Biharmonic pmc surfaces in complex space forms

Dorel Fetcu

Gheorghe Asachi Technical University of laşi, Romania

Varna, Bulgaria, June 2016

Harmonic and biharmonic maps

$$
\text { Let } \varphi:(M, g) \rightarrow(N, h) \text { be a smooth map. }
$$

Energy functional

$$
E(\varphi)=E_{1}(\varphi)=\frac{1}{2} \int_{M}|d \varphi|^{2} v_{g}
$$

Euler-Lagrange equation

$$
\begin{aligned}
\tau(\varphi)=\tau_{1}(\varphi) & =\operatorname{trace}_{g} \nabla d \varphi \\
& =0
\end{aligned}
$$

Critical points of E : harmonic maps

Harmonic and biharmonic maps

Let $\varphi:(M, g) \rightarrow(N, h)$ be a smooth map.

Energy functional
$E(\varphi)=E_{1}(\varphi)=\frac{1}{2} \int_{M}|d \varphi|^{2} v_{g}$
Euler-Lagrange equation

$$
\begin{aligned}
\tau(\varphi)=\tau_{1}(\varphi) & =\operatorname{trace}_{g} \nabla d \varphi \\
& =0
\end{aligned}
$$

Critical points of E : harmonic maps

Bienergy functional

$$
E_{2}(\varphi)=\frac{1}{2} \int_{M}|\tau(\varphi)|^{2} v_{g}
$$

Euler-Lagrange equation

$$
\begin{aligned}
\tau_{2}(\varphi) & =\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d \varphi, \tau(\varphi)) d \varphi \\
& =0
\end{aligned}
$$

The biharmonic equation (Jiang, 1986)

$$
\tau_{2}(\varphi)=\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d \varphi, \tau(\varphi)) d \varphi=0
$$

where

$$
\Delta^{\varphi}=\operatorname{trace}_{g}\left(\nabla^{\varphi} \nabla^{\varphi}-\nabla_{\nabla}^{\varphi}\right)
$$

is the rough Laplacian on sections of $\varphi^{-1} T N$

The biharmonic equation (Jiang, 1986)

$$
\tau_{2}(\varphi)=\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d \varphi, \tau(\varphi)) d \varphi=0
$$

where

$$
\Delta^{\varphi}=\operatorname{trace}_{g}\left(\nabla^{\varphi} \nabla^{\varphi}-\nabla_{\nabla}^{\varphi}\right)
$$

is the rough Laplacian on sections of $\varphi^{-1} T N$

- is a fourth-order non-linear elliptic equation
- any harmonic map is biharmonic
- a non-harmonic biharmonic map is called proper biharmonic
- the biharmonic submanifolds M of a given space N are the submanifolds such that the inclusion map $i: M \rightarrow N$ is biharmonic (the inclusion map $i: M \rightarrow N$ is harmonic if and only if M is minimal)

The biharmonic equation

Theorem (Balmuş-Montaldo-Oniciuc, 2012)
A submanifold Σ^{m} in a Riemannian manifold N, with second fundamental form σ, mean curvature vector field H, and shape operator A, is biharmonic if and only if

$$
\left\{\begin{array}{l}
-\Delta^{\perp} H+\operatorname{trace} \sigma\left(\cdot, A_{H} \cdot\right)+\operatorname{trace}\left(R^{N}(\cdot, H) \cdot\right)^{\perp}=0 \\
\frac{m}{2} \operatorname{grad}|H|^{2}+2 \operatorname{trace} A_{\nabla+H}(\cdot)+2 \operatorname{trace}\left(R^{N}(\cdot, H) \cdot\right)^{\top}=0,
\end{array}\right.
$$

where Δ^{\perp} is the Laplacian in the normal bundle.

