Biharmonic pmc surfaces in complex space forms

Dorel Fetcu

Gheorghe Asachi Technical University of Iaşi, Romania

Varna, Bulgaria, June 2016

Dorel Fetcu (TUIASI)

Biharmonic pmc surfaces

< 6 b

Harmonic and biharmonic maps

Let $\varphi : (M,g) \rightarrow (N,h)$ be a smooth map.

Energy functional

$$E(\boldsymbol{\varphi}) = E_1(\boldsymbol{\varphi}) = \frac{1}{2} \int_M |d\boldsymbol{\varphi}|^2 v_g$$

Euler-Lagrange equation

$$\tau(\varphi) = \tau_1(\varphi) = \operatorname{trace}_g \nabla d\varphi$$
$$= 0$$

Critical points of *E*: harmonic maps

Dorel Fetcu (TUIASI)

Harmonic and biharmonic maps

Let $\varphi : (M,g) \to (N,h)$ be a smooth map.

Energy functional

$$E(\boldsymbol{\varphi}) = E_1(\boldsymbol{\varphi}) = \frac{1}{2} \int_M |d\boldsymbol{\varphi}|^2 v_g$$

Euler-Lagrange equation

$$\tau(\varphi) = \tau_1(\varphi) = \operatorname{trace}_g \nabla d\varphi$$
$$= 0$$

Bienergy functional

$$E_2(\boldsymbol{\varphi}) = \frac{1}{2} \int_M |\boldsymbol{\tau}(\boldsymbol{\varphi})|^2 v_g$$

Euler-Lagrange equation

$$\begin{aligned} (\varphi) &= \Delta^{\varphi} \tau(\varphi) - \operatorname{trace}_{g} R^{N}(d\varphi, \tau(\varphi)) d\varphi \\ &= 0 \end{aligned}$$

Critical points of *E*: harmonic maps

Critical points of *E*₂: biharmonic maps

< ロ > < 同 > < 回 > < 回 >

 τ_2

The biharmonic equation (Jiang, 1986)

$$\tau_2(\boldsymbol{\varphi}) = \Delta^{\boldsymbol{\varphi}} \tau(\boldsymbol{\varphi}) - \operatorname{trace}_g R^N(d\boldsymbol{\varphi}, \tau(\boldsymbol{\varphi})) d\boldsymbol{\varphi} = 0$$

where

$$\Delta^{\varphi} = \operatorname{trace}_{g} \left(\nabla^{\varphi} \nabla^{\varphi} - \nabla^{\varphi}_{\nabla} \right)$$

is the rough Laplacian on sections of $\varphi^{-1}TN$

The Sec. 74

The biharmonic equation (Jiang, 1986)

$$\tau_2(\boldsymbol{\varphi}) = \Delta^{\boldsymbol{\varphi}} \tau(\boldsymbol{\varphi}) - \operatorname{trace}_g R^N(d\boldsymbol{\varphi}, \tau(\boldsymbol{\varphi})) d\boldsymbol{\varphi} = 0$$

where

$$\Delta^{\varphi} = \operatorname{trace}_{g} \left(\nabla^{\varphi} \nabla^{\varphi} - \nabla^{\varphi}_{\nabla} \right)$$

is the rough Laplacian on sections of $\varphi^{-1}TN$

- is a fourth-order non-linear elliptic equation
- any harmonic map is biharmonic
- a non-harmonic biharmonic map is called proper biharmonic
- the biharmonic submanifolds *M* of a given space *N* are the submanifolds such that the inclusion map *i* : *M* → *N* is biharmonic (the inclusion map *i* : *M* → *N* is harmonic if and only if *M* is minimal)

Dorel Fetcu (TUIASI)

The biharmonic equation

Theorem (Balmuş-Montaldo-Oniciuc, 2012)

A submanifold Σ^m in a Riemannian manifold N, with second fundamental form σ , mean curvature vector field H, and shape operator A, is biharmonic if and only if

$$\begin{cases} -\Delta^{\perp}H + \operatorname{trace} \sigma(\cdot, A_H \cdot) + \operatorname{trace} (R^N(\cdot, H) \cdot)^{\perp} = 0\\ \frac{m}{2} \operatorname{grad} |H|^2 + 2 \operatorname{trace} A_{\nabla^{\perp}_{+}H}(\cdot) + 2 \operatorname{trace} (R^N(\cdot, H) \cdot)^{\top} = 0, \end{cases}$$

where Δ^{\perp} is the Laplacian in the normal bundle.

