mathcal{I}+\mathcal{C})(\mathcal{I}-\mathcal{C})^{-1}=(\mathcal{I}+\mathcal{C})^{-1}(\mathcal{I}+\mathcal{C})(\mathcal{I}-\mathcal{C})(\mathcal{I}-\mathcal{C})^{-1}$
$=\mathcal{I}$.
Furthermore

$$
\operatorname{det}(\mathcal{I}+\mathcal{C})(\mathcal{I}-\mathcal{C})^{-1}=\frac{\operatorname{det}(\mathcal{I}+\mathcal{C})}{\operatorname{det}(\mathcal{I}-\mathcal{C})}=\frac{\operatorname{det}(\mathcal{I}+\mathcal{C})}{\operatorname{det}(\mathcal{I}+\mathcal{C})^{t}}=1
$$

The proof is complete.

The case of even dimension

Let $n=4 r+2, r \in \mathbb{N}$. The characteristic polynomial of an arbitrary matrix $\mathcal{C}=\mathbf{c} . \mathbf{J}_{n}$ is

$$
\begin{align*}
p_{4 r+2}(\lambda) & =\lambda^{2}\left(\lambda^{2}+1^{2} c^{2}\right)^{2}\left(\lambda^{2}+2^{2} c^{2}\right)^{2} \ldots\left(\lambda^{2}+r^{2} c^{2}\right)^{2}=\lambda^{2} \prod_{t=1}^{r}\left(\lambda^{2}+t^{2} c^{2}\right)^{2} \\
& =\lambda^{4 r+2}+\beta_{4 r} c^{2} \lambda^{4 r}+\ldots+\beta_{2} c^{4 r} \lambda^{2} \tag{31}\\
& =\lambda^{4 r+2}+\sum_{t=1}^{2 r} \beta_{4 r+2-2 t} c^{2 t} \lambda^{4 r+2-2 t}
\end{align*}
$$

where $1, \beta_{2}, \beta_{4}, \ldots \beta_{4 r}$ are the coefficients of the polynomial $p_{4 r+2}$. One can derive formulas for them using Vieta's formulas for the polynomial

$$
\begin{equation*}
h(\nu)=\nu^{2 r}+\beta_{4 r} \mu^{2 \nu-1}+\ldots \beta_{4} \nu+\beta_{2} \tag{32}
\end{equation*}
$$

obtained by $\frac{p_{4 r+2}(\lambda)}{\lambda^{2}}$ after a substitution of $\frac{\lambda^{2}}{c^{2}}$ for $\mu^{2}=\nu$. The distinct roots of h are $-1^{2},-2^{2}, \ldots,-r^{2}$ and all of them are with a multiplicity of two.

Theorem 2

For an arbitrary $n=4 r+2, r \in \mathbb{N}$ the Cayley map (18) is well-defined on Im j_{n} and the following explicit formula holds true:

$$
\begin{equation*}
\operatorname{Cay}(\mathcal{C})=\mathcal{I}+2 \mathcal{C}+2 \sum_{s=1}^{r} \frac{1+\sum_{k=1}^{2 r-2 s-1} \beta_{2 k+2} c^{4 r-2 k}}{1+\beta_{4 r} c^{2}+\ldots+\beta_{2} c^{4 r}}\left(\mathcal{C}^{2 s}+\mathcal{C}^{2 s+1}\right) \tag{33}
\end{equation*}
$$

for all $\mathcal{C}=\mathbf{c} . \mathbf{J}_{n} \in \operatorname{Im} j_{n}$. Also, the map Cay takes values in $\mathrm{SO}(n)$.

Example: $n=6$

In the special case $n=6$ the characteristic polynomial of the matix $\mathcal{C}_{6}=\mathbf{c} . \mathbf{J}_{6}$ form (16) is

$$
p_{6}(\lambda)=\lambda^{6}+2 c^{2} \lambda^{4}+c^{4} \lambda^{2}
$$

and the explicit formula for the Cayley map reads as
$\operatorname{Cay}_{\mathfrak{5 o}(6) \mid \mathfrak{s o}(3)}(\mathcal{C})=\mathcal{I}+2 \mathcal{C}+\frac{2 c^{2}+1}{1+2 c^{2}+c^{4}}\left(\mathcal{C}^{2}+\mathcal{C}^{3}\right)+2 \frac{1}{1+2 c^{2}+c^{4}}\left(\mathcal{C}^{4}+\mathcal{C}^{5}\right)$
(34)