Biharmonic submanifolds in Euclidean spaces

$$
R^{N}=0 \Rightarrow \tau_{2}(\varphi)=\Delta^{\varphi} \tau(\varphi)
$$

Definition (Chen)
A submanifold $i: M \rightarrow \mathbb{R}^{n}$ is biharmonic if it has harmonic mean curvature vector field, i.e.,

$$
\Delta^{i} H=0 \Leftrightarrow \Delta^{i} \tau(i)=0 .
$$

Non existence of proper biharmonic submanifolds

For any of the following classes of submanifolds the biharmonicity is equivalent to minimality:

- submanifolds of $N^{3}(c), c \leq 0$ (Chen/Caddeo - Montaldo - Oniciuc)
- curves of $N^{n}(c), c \leq 0$ (Dimitric/Caddeo - Montaldo - Oniciuc)
- submanifolds of finite type in \mathbb{R}^{n} (Dimitric)
- hypersurfaces of \mathbb{R}^{n} with at most two principal curvatures (Dimitric)
- pseudo-umbilical submanifolds of $N^{n}(c), c \leq 0, n \neq 4$ (Dimitric/Caddeo - Montaldo - Oniciuc)
- hypersurfaces of \mathbb{R}^{4} (Hasanis - Vlachos)
- spherical submanifolds of \mathbb{R}^{n} (Chen)

Non existence of proper biharmonic submanifolds

For any of the following classes of submanifolds the biharmonicity is equivalent to minimality:

- submanifolds of $N^{3}(c), c \leq 0$ (Chen/Caddeo - Montaldo - Oniciuc)
- curves of $N^{n}(c), c \leq 0$ (Dimitric/Caddeo - Montaldo - Oniciuc)
- submanifolds of finite type in \mathbb{R}^{n} (Dimitric)
- hypersurfaces of \mathbb{R}^{n} with at most two principal curvatures (Dimitric)
- pseudo-umbilical submanifolds of $N^{n}(c), c \leq 0, n \neq 4$ (Dimitric/Caddeo - Montaldo - Oniciuc)
- hypersurfaces of \mathbb{R}^{4} (Hasanis - Vlachos)
- spherical submanifolds of \mathbb{R}^{n} (Chen)

Chen's conjecture (still open)
Any biharmonic submanifold of the Euclidean space is minimal.

Non existence of proper biharmonic submanifolds

For any of the following classes of submanifolds the biharmonicity is equivalent to minimality:

- submanifolds of $N^{3}(c), c \leq 0$ (Chen/Caddeo - Montaldo - Oniciuc)
- curves of $N^{n}(c), c \leq 0$ (Dimitric/Caddeo - Montaldo-Oniciuc)
- submanifolds of finite type in \mathbb{R}^{n} (Dimitric)
- hypersurfaces of \mathbb{R}^{n} with at most two principal curvatures (Dimitric)
- pseudo-umbilical submanifolds of $N^{n}(c), c \leq 0, n \neq 4$ (Dimitric/Caddeo - Montaldo - Oniciuc)
- hypersurfaces of \mathbb{R}^{4} (Hasanis - Vlachos)
- spherical submanifolds of \mathbb{R}^{n} (Chen)

Chen's conjecture (still open)
Any biharmonic submanifold of the Euclidean space is minimal.

Generalized Chen's Conjecture (still open)
Biharmonic submanifolds of $N^{n}(c), n>3, c \leq 0$, are minimal.

Main examples of biharmonic submanifolds in \mathbb{S}^{n} (Jiang, 1986/ Caddeo - Montaldo - Oniciuc, 2002)

The composition property

$$
\mathbb{S}^{n-1}(a) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \quad \Longleftrightarrow \quad a=\frac{1}{\sqrt{2}}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n} (Jiang, 1986/ Caddeo - Montaldo - Oniciuc, 2002)

The composition property

$$
\mathbb{S}^{n-1}(a) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \quad \Longleftrightarrow \quad a=\frac{1}{\sqrt{2}}
$$

$$
\begin{aligned}
& \mathbb{S}^{n-1}\left(\frac{1}{\sqrt{2}}\right) \\
& \left\lvert\, \begin{array}{ll}
i & \text { biharmonic } \\
\mathbb{S}^{n} &
\end{array}\right.
\end{aligned}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n} (Jiang, 1986/ Caddeo - Montaldo - Oniciuc, 2002)