< 国 > < 国 >

Biharmonic submanifolds in Euclidean spaces

$$R^N = 0 \Rightarrow \tau_2(\varphi) = \Delta^{\varphi} \tau(\varphi)$$

Definition (Chen)

A submanifold $i: M \to \mathbb{R}^n$ is biharmonic if it has harmonic mean curvature vector field, i.e.,

$$\Delta^i H = 0 \Leftrightarrow \Delta^i \tau(i) = 0.$$

Dorel Fetcu (TUIASI)

Non existence of proper biharmonic submanifolds

For any of the following classes of submanifolds the biharmonicity is equivalent to minimality:

- submanifolds of $N^3(c)$, $c \le 0$ (Chen/Caddeo Montaldo Oniciuc)
- curves of $N^n(c)$, $c \le 0$ (Dimitric/Caddeo Montaldo Oniciuc)
- submanifolds of finite type in \mathbb{R}^n (Dimitric)
- hypersurfaces of \mathbb{R}^n with at most two principal curvatures (Dimitric)
- pseudo-umbilical submanifolds of Nⁿ(c), c ≤ 0, n ≠ 4 (Dimitric/Caddeo - Montaldo - Oniciuc)
- hypersurfaces of \mathbb{R}^4 (Hasanis Vlachos)
- spherical submanifolds of \mathbb{R}^n (Chen)

Non existence of proper biharmonic submanifolds

For any of the following classes of submanifolds the biharmonicity is equivalent to minimality:

- submanifolds of $N^3(c)$, $c \le 0$ (Chen/Caddeo Montaldo Oniciuc)
- curves of $N^n(c)$, $c \le 0$ (Dimitric/Caddeo Montaldo Oniciuc)
- submanifolds of finite type in \mathbb{R}^n (Dimitric)
- hypersurfaces of \mathbb{R}^n with at most two principal curvatures (Dimitric)
- pseudo-umbilical submanifolds of Nⁿ(c), c ≤ 0, n ≠ 4 (Dimitric/Caddeo - Montaldo - Oniciuc)
- hypersurfaces of \mathbb{R}^4 (Hasanis Vlachos)
- spherical submanifolds of \mathbb{R}^n (Chen)

Chen's conjecture (still open)

Any biharmonic submanifold of the Euclidean space is minimal.

Non existence of proper biharmonic submanifolds

For any of the following classes of submanifolds the biharmonicity is equivalent to minimality:

- submanifolds of $N^3(c)$, $c \le 0$ (Chen/Caddeo Montaldo Oniciuc)
- curves of $N^n(c)$, $c \le 0$ (Dimitric/Caddeo Montaldo Oniciuc)
- submanifolds of finite type in \mathbb{R}^n (Dimitric)
- hypersurfaces of \mathbb{R}^n with at most two principal curvatures (Dimitric)
- pseudo-umbilical submanifolds of Nⁿ(c), c ≤ 0, n ≠ 4 (Dimitric/Caddeo - Montaldo - Oniciuc)
- hypersurfaces of \mathbb{R}^4 (Hasanis Vlachos)
- spherical submanifolds of \mathbb{R}^n (Chen)

Chen's conjecture (still open)

Any biharmonic submanifold of the Euclidean space is minimal.

Generalized Chen's Conjecture (still open)

Biharmonic submanifolds of $N^n(c)$, n > 3, $c \le 0$, are minimal.

Dorel Fetcu (TUIASI)

Biharmonic pmc surfaces

The composition property

$$\mathbb{S}^{n-1}(a) \xrightarrow{\text{biharmonic}} \mathbb{S}^n \quad \iff \quad a = \frac{1}{\sqrt{2}}$$

モトィモト

The composition property

Dore	Fetcu	(TUIASI)
2010	i ciou	

The composition property

Dorel Fetcu (TUIASI)

The composition property

Dorel Fetcu (TUIASI)

The composition property

Properties

- *M* has parallel mean curvature vector field and |H| = 1
- *M* is pseudo-umbilical in \mathbb{S}^n , i.e., $A_H = |H|^2 \operatorname{Id}$

Main examples of biharmonic submanifolds in \mathbb{S}^n

The product composition property

$$\mathbb{S}^{n_1}(a) \times \mathbb{S}^{n_2}(b) \xrightarrow{\text{biharmonic}} \mathbb{S}^n \quad \iff \quad a = b = \frac{1}{\sqrt{2}} \quad \text{and} \quad n_1 \neq n_2$$
$$n_1 + n_2 = n - 1, \ a^2 + b^2 = 1$$

a.