Let $r_{1}=\frac{2 k-1}{2}, k \geq 1$ be a half-integer. Then $n=4 \frac{2 k-1}{2}+2=$ $4 r$ for $r \in \mathbb{N}$. In these series we will obtain all representations in dimensions n that are multiple of 4 . The characteristic polynomial of an arbitrary matrix $\mathcal{C}=\mathbf{c} . \boldsymbol{J}_{n}$ is

$$
\begin{align*}
p_{4 r}(\lambda) & =\prod_{t=1}^{r}\left(\lambda^{2}+\left(\frac{2 t-1}{2}\right)^{2} c^{2}\right)^{2} \tag{35}\\
& =\lambda^{4 r}+\gamma_{4 r-2} c^{2} \lambda^{4 r-2}+\ldots+\gamma_{0} c^{4 r} \lambda^{0}=\lambda^{4 r+2}+\sum_{t=1}^{2 r} \gamma_{4 r-2 t} c^{2 t} \lambda^{4 r-2 t}
\end{align*}
$$

Expressions for the coefficients $1, \gamma_{4 r-2}, \gamma_{4 r-4}, \ldots \gamma_{2}$ of the polynomial $p_{4 r+2}$ can be obtained using Vieta's formulas for the polynomial

$$
\begin{equation*}
u(\nu)=\nu^{2 r}+\gamma_{4 r-2} \mu^{2 \nu-1}+\ldots \gamma_{4} \nu^{1}+\gamma_{2} \tag{36}
\end{equation*}
$$

obtained by $\frac{p_{4 r}(\lambda)}{c^{4 r}}$ after a substitution of $\frac{\lambda^{2}}{c^{2}}$ for $\mu^{2}=\nu$. The distinct roots of u are $-\left(\frac{1}{2}\right)^{2},-\left(\frac{3}{2}\right)^{2}, \ldots,-\left(\frac{r}{2}\right)^{2}$ and all of them are with a multiplicity of two.

Theorem 3

For an arbitrary $n=4 r+2, r \in \mathbb{N}$ the Cayley map (18) is well-defined on Im j_{n} and the following explicit formula holds true:

$$
\operatorname{Cay}(\mathcal{C})=-\mathcal{I}+2 \sum_{s=0}^{r} \frac{1+\sum_{k=1}^{2 r-2 s-1} \gamma_{2 k} c^{4 r-2 k}}{1+\gamma_{4 r-2} c^{2}+\ldots+\gamma_{0} c^{4 r}}\left(\mathcal{C}^{2 s}+\mathcal{C}^{2 s+1}\right)
$$

for all $\mathcal{C}=\mathbf{c} . \mathbf{J}_{n} \in \operatorname{Im} j_{n}$. Also, the map Cay takes values in $\mathrm{SO}(n)$.

The special case $n=4$

The Hamilton-Cayley theorem for \mathcal{C} reads as

$$
\begin{equation*}
\mathcal{C}^{4}+\frac{c^{2}}{2} \mathcal{C}^{2}+\frac{c^{4}}{16} \mathcal{I}=\mathcal{O} \Rightarrow \mathcal{C}^{4}=-\frac{c^{2}}{2} \mathcal{C}^{2}-\frac{c^{4}}{16} \mathcal{I} \tag{38}
\end{equation*}
$$

Despite this fact one directly can check that in this special case $(n=4)$ we have also the stronger equality $\mathcal{C}^{2}=\frac{c^{2}}{4} \mathcal{I}$. Using this, let us find an explicit expression for the Cayley map Cay as a polynomial of degree 1 instead of 3 as expected from Theorem 37. We have that $(\mathcal{I}-\mathcal{C})^{-1}=\frac{4}{4+c^{2}}(\mathcal{I}+\mathcal{C})$, which leads to

$$
\begin{equation*}
\operatorname{Cay}(\mathcal{C})=(\mathcal{I}+\mathcal{C})(\mathcal{I}-\mathcal{C})^{-1}=\frac{4-c^{2}}{4+c^{2}} \mathcal{I}+\frac{8}{4+c^{2}} \mathcal{C} \tag{39}
\end{equation*}
$$

Obviously, the Cayley map is defined for all $c \in \mathbb{R}^{3}$.

How do we can extract the vector \mathbf{c} from a given matrix $\mathcal{R}_{4}(\mathbf{c})=$ $\operatorname{Cay}(\mathcal{C})$? We have that

$$
\begin{equation*}
\operatorname{tr} \mathcal{R}_{4}(\mathbf{c})=3 \frac{4-c^{2}}{4+c^{2}} \Rightarrow \frac{1}{4+c^{2}}=\frac{3-\operatorname{tr} \mathcal{R}_{4}(\mathbf{c})}{24} \tag{40}
\end{equation*}
$$

and thus if we consider $\mathcal{A}=\mathcal{R}_{4}(\mathbf{c})-\mathcal{R}_{4}^{t}(\mathbf{c})=\frac{16}{4+c^{2}} \mathcal{C}$ than we have

$$
\begin{equation*}
2 \mathcal{C}(\mathbf{c})=\frac{3}{3-\operatorname{tr} \mathcal{R}_{4}(\mathbf{c})} \mathcal{A} \tag{41}
\end{equation*}
$$

and $\mathbf{c}=-2\left(\mathcal{C}_{1,4}, \mathcal{C}_{1,3}, \mathcal{C}_{1,2}\right)$.