The composition property

$$
\begin{gathered}
\mathbb{S}^{n-1}(a) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \Longleftrightarrow a=\frac{1}{\sqrt{2}} \\
M \xrightarrow{\text { minimal }} \mathbb{S}^{n-1}\left(\frac{1}{\sqrt{2}}\right) \\
\\
i \quad \text { biharmonic }
\end{gathered}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n} (Jiang, 1986/ Caddeo - Montaldo - Oniciuc, 2002)

The composition property

$$
\mathbb{S}^{n-1}(a) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \quad \Longleftrightarrow \quad a=\frac{1}{\sqrt{2}}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n} (Jiang, 1986/ Caddeo - Montaldo - Oniciuc, 2002)

The composition property

$$
\mathbb{S}^{n-1}(a) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \quad \Longleftrightarrow \quad a=\frac{1}{\sqrt{2}}
$$

Properties

- M has parallel mean curvature vector field and $|H|=1$
- M is pseudo-umbilical in \mathbb{S}^{n}, i.e., $A_{H}=|H|^{2} \mathrm{Id}$

Main examples of biharmonic submanifolds in \mathbb{S}^{n}

The product composition property

$$
\begin{aligned}
\quad \mathbb{S}^{n_{1}}(a) \times \mathbb{S}^{n_{2}}(b) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \Longleftrightarrow a=b=\frac{1}{\sqrt{2}} \quad \text { and } \quad n_{1} \neq n_{2} \\
n_{1}+n_{2}=n-1, a^{2}+b^{2}=1
\end{aligned}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n}

The product composition property

$$
\begin{aligned}
& \mathbb{S}^{n_{1}}(a) \times \mathbb{S}^{n_{2}}(b) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \Longleftrightarrow a=b=\frac{1}{\sqrt{2}} \quad \text { and } \quad n_{1} \neq n_{2} \\
& n_{1}+n_{2}=n-1, a^{2}+b^{2}=1 \\
& \mathbb{S}^{n_{1}}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{n_{2}}\left(\frac{1}{\sqrt{2}}\right) \\
& \begin{array}{ll}
\downarrow i & \text { biharmonic } \\
\mathbb{S}^{n} &
\end{array} \\
& n_{1}+n_{2}=n-1
\end{aligned}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n}

The product composition property

$$
\begin{aligned}
& \mathbb{S}^{n_{1}}(a) \times \mathbb{S}^{n_{2}}(b) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \Longleftrightarrow a=b=\frac{1}{\sqrt{2}} \quad \text { and } \quad n_{1} \neq n_{2} \\
& n_{1}+n_{2}=n-1, a^{2}+b^{2}=1 \\
& M_{1}^{m_{1}} \times M_{2}^{m_{2}} \xrightarrow{\text { minimal }} \mathbb{S}^{n_{1}}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{n_{2}}\left(\frac{1}{\sqrt{2}}\right) \\
& i \text { biharmonic } \\
& n_{1}+n_{2}=n-1, m_{1} \neq m_{2}
\end{aligned}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n}

The product composition property

$$
\begin{aligned}
& \mathbb{S}^{n_{1}}(a) \times \mathbb{S}^{n_{2}}(b) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \Longleftrightarrow a=b=\frac{1}{\sqrt{2}} \text { and } n_{1} \neq n_{2} \\
& n_{1}+n_{2}=n-1, a^{2}+b^{2}=1 \\
& M_{1}^{m_{1}} \times M_{2}^{m_{2}} \xrightarrow{\text { minimal }} \mathbb{S}^{n_{1}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{n_{2}}\left(\frac{1}{\sqrt{2}}\right)} \begin{array}{ll}
\text { biharmonic } & \mathbb{S}^{n} \\
n_{1}+n_{2}=n-1, m_{1} \neq m_{2}
\end{array}
\end{aligned}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n}

The product composition property

$$
\begin{aligned}
& \quad \mathbb{S}^{n_{1}}(a) \times \mathbb{S}^{n_{2}}(b) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \Longleftrightarrow a=b=\frac{1}{\sqrt{2}} \text { and } n_{1} \neq n_{2} \\
& n_{1}+n_{2}=n-1, a^{2}+b^{2}=1 \\
& M_{1}^{m_{1}} \times M_{2}^{m_{2}} \xrightarrow{\text { minimal }} \mathbb{S}^{n_{1}}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{n_{2}}\left(\frac{1}{\sqrt{2}}\right) \\
& n_{\text {biharmonic }}^{i} \\
& n_{1}+n_{2}=n-1, m_{1} \neq m_{2}
\end{aligned}
$$