Main examples of biharmonic submanifolds in \mathbb{S}^n

The product composition property

$$\mathbb{S}^{n_1}(a) \times \mathbb{S}^{n_2}(b) \xrightarrow{\text{biharmonic}} \mathbb{S}^n \quad \iff \quad a = b = \frac{1}{\sqrt{2}} \quad \text{and} \quad n_1 \neq n_2$$
$$n_1 + n_2 = n - 1, \ a^2 + b^2 = 1$$
$$\mathbb{S}^{n_1}(\frac{1}{\sqrt{2}}) \times \mathbb{S}^{n_2}(\frac{1}{\sqrt{2}})$$
$$\downarrow^i \quad \text{biharmonic}$$
$$\mathbb{S}^n$$

 $n_1 + n_2 = n - 1$

Main examples of biharmonic submanifolds in \mathbb{S}^n

The product composition property

$$\mathbb{S}^{n_1}(a) \times \mathbb{S}^{n_2}(b) \xrightarrow{\text{biharmonic}} \mathbb{S}^n \quad \iff \quad a = b = \frac{1}{\sqrt{2}} \quad \text{and} \quad n_1 \neq n_2$$

$$n_1 + n_2 = n - 1, \ a^2 + b^2 = 1$$

$$M_1^{m_1} \times M_2^{m_2} \xrightarrow{\text{minimal}} \mathbb{S}^{n_1}(\frac{1}{\sqrt{2}}) \times \mathbb{S}^{n_2}(\frac{1}{\sqrt{2}})$$

$$\downarrow^i \quad \text{biharmonic}$$

$$\mathbb{S}^n$$

 $n_1 + n_2 = n - 1, m_1 \neq m_2$

The Sec. 74

Main examples of biharmonic submanifolds in \mathbb{S}^n

The product composition property

$$\mathbb{S}^{n_1}(a) \times \mathbb{S}^{n_2}(b) \xrightarrow{\text{biharmonic}} \mathbb{S}^n \quad \iff \quad a = b = \frac{1}{\sqrt{2}} \quad \text{and} \quad n_1 \neq n_2$$
$$n_1 + n_2 = n - 1, a^2 + b^2 = 1$$

 $n_1 + n_2 = n - 1, m_1 \neq m_2$

Main examples of biharmonic submanifolds in \mathbb{S}^n

The product composition property

$$\mathbb{S}^{n_1}(a) \times \mathbb{S}^{n_2}(b) \xrightarrow{\text{biharmonic}} \mathbb{S}^n \quad \iff \quad a = b = \frac{1}{\sqrt{2}} \quad \text{and} \quad n_1 \neq n_2$$
$$n_1 + n_2 = n - 1, a^2 + b^2 = 1$$

 $n_1 + n_2 = n - 1, m_1 \neq m_2$

Properties

- $M_1 \times M_2$ has parallel mean curvature vector field and $|H| \in (0,1)$
- $M_1 \times M_2$ is not pseudo-umbilical in \mathbb{S}^n

Dorel Fetcu (TUIASI)

Biharmonic pmc surfaces

Complex space forms

Definition

A complex space form is a 2n-dimensional Kähler manifold $N^n(\rho)$ of constant holomorphic sectional curvature ρ .

A complex space form $N^n(\rho)$ is either:

- the complex projective space $\mathbb{C}P^n(\rho)$, if $\rho > 0$
- the complex Euclidean space \mathbb{C}^n , if $\rho = 0$
- the complex hyperbolic space $\mathbb{C}H^n(\rho)$, if $\rho < 0$

The curvature tensor

$$R^{N}(U,V)W = \frac{\rho}{4} \{ \langle V, W \rangle U - \langle U, W \rangle V + \langle JV, W \rangle JU - \langle JU, W \rangle JV$$

$$+2\langle JV,U\rangle JW\}$$

Biharmonic submanifolds of $\mathbb{C}P^n$

- Let $i: \Sigma^m \to N^n(\rho)$ be a submanifold of real dimension *m*.
 - (Gauss) $\nabla_X^N Y = \nabla_X Y + \sigma(X, Y)$
 - (Weingarten) $\nabla^N_X V = -A_V X + \nabla^\perp_X V$

(B)

Biharmonic submanifolds of $\mathbb{C}P^n$

Let $i: \Sigma^m \to N^n(\rho)$ be a submanifold of real dimension *m*.