Let $\mathcal{C}=\mathbf{c} . \mathbf{J}_{4}$ and $\mathcal{A}=\mathbf{a} . \mathrm{J}_{4}$ be two arbitrary elements of Im j_{4}. Let $\mathcal{R}_{\mathbf{c}}$ and $\mathcal{R}_{\mathbf{a}}$ be the images of these matrices under the Cayley map, i.e.,

$$
\mathcal{R}_{\mathbf{c}}=\operatorname{Cay}(\mathcal{C}), \quad \mathcal{R}_{\mathbf{a}}=\operatorname{Cay}(\mathcal{A})
$$

Let $\mathcal{R}=\mathcal{R}_{\mathbf{a}} \mathcal{R}_{\mathbf{c}}$ be their composition in $\mathrm{SO}(4)$. We want to find an element $\widetilde{\mathcal{C}}=\widetilde{\mathbf{c}} . \mathbf{J}_{4}$ such that $\operatorname{Cay}(\widetilde{\mathcal{C}})=\mathcal{R}=\mathcal{R}_{\widetilde{\mathbf{c}}}$.
Let us note that the direct calculation gives

$$
\begin{equation*}
\mathcal{A} . \mathcal{C}=-\frac{\mathbf{a} \cdot \mathbf{c}}{4} \mathcal{I}+\frac{\mathbf{a} \times \mathbf{c}}{2} \cdot \mathbf{J}_{4} . \tag{42}
\end{equation*}
$$

This leads to very similar calculations as in the case of $\mathrm{SU}(2)$ vector parameter. They lead to the following composition of $\operatorname{SO}(3, \mathbb{R})$ matrices in $\mathrm{SO}(4)$

$$
\begin{equation*}
\widetilde{\mathbf{c}}=\langle\mathbf{a}, \mathbf{c}\rangle_{\mathrm{Cay}_{\Im_{j_{4}}}}=\frac{\left(1-\frac{c^{2}}{4}\right) \mathbf{a}+\left(1-\frac{a^{2}}{4}\right) \mathbf{c}+4 \frac{\mathbf{a}}{2} \times \frac{\mathbf{c}}{2}}{1-2 \frac{\mathbf{a}}{2} \cdot \frac{\mathbf{c}}{2}+\frac{a^{2}}{4} \frac{c^{2}}{4}} \tag{43}
\end{equation*}
$$

Further development

■ We need to check if the $\mathrm{SO}(3, \mathbb{R})$ half-turns are realized as SO (n) matrices for $n \geq 4$ via the Cayley map applied for the embedded $\mathfrak{s o (3)}$ algebra into $\mathfrak{s o}(n)$.

- We will investigate what is the composition law for $n>4$
- We will investigate if there are efficient formulas to extract the matrix \mathcal{C} generating the three-dimensional rotation matrix $\mathcal{R}_{n}(\mathbf{c}) \in \mathrm{SO}(n)$
■ We will investigate if some important operators' representations in dimension $n>3$ are more convenient.

1 Campoamor-Strursberg R., An Elementary Derivation of the Matrix Elements of Real Irreducible Representations of $\mathfrak{s o}(3)$, Symmetry 7 (2015) 1655-1669.

2 Donchev V., Mladenova C. and Mladenov I., On Vector Parameter Form of the $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3, \mathbb{R})$ Map, Ann. Univ. Sofia 102 (2015) 91-107.

3 Donchev V., Mladenova C. and Mladenov I., On the Compositions of Rotations, AIP Conf. Proc. 1684 (2015) 1-11.

4 Donchev V., Mladenova C. and Mladenov I., Vector-Parameter Forms of $\operatorname{SU}(1,1), \operatorname{SL}(2, \mathbb{R})$ and Their Connection to $\operatorname{SO}(2,1)$, Geom. Integrability \& Quantization 17 (2016) 196-230.

5 Dynkin E., Semisimple Subalgebras of Semisimple Lie Algebras, Mat. Sbornik N.S. 30 (1952) 349-462.

б Fedorov F., The Lorentz Group (in Russian), Nauka, Moscow 1979.