Properties

- $M_{1} \times M_{2}$ has parallel mean curvature vector field and $|H| \in(0,1)$
- $M_{1} \times M_{2}$ is not pseudo-umbilical in \mathbb{S}^{n}

Complex space forms

Definition

A complex space form is a $2 n$-dimensional Kähler manifold $N^{n}(\rho)$ of constant holomorphic sectional curvature ρ.

A complex space form $N^{n}(\rho)$ is either:

- the complex projective space $\mathbb{C} P^{n}(\rho)$, if $\rho>0$
- the complex Euclidean space \mathbb{C}^{n}, if $\rho=0$
- the complex hyperbolic space $\mathbb{C} H^{n}(\rho)$, if $\rho<0$

The curvature tensor

$$
\begin{aligned}
R^{N}(U, V) W= & \frac{\rho}{4}\{\langle V, W\rangle U-\langle U, W\rangle V+\langle J V, W\rangle J U-\langle J U, W\rangle J V \\
& +2\langle J V, U\rangle J W\}
\end{aligned}
$$

Biharmonic submanifolds of $\mathbb{C} P^{n}$

Let $i: \Sigma^{m} \rightarrow N^{n}(\rho)$ be a submanifold of real dimension m.

- (Gauss) $\nabla_{X}^{N} Y=\nabla_{X} Y+\sigma(X, Y)$
- (Weingarten) $\nabla_{X}^{N} V=-A_{V} X+\nabla_{X}^{\perp} V$

Biharmonic submanifolds of $\mathbb{C} P^{n}$

Let $i: \Sigma^{m} \rightarrow N^{n}(\rho)$ be a submanifold of real dimension m.

- (Gauss) $\nabla_{X}^{N} Y=\nabla_{X} Y+\sigma(X, Y)$
- (Weingarten) $\nabla_{X}^{N} V=-A_{V} X+\nabla_{X}^{\perp} V$
$N^{n}(\rho)=\mathbb{C} P^{n}(4)$
The biharmonic equation is

$$
\tau_{2}(i)=m\left\{\Delta H+m H-3 J(J H)^{\top}\right\}=0
$$

Biharmonic submanifolds of $\mathbb{C} P^{n}$

Proposition

If JH is tangent to Σ^{m}, then Σ^{m} is biharmonic iff

$$
\left\{\begin{array}{l}
-\Delta^{\perp} H+\operatorname{trace} \sigma\left(\cdot, A_{H}(\cdot)\right)-(m+3) H=0 \\
4 \operatorname{trace} A_{\nabla_{(\cdot)}^{\perp} H}(\cdot)+m \operatorname{grad}\left(|H|^{2}\right)=0 .
\end{array}\right.
$$

Theorem (F. - Loubeau - Montaldo - Oniciuc, 2010)
If JH is tangent to Σ^{m} and $|H|=$ constant $\neq 0$, then
(1) If Σ^{m} is proper-biharmonic, then $|H|^{2} \in\left(0, \frac{m+3}{m}\right]$.
(2) If $|H|^{2}=\frac{m+3}{m}$, then Σ^{m} is proper-biharmonic iff it is pseudo umbilical, i.e., $A_{H}=|H|^{2} \mathrm{Id}$, and $\nabla^{\perp} H=0$.

Remark

The upper bound of $|\mathrm{H}|^{2}$ is reached for curves.