- (Gauss) $\nabla_X^N Y = \nabla_X Y + \sigma(X, Y)$
- (Weingarten) $\nabla^N_X V = -A_V X + \nabla^\perp_X V$

$N^n(\rho) = \mathbb{C}P^n(4)$

The biharmonic equation is

$$\tau_2(i) = m\{\Delta H + mH - 3J(JH)^{\top}\} = 0$$

Biharmonic submanifolds of $\mathbb{C}P^n$

Proposition

If JH is tangent to Σ^m , then Σ^m is biharmonic iff

$$\begin{cases} -\Delta^{\perp}H + \operatorname{trace} \sigma(\cdot, A_H(\cdot)) - (m+3)H = 0\\ 4\operatorname{trace} A_{\nabla_{(\cdot)}^{\perp}H}(\cdot) + m\operatorname{grad}(|H|^2) = 0. \end{cases}$$

Theorem (F. - Loubeau - Montaldo - Oniciuc, 2010)

If JH is tangent to Σ^m and $|H| = \text{constant} \neq 0$, then

- If Σ^m is proper-biharmonic, then $|H|^2 \in (0, \frac{m+3}{m}]$.
- ② If $|H|^2 = \frac{m+3}{m}$, then Σ^{*m*} is proper-biharmonic iff it is pseudo umbilical, i.e., $A_H = |H|^2$ Id, and ∇[⊥]H = 0.

Remark

The upper bound of $|H|^2$ is reached for curves.

Dorel Fetcu (TUIASI)

Biharmonic submanifolds of $\mathbb{C}P^n$

Proposition

If *JH* is normal to Σ^m , then Σ^m is biharmonic if and only if

$$\begin{cases} -\Delta^{\perp} H + \operatorname{trace} \sigma(\cdot, A_H(\cdot)) - mH = 0\\ 4\operatorname{trace} A_{\nabla_{(\cdot)}^{\perp} H}(\cdot) + m\operatorname{grad}(|H|^2) = 0. \end{cases}$$

Moreover, if Σ^m has parallel mean curvature, i.e., $\nabla^{\perp} H = 0$, then it is biharmonic iff

trace $\sigma(\cdot, A_H(\cdot)) = mH$.

Theorem (F. - Loubeau - Montaldo - Oniciuc, 2010)

If JH is normal to Σ^m and $|H| = \text{constant} \neq 0$, then

If Σ^m is proper-biharmonic, then $|H|^2 \in (0,1]$.

2 If $|H|^2 = 1$, then Σ^m is proper-biharmonic iff it is pseudo-umbilical and $\nabla^{\perp} H = 0$.

Remark

The upper bound is reached for curves.

Dorel Fetcu (TUIASI)

- let $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{C}P^n$ be the natural projection.
- the restriction to the sphere $\mathbb{S}^{2n+1} \subset \mathbb{C}^{n+1}$ is the Hopf fibration

$$\pi:\mathbb{S}^{2n+1}\to\mathbb{C}P^n$$

• $\bar{\Sigma} = \pi^{-1}(\Sigma^m)$ is the Hopf tube over $\Sigma^m \subset \mathbb{C}P^n(4)$

Dorel	Fetcu	(TUIASI)
		(100.01)

Theorem (F.- Loubeau - Montaldo - Oniciuc, 2010)

Let $i: \Sigma^m \to \mathbb{C}P^n$ be an *m*-dimensional submanifold and $\overline{i}: \overline{\Sigma} = \pi^{-1}(\Sigma) \to \mathbb{S}^{2n+1}$ the corresponding Hopf-tube. Then we have

 $(\tau_2(i))^H = \tau_2(\overline{i}) - 4\hat{J}(\hat{J}\tau(\overline{i}))^\top + 2\operatorname{div}((\hat{J}\tau(\overline{i}))^\top)\xi$

where $\bar{X} = X^H$ is the horizontal lift with respect to the Hopf map, ξ is the Hopf vector field on \mathbb{S}^{2n+1} tangent to the fibres of the Hopf fibration, *i.e.*, $\xi(p) = -\hat{J}p$ at any $p \in \mathbb{S}^{2n+1}$, and \hat{J} is the complex structure of \mathbb{R}^{2n+2} .