Biharmonic submanifolds of $\mathbb{C} P^{n}$

Proposition

If JH is normal to Σ^{m}, then Σ^{m} is biharmonic if and only if

$$
\left\{\begin{array}{l}
-\Delta^{\perp} H+\operatorname{trace} \sigma\left(\cdot, A_{H}(\cdot)\right)-m H=0 \\
4 \operatorname{trace} A_{\nabla \frac{\downarrow}{(\cdot)} H}(\cdot)+m \operatorname{grad}\left(|H|^{2}\right)=0 .
\end{array}\right.
$$

Moreover, if Σ^{m} has parallel mean curvature, i.e., $\nabla^{\perp} H=0$, then it is biharmonic iff

$$
\operatorname{trace} \sigma\left(\cdot, A_{H}(\cdot)\right)=m H
$$

Theorem (F. - Loubeau - Montaldo - Oniciuc, 2010)
If JH is normal to Σ^{m} and $|H|=$ constant $\neq 0$, then
(1) If Σ^{m} is proper-biharmonic, then $|H|^{2} \in(0,1]$.
(2) If $|H|^{2}=1$, then Σ^{m} is proper-biharmonic iff it is pseudo-umbilical and $\nabla^{\perp} H=0$.

Remark
The upper bound is reached for curves.

The Hopf fibration and the biharmonic equation

- let $\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C} P^{n}$ be the natural projection.
- the restriction to the sphere $\mathbb{S}^{2 n+1} \subset \mathbb{C}^{n+1}$ is the Hopf fibration

$$
\pi: \mathbb{S}^{2 n+1} \rightarrow \mathbb{C} P^{n}
$$

- $\bar{\Sigma}=\pi^{-1}\left(\Sigma^{m}\right)$ is the Hopf tube over $\Sigma^{m} \subset \mathbb{C} P^{n}(4)$

$$
\begin{array}{ccc}
\bar{\Sigma} \xrightarrow{\bar{i}} \mathbb{S}^{2 n+1} \\
\downarrow & & \\
\Sigma \xrightarrow{i} & \downarrow \\
\Sigma & \mathbb{C} P^{n}
\end{array}
$$

The Hopf fibration and the biharmonic equation

Theorem (F.- Loubeau - Montaldo - Oniciuc, 2010)
Let $i: \Sigma^{m} \rightarrow \mathbb{C} P^{n}$ be an m-dimensional submanifold and
$\bar{i}: \bar{\Sigma}=\pi^{-1}(\Sigma) \rightarrow \mathbb{S}^{2 n+1}$ the corresponding Hopf-tube. Then we have

$$
\left(\tau_{2}(i)\right)^{H}=\tau_{2}(\bar{i})-4 \hat{J}(\hat{J} \tau(\bar{i}))^{\top}+2 \operatorname{div}\left((\hat{J} \tau(\bar{i}))^{\top}\right) \xi
$$

where $\bar{X}=X^{H}$ is the horizontal lift with respect to the Hopf map, ξ is the Hopf vector field on $\mathbb{S}^{2 n+1}$ tangent to the fibres of the Hopf fibration, i.e., $\xi(p)=-\widehat{J} p$ at any $p \in \mathbb{S}^{2 n+1}$, and \hat{J} is the complex structure of $\mathbb{R}^{2 n+2}$.

Remark

- If $\hat{J} \tau(\bar{i})$ is normal to $\bar{\Sigma}$, then $\tau_{2}(i)=0$ iff $\tau_{2}(\bar{i})=0$.
- If $\hat{J} \tau(\bar{i})$ is tangent to $\bar{\Sigma}$, then $\tau_{2}(i)=0$ and $\operatorname{div}_{\Sigma}\left((J \tau(i))^{\top}\right)=0$ iff $\tau_{2}(\bar{i})+4 \tau(\bar{i})=0$.

The Hopf fibration and the biharmonic equation

Theorem (Reckziegel, 1985)

A totally real isometric immersion $i: \Sigma^{m} \rightarrow \mathbb{C} P^{n}(\rho)$ can be lifted locally (or globally, if Σ^{m} is simply connected) to a horizontal immersion $\widetilde{i}: \widetilde{\Sigma}^{m} \rightarrow \mathbb{S}^{2 n+1}(\rho / 4)$. Conversely, if $\widetilde{i}: \widetilde{\Sigma}^{m} \rightarrow \mathbb{S}^{2 n+1}(\rho / 4)$ is a horizontal isometric immersion, then $\pi(\widetilde{i}): \Sigma^{m} \rightarrow \mathbb{C} P^{n}(\rho)$ is a totally real isometric immersion. Moreover, we have $\pi_{*} \tilde{\sigma}=\sigma$, where $\widetilde{\sigma}$ and σ are the second fundamental forms of the immersions \widetilde{i} and i, respectively.

The Hopf fibration and the biharmonic equation

Theorem (Reckziegel, 1985)

A totally real isometric immersion $i: \Sigma^{m} \rightarrow \mathbb{C} P^{n}(\rho)$ can be lifted locally (or globally, if Σ^{m} is simply connected) to a horizontal immersion $\tilde{i}: \widetilde{\Sigma}^{m} \rightarrow \mathbb{S}^{2 n+1}(\rho / 4)$. Conversely, if $\widetilde{i}: \widetilde{\Sigma}^{m} \rightarrow \mathbb{S}^{2 n+1}(\rho / 4)$ is a horizontal isometric immersion, then $\pi(\widetilde{i}): \Sigma^{m} \rightarrow \mathbb{C} P^{n}(\rho)$ is a totally real isometric immersion. Moreover, we have $\pi_{*} \tilde{\sigma}=\sigma$, where $\widetilde{\sigma}$ and σ are the second fundamental forms of the immersions \widetilde{i} and i, respectively.

Proposition (F.-Loubeau-Montaldo-Oniciuc, 2010)

Let $\widetilde{i}: \widetilde{\Sigma}^{m} \rightarrow \mathbb{S}^{2 n+1}(\rho / 4)$ be a horizontal isometric immersion and consider the totally real isometric immersion $i=\pi(\widetilde{i}): \Sigma^{m} \rightarrow \mathbb{C} P^{n}(\rho)$.
Then

$$
\left.\left(\tau_{2}(i)\right)^{H}=\tau_{2}(\widetilde{i})-4 \hat{J}(\hat{J} \tau(\widetilde{i}))^{\top}+2 \operatorname{div}_{\widetilde{\Sigma}^{m}}((\hat{J} \tau \widetilde{i}))^{\top}\right) \xi .
$$

Curves in $\mathbb{C} P^{n}$

Definition

A curve $\gamma: I \subset \mathbb{R} \rightarrow \mathbb{C} P^{n}(\rho)$ parametrized by arc-length is called a Frenet curve of osculating order $r, 1 \leq r \leq 2 n$, if there exist r orthonormal vector fields $\left\{E_{1}=\gamma^{\prime}, \ldots, E_{r}\right\}$ along γ such that

$$
\begin{gathered}
\nabla_{E_{1}}^{\mathbb{C} P^{n}} E_{1}=\kappa_{1} E_{2} \\
\nabla_{E_{1}}^{\mathbb{C} P^{n}} E_{i}=-\kappa_{i-1} E_{i-1}+\kappa_{i} E_{i+1} \\
\cdots \\
\nabla_{E_{1}}^{\mathbb{C} P^{n}} E_{r}=-\kappa_{r-1} E_{r-1}
\end{gathered}
$$

for all $i \in\{2, \ldots, r-1\}$, where $\left\{\kappa_{1}, \kappa_{2}, \ldots, \kappa_{r-1}\right\}$ are positive functions on I called the curvatures of γ.

Curves in $\mathbb{C} P^{n}$

- a Frenet curve of osculating order r is called a helix of order r if $\kappa_{i}=$ constant >0 for $1 \leq i \leq r-1$. A helix of order 2 is called a circle, and a helix of order 3 is called a helix
- the complex torsions $\tau_{i j}$ of the curve γ are given by

$$
\tau_{i j}=\left\langle E_{i}, J E_{j}\right\rangle
$$

where $1 \leq i<j \leq r$

- a helix of order r is called a holomorphic helix of order r if all its complex torsions are constant

The existence of holomorphic helices

Theorem (Maeda-Adachi, 1997)
For given positive constants κ_{1}, κ_{2}, and κ_{3}, there exist four equivalence classes of holomorphic helices of order 4 in $\mathbb{C} P^{2}(\rho)$ with curvatures κ_{1}, κ_{2}, and κ_{3} with respect to holomorphic isometries of $\mathbb{C} P^{2}(\rho)$.