Remark

- If $\hat{J}\tau(\bar{i})$ is normal to $\bar{\Sigma}$, then $\tau_2(i) = 0$ iff $\tau_2(\bar{i}) = 0$.
- If $\hat{J}\tau(\bar{i})$ is tangent to $\bar{\Sigma}$, then $\tau_2(i) = 0$ and $\operatorname{div}_{\Sigma}((J\tau(i))^{\top}) = 0$ iff $\tau_2(\bar{i}) + 4\tau(\bar{i}) = 0$.

Theorem (Reckziegel, 1985)

A totally real isometric immersion $i: \Sigma^m \to \mathbb{C}P^n(\rho)$ can be lifted locally (or globally, if Σ^m is simply connected) to a horizontal immersion $\tilde{i}: \tilde{\Sigma}^m \to \mathbb{S}^{2n+1}(\rho/4)$. Conversely, if $\tilde{i}: \tilde{\Sigma}^m \to \mathbb{S}^{2n+1}(\rho/4)$ is a horizontal isometric immersion, then $\pi(\tilde{i}): \Sigma^m \to \mathbb{C}P^n(\rho)$ is a totally real isometric immersion. Moreover, we have $\pi_*\tilde{\sigma} = \sigma$, where $\tilde{\sigma}$ and σ are the second fundamental forms of the immersions \tilde{i} and i, respectively.

(B)

Theorem (Reckziegel, 1985)

A totally real isometric immersion $i: \Sigma^m \to \mathbb{C}P^n(\rho)$ can be lifted locally (or globally, if Σ^m is simply connected) to a horizontal immersion $\tilde{i}: \tilde{\Sigma}^m \to \mathbb{S}^{2n+1}(\rho/4)$. Conversely, if $\tilde{i}: \tilde{\Sigma}^m \to \mathbb{S}^{2n+1}(\rho/4)$ is a horizontal isometric immersion, then $\pi(\tilde{i}): \Sigma^m \to \mathbb{C}P^n(\rho)$ is a totally real isometric immersion. Moreover, we have $\pi_*\tilde{\sigma} = \sigma$, where $\tilde{\sigma}$ and σ are the second fundamental forms of the immersions \tilde{i} and i, respectively.

Proposition (F.-Loubeau-Montaldo-Oniciuc, 2010)

Let $\tilde{i}: \tilde{\Sigma}^m \to \mathbb{S}^{2n+1}(\rho/4)$ be a horizontal isometric immersion and consider the totally real isometric immersion $i = \pi(\tilde{i}): \Sigma^m \to \mathbb{C}P^n(\rho)$. Then

$$(\tau_2(i))^H = \tau_2(\widetilde{i}) - 4\widehat{J}(\widehat{J}\tau(\widetilde{i}))^\top + 2\operatorname{div}_{\widetilde{\Sigma}^m}((\widehat{J}\tau(\widetilde{i}))^\top)\xi.$$

Curves in $\mathbb{C}P^n$

Definition

A curve $\gamma : I \subset \mathbb{R} \to \mathbb{C}P^n(\rho)$ parametrized by arc-length is called a Frenet curve of osculating order $r, 1 \leq r \leq 2n$, if there exist r orthonormal vector fields $\{E_1 = \gamma', \dots, E_r\}$ along γ such that

$$\nabla_{E_1}^{\mathbb{C}P^n} E_1 = \kappa_1 E_2$$

$$\nabla_{E_1}^{\mathbb{C}P^n} E_i = -\kappa_{i-1} E_{i-1} + \kappa_i E_{i+1}$$

...

$$\nabla_{E_1}^{\mathbb{C}P^n} E_r = -\kappa_{r-1} E_{r-1}$$

for all $i \in \{2, ..., r-1\}$, where $\{\kappa_1, \kappa_2, ..., \kappa_{r-1}\}$ are positive functions on *I* called the *curvatures* of γ .

< 日 > < 同 > < 回 > < 回 > < □ > <

Curves in $\mathbb{C}P^n$

- a Frenet curve of osculating order r is called a helix of order r if $\kappa_i = \text{constant} > 0$ for $1 \le i \le r 1$. A helix of order 2 is called a circle, and a helix of order 3 is called a helix
- the complex torsions τ_{ij} of the curve γ are given by

$$au_{ij} = \langle E_i, JE_j \rangle$$

where $1 \le i < j \le r$

• a helix of order *r* is called a holomorphic helix of order *r* if all its complex torsions are constant

The existence of holomorphic helices

Theorem (Maeda-Adachi, 1997)

For given positive constants κ_1 , κ_2 , and κ_3 , there exist four equivalence classes of holomorphic helices of order 4 in $\mathbb{C}P^2(\rho)$ with curvatures κ_1 , κ_2 , and κ_3 with respect to holomorphic isometries of $\mathbb{C}P^2(\rho)$.

Theorem (Maeda-Adachi, 1997)

For any positive number κ and for any number τ , such that $|\tau| < 1$, there exits a holomorphic circle with curvature κ and complex torsion τ in any complex space form.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

If the mean curvature vector field *H* of a surface Σ^2 immersed in a complex space form is parallel in the normal bundle, i.e., $\nabla^{\perp} H = 0$, then Σ^2 is called a pmc surface.

3 + 4 = +

Definition

If the mean curvature vector field *H* of a surface Σ^2 immersed in a complex space form is parallel in the normal bundle, i.e., $\nabla^{\perp} H = 0$, then Σ^2 is called a pmc surface.

Theorem (F., 2012)

The (2,0)-part $Q^{(2,0)}$ of the quadratic form Q defined on a pmc surface $\Sigma^2 \subset N^n(\rho)$ by

$$Q(X,Y) = 8|H|^2 \langle A_H X, Y \rangle + 3\rho \langle X, T \rangle \langle Y, T \rangle,$$

where $T = (JH)^{\top}$ is the tangent part of JH, is holomorphic.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (F. - Pinheiro, 2015)

Let Σ^2 be a complete non-minimal pmc surface with non-negative Gaussian curvature *K* isometrically immersed in a complex space form $N^n(\rho)$, $\rho \neq 0$. Then one of the following holds:

- the surface is flat;
- exists a point p ∈ Σ² such that K(p) > 0 and Q^(2,0) vanishes on Σ².

Sketch of the proof

• Consider a symmetric traceless operator S on Σ^2 , given by

$$S = 8|H|^{2}A_{H} + 3\rho \langle T, \cdot \rangle T - \left(\frac{3\rho}{2}|T|^{2} + 8|H|^{4}\right) \text{Id}$$

•
$$\langle SX, Y \rangle = Q(X, Y) - \frac{\operatorname{trace} Q}{2} \langle X, Y \rangle$$

Dorel Fetcu (TUIASI)

Varna, June 2016 21 / 30

∃ > < ∃</p>

Sketch of the proof

• Consider a symmetric traceless operator *S* on Σ^2 , given by

$$S = 8|H|^{2}A_{H} + 3\rho \langle T, \cdot \rangle T - \left(\frac{3\rho}{2}|T|^{2} + 8|H|^{4}\right) \text{Id}$$

•
$$\langle SX, Y \rangle = Q(X, Y) - \frac{\operatorname{trace} Q}{2} \langle X, Y \rangle$$

• [Cheng-Yau, 1977] $\Rightarrow \frac{1}{2}\Delta |S|^2 = 2K|S|^2 + |\nabla S|^2 \ge 0$ where *K* is the Gaussian curvature of the surface

Dorel Fetcu (TUIASI)

Varna, June 2016 21 / 30

Sketch of the proof

• Consider a symmetric traceless operator S on Σ^2 , given by

$$S = 8|H|^{2}A_{H} + 3\rho \langle T, \cdot \rangle T - \left(\frac{3\rho}{2}|T|^{2} + 8|H|^{4}\right) \text{Id}$$

•
$$\langle SX, Y \rangle = Q(X, Y) - \frac{\operatorname{trace} Q}{2} \langle X, Y \rangle$$

- [Cheng-Yau, 1977] $\Rightarrow \frac{1}{2}\Delta |S|^2 = 2K|S|^2 + |\nabla S|^2 \ge 0$ where *K* is the Gaussian curvature of the surface
- $K \ge 0 \ (\Rightarrow \Sigma^2 = \text{parabolic}) \Rightarrow |S|^2 = \text{bounded} \Rightarrow \text{Q.E.D.}$

(B)

Proposition

Let Σ^2 be a pmc surface in a complex space form $(N(\rho), J, \langle, \rangle)$. Then Σ^2 is biharmonic iff

trace
$$\sigma(\cdot, A_H \cdot) = \frac{\rho}{4} \{ 2H - 3(JT)^{\perp} \}$$
 and $(JT)^{\top} = 0$

where T is the tangent part of JH.