Theorem (Maeda-Adachi, 1997)
For any positive number κ and for any number τ, such that $|\tau|<1$, there exits a holomorphic circle with curvature κ and complex torsion τ in any complex space form.

Biharmonic pmc surfaces in $\mathbb{C} P^{n}(\rho)$

Definition
If the mean curvature vector field H of a surface Σ^{2} immersed in a complex space form is parallel in the normal bundle, i.e., $\nabla^{\perp} H=0$, then Σ^{2} is called a pmc surface.

Biharmonic pmc surfaces in $\mathbb{C} P^{n}(\rho)$

Definition

If the mean curvature vector field H of a surface Σ^{2} immersed in a complex space form is parallel in the normal bundle, i.e., $\nabla^{\perp} H=0$, then Σ^{2} is called a pmc surface.

Theorem (F., 2012)
The (2,0)-part $Q^{(2,0)}$ of the quadratic form Q defined on a pmc surface $\Sigma^{2} \subset N^{n}(\rho)$ by

$$
Q(X, Y)=8|H|^{2}\left\langle A_{H} X, Y\right\rangle+3 \rho\langle X, T\rangle\langle Y, T\rangle,
$$

where $T=(J H)^{\top}$ is the tangent part of $J H$, is holomorphic.

Biharmonic pmc surfaces in $\mathbb{C} P^{n}(\rho)$

Theorem (F. - Pinheiro, 2015)
Let Σ^{2} be a complete non-minimal pmc surface with non-negative Gaussian curvature K isometrically immersed in a complex space form $N^{n}(\rho), \rho \neq 0$. Then one of the following holds:
(1) the surface is flat;
(2) there exists a point $p \in \Sigma^{2}$ such that $K(p)>0$ and $Q^{(2,0)}$ vanishes on Σ^{2}.

Biharmonic pmc surfaces in $\mathbb{C} P^{n}(\rho)$

Sketch of the proof

- Consider a symmetric traceless operator S on Σ^{2}, given by

$$
S=8|H|^{2} A_{H}+3 \rho\langle T, \cdot\rangle T-\left(\frac{3 \rho}{2}|T|^{2}+8|H|^{4}\right) \mathrm{Id}
$$

- $\langle S X, Y\rangle=Q(X, Y)-\frac{\text { trace } Q}{2}\langle X, Y\rangle$

Biharmonic pmc surfaces in $\mathbb{C} P^{n}(\rho)$

Sketch of the proof

- Consider a symmetric traceless operator S on Σ^{2}, given by

$$
S=8|H|^{2} A_{H}+3 \rho\langle T, \cdot\rangle T-\left(\frac{3 \rho}{2}|T|^{2}+8|H|^{4}\right) \mathrm{Id}
$$

- $\langle S X, Y\rangle=Q(X, Y)-\frac{\text { trace } Q}{2}\langle X, Y\rangle$
- [Cheng-Yau, 1977] $\Rightarrow \frac{1}{2} \Delta|S|^{2}=2 K|S|^{2}+|\nabla S|^{2} \geq 0$ where K is the Gaussian curvature of the surface

Biharmonic pmc surfaces in $\mathbb{C} P^{n}(\rho)$

Sketch of the proof

- Consider a symmetric traceless operator S on Σ^{2}, given by

$$
S=8|H|^{2} A_{H}+3 \rho\langle T, \cdot\rangle T-\left(\frac{3 \rho}{2}|T|^{2}+8|H|^{4}\right) \mathrm{Id}
$$

- $\langle S X, Y\rangle=Q(X, Y)-\frac{\operatorname{trace} Q}{2}\langle X, Y\rangle$
- [Cheng-Yau, 1977] $\Rightarrow \frac{1}{2} \Delta|S|^{2}=2 K|S|^{2}+|\nabla S|^{2} \geq 0$ where K is the Gaussian curvature of the surface
- $K \geq 0\left(\Rightarrow \Sigma^{2}=\right.$ parabolic $) \Rightarrow|S|^{2}=$ bounded \Rightarrow Q.E.D.