Remark

Proper-biharmonic pmc surfaces exist only in $\mathbb{C}P^n(\rho)$, since

$$0 < |A_H|^2 = \frac{\rho}{4} \{2|H|^2 + 3|T|^2\}$$

Proposition (F. - Pinheiro, 2015)

If Σ^2 is a proper-biharmonic pmc surface in $\mathbb{C}P^n(\rho)$ then $T = (JH)^\top$ has constant length. Moreover, if $|T| = \text{constant} \neq 0$, then $\nabla T = 0$.

∃ ► < ∃ ►</p>

Proposition (F. - Pinheiro, 2015)

If Σ^2 is a proper-biharmonic pmc surface in $\mathbb{C}P^n(\rho)$ then $T = (JH)^\top$ has constant length. Moreover, if $|T| = \text{constant} \neq 0$, then $\nabla T = 0$.

Proposition (F. - Pinheiro, 2015)

If Σ^2 is a complete proper-biharmonic pmc surface in $\mathbb{C}P^n(\rho)$ with $K \ge 0$ and T = 0, then $n \ge 3$ and Σ^2 is pseudo-umbilical and totally real. Moreover, the mean curvature of Σ^2 is $|H| = \sqrt{\rho}/2$.

(B)

A D M A A A M M

Proposition (F. - Pinheiro, 2015)

If Σ^2 is a proper-biharmonic pmc surface in $\mathbb{C}P^n(\rho)$ then $T = (JH)^\top$ has constant length. Moreover, if $|T| = \text{constant} \neq 0$, then $\nabla T = 0$.

Proposition (F. - Pinheiro, 2015)

If Σ^2 is a complete proper-biharmonic pmc surface in $\mathbb{C}P^n(\rho)$ with $K \ge 0$ and T = 0, then $n \ge 3$ and Σ^2 is pseudo-umbilical and totally real. Moreover, the mean curvature of Σ^2 is $|H| = \sqrt{\rho}/2$.

Proposition (F. - Pinheiro, 2015)

If Σ^2 is a complete proper-biharmonic pmc surface in $\mathbb{C}P^n(\rho)$ with $K \ge 0$ and $T \ne 0$, then the surface is flat and $\nabla A_H = 0$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Balmuş - Montaldo - Oniciuc, 2008)

Let Σ^m be a proper-biharmonic cmc submanifold in $\mathbb{S}^n(\rho/4)$ with mean curvature vector field H. Then $|H| \in (0, \sqrt{\rho}/2]$ and, moreover, $|H| = \sqrt{\rho}/2$ if and only if Σ^m is minimal in a small hypersphere $\mathbb{S}^{n-1}(\rho/2) \subset \mathbb{S}^n(\rho/4)$.

E N 4 E N

The classification theorem

Theorem (F. - Pinheiro, 2015)

Let Σ^2 be a complete proper-biharmonic pmc surface with non-negative Gaussian curvature in $\mathbb{C}P^n(\rho)$. Then Σ^2 is totally real and either

• Σ^2 is pseudo-umbilical and its mean curvature is equal to $\sqrt{\rho}/2$. Moreover, $\Sigma^2 = \pi(\widetilde{\Sigma}^2) \subset \mathbb{C}P^n(\rho), n \geq 3$, where $\pi : \mathbb{S}^{2n+1}(\rho/4) \to \mathbb{C}P^n(\rho)$ is the Hopf fibration and the horizontal lift $\widetilde{\Sigma}^2$ of Σ^2 is a complete minimal surface in a small hypersphere $\mathbb{S}^{2n}(\rho/2) \subset \mathbb{S}^{2n+1}(\rho/4)$; or

2 Σ^2 lies in $\mathbb{C}P^2(\rho)$ as a complete Lagrangian proper-biharmonic pmc surface. Moreover, if $\rho = 4$, then $\Sigma^2 = \pi \left(\mathbb{S}^1 \left(\sqrt{\frac{9 \pm \sqrt{41}}{20}} \right) \times \mathbb{S}^1 \left(\sqrt{\frac{11 \mp \sqrt{41}}{40}} \right) \times \mathbb{S}^1 \left(\sqrt{\frac{11 \mp \sqrt{41}}{40}} \right) \right) \subset \mathbb{C}P^2(4)$; or

Dorel Fetcu (TUIASI)

The classification theorem (the proof)

Case I: $T = (JH)^{\top} = 0$

- let $\pi: \mathbb{S}^{2n+1}(\rho/4) \to \mathbb{C}P^n(\rho)$ be the Hopf fibration and $\widetilde{\Sigma}^2$ the horizontal lift of Σ^2
- $\Sigma^2 =$ proper-biharmonic $\Rightarrow \Sigma^2 =$ pseudo-umbilical and totally real with $|H| = \sqrt{\rho}/2$
- [Reckziegel, 1985] $\Rightarrow \widetilde{\Sigma}^2 \subset \mathbb{S}^{2n+1}(\rho/4)$ is pseudo-umbilical and pmc
- [F. L. M. O., 2010] and $T = 0 \Rightarrow \Sigma^2 =$ proper-biharmonic iff $\widetilde{\Sigma}^2 =$ proper-biharmonic
- [Balmuş Montaldo Oniciuc, 2008] $\Rightarrow \widetilde{\Sigma}^2 = \text{minimal in a small}$ hypersphere $\mathbb{S}^{2n}(\rho/2) \subset \mathbb{S}^{2n+1}(\rho/4)$

3

イロト 不得 トイヨト イヨト

The classification theorem (the proof)

Case II: $T = (JH)^{\top} \neq 0$

- $\Sigma^2 =$ proper-biharmonic $\Rightarrow \Sigma^2 =$ totally real and flat with $\nabla A_H = 0$
- $U = \text{normal}, U \perp H, U \perp J(T\Sigma^2), \text{Ricci eq.} \Rightarrow [A_H, A_U] = 0$
- $\Sigma^2 \neq \text{pseudo-umbilical } (|T| = \text{constant} \neq 0) \Rightarrow A_U = 0$
- consider the global orthonormal frame field $\{E_1 = T/|T|, E_2\}$ on Σ^2 [F. - P., 2015] $\Rightarrow \nabla E_1 = 0$ and $\nabla E_2 = 0$
- if JH = tangent (|T| = |H|), then L = span{JE₁, JE₂} ⊂ NΣ² is parallel (∇[⊥]L ⊂ L), J(TΣ² ⊕ L) = TΣ² ⊕ L
 [Eschenburg Tribuzy, 1993] ⇒ Σ² is a complete Lagrangian proper-biharmonic pmc surface in CP²(ρ)
- $\rho = 4$: [Sasahara, 2007] \Rightarrow (2)

The classification theorem (the proof)

• if
$$JH \neq \text{tangent } (|T| < |H|)$$
, then
 $L = \text{span}\{E_3 = JE_1, E_4 = JE_2, E_5 = \frac{1}{|N|}JN, E_6 = \frac{1}{|N|}N\} \subset N\Sigma^2$ is parallel,
 $J(T\Sigma^2 \oplus L) = T\Sigma^2 \oplus L \text{ (where } N = (JH)^{\perp})$
[Eschenburg - Tribuzy, 1993] $\Rightarrow \Sigma^2$ lies in $\mathbb{C}P^3(\rho)$

• $\Sigma^2 = \text{totally real, Ricci eq., trace}(A_HA_U) = (\rho/4)\{2\langle H, U \rangle - 3\langle JT, U \rangle\}, K = 0$ $\Rightarrow |H| = \frac{\rho}{3} \text{ and}$

$$A_{3} = \frac{1}{2}\sqrt{\frac{\rho}{3}} \begin{pmatrix} -\frac{11}{3} & 0\\ 0 & 1 \end{pmatrix}, \quad A_{4} = \frac{1}{2}\sqrt{\frac{\rho}{3}} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad A_{5} = -\frac{1}{2}\sqrt{\frac{5\rho}{3}} \begin{pmatrix} -\frac{1}{3} & 0\\ 0 & 1 \end{pmatrix}, \quad A_{6} = 0$$
(1)

∇E₁ = ∇E₂ = 0, de Rham Decomposition Theorem ⇒ Σ² = γ₁ × γ₂
(1) and [Maeda - Adachi, 1997] ⇒ (3)

Dorel Fetcu (TUIASI)

Varna, June 2016 28 / 30

References

- D. Fetcu, E. Loubeau, S. Montaldo, and C. Oniciuc, *Biharmonic submanifolds of* ℂ*P*^{*n*}, Math. Z. 266(2010), 505–531.
- D. Fetcu and A. L. Pinheiro, *Biharmonic surfaces with parallel mean curvature in complex space forms*, Kyoto J. Math. 55 (2015), 837–855.
- The Bibliography of Biharmonic Maps. http://people.unica.it/biharmonic/

A B F A B F

Thank you

Dorel Fetcu (TUIASI)

Biharmonic pmc surfaces

Varna, June 2016 30 / 30

æ

イロト イヨト イヨト イヨト