Biharmonic pmc surfaces in $\mathbb{C} P^{n}(\rho)$

Proposition

Let Σ^{2} be a pmc surface in a complex space form $(N(\rho), J,\langle\rangle$,$) . Then$ Σ^{2} is biharmonic iff

$$
\operatorname{trace} \sigma\left(\cdot, A_{H} \cdot\right)=\frac{\rho}{4}\left\{2 H-3(J T)^{\perp}\right\} \quad \text { and } \quad(J T)^{\top}=0
$$

where T is the tangent part of $J H$.
Remark
Proper-biharmonic pmc surfaces exist only in $\mathbb{C} P^{n}(\rho)$, since

$$
0<\left|A_{H}\right|^{2}=\frac{\rho}{4}\left\{2|H|^{2}+3|T|^{2}\right\}
$$

Biharmonic pmc surfaces in $\mathbb{C} P^{n}(\rho)$

Proposition (F. - Pinheiro, 2015)
If Σ^{2} is a proper-biharmonic pmc surface in $\mathbb{C} P^{n}(\rho)$ then $T=(J H)^{\top}$ has constant length. Moreover, if $|T|=$ constant $\neq 0$, then $\nabla T=0$.

Biharmonic pmc surfaces in $\mathbb{C} P^{n}(\rho)$

Proposition (F. - Pinheiro, 2015)

If Σ^{2} is a proper-biharmonic pmc surface in $\mathbb{C} P^{n}(\rho)$ then $T=(J H)^{\top}$ has constant length. Moreover, if $|T|=$ constant $\neq 0$, then $\nabla T=0$.

Proposition (F. - Pinheiro, 2015)
If Σ^{2} is a complete proper-biharmonic pmc surface in $\mathbb{C} P^{n}(\rho)$ with $K \geq 0$ and $T=0$, then $n \geq 3$ and Σ^{2} is pseudo-umbilical and totally real.
Moreover, the mean curvature of Σ^{2} is $|H|=\sqrt{\rho} / 2$.

Biharmonic pmc surfaces in $\mathbb{C} P^{n}(\rho)$

Proposition (F. - Pinheiro, 2015)

If Σ^{2} is a proper-biharmonic pmc surface in $\mathbb{C} P^{n}(\rho)$ then $T=(J H)^{\top}$ has constant length. Moreover, if $|T|=$ constant $\neq 0$, then $\nabla T=0$.

Proposition (F. - Pinheiro, 2015)
If Σ^{2} is a complete proper-biharmonic pmc surface in $\mathbb{C} P^{n}(\rho)$ with $K \geq 0$ and $T=0$, then $n \geq 3$ and Σ^{2} is pseudo-umbilical and totally real.
Moreover, the mean curvature of Σ^{2} is $|H|=\sqrt{\rho} / 2$.

Proposition (F. - Pinheiro, 2015)
If Σ^{2} is a complete proper-biharmonic pmc surface in $\mathbb{C} P^{n}(\rho)$ with $K \geq 0$ and $T \neq 0$, then the surface is flat and $\nabla A_{H}=0$.

Biharmonic pmc surfaces in $\mathbb{C} P^{n}(\rho)$

Theorem (Balmuş - Montaldo - Oniciuc, 2008)
Let Σ^{m} be a proper-biharmonic cmc submanifold in $\mathbb{S}^{n}(\rho / 4)$ with mean curvature vector field H. Then $|H| \in(0, \sqrt{\rho} / 2]$ and, moreover, $|H|=\sqrt{\rho} / 2$ if and only if Σ^{m} is minimal in a small hypersphere $\mathbb{S}^{n-1}(\rho / 2) \subset \mathbb{S}^{n}(\rho / 4)$.

The classification theorem

Theorem (F. - Pinheiro, 2015)

Let Σ^{2} be a complete proper-biharmonic pmc surface with non-negative Gaussian curvature in $\mathbb{C} P^{n}(\rho)$. Then Σ^{2} is totally real and either
(1) Σ^{2} is pseudo-umbilical and its mean curvature is equal to $\sqrt{\rho} / 2$. Moreover, $\Sigma^{2}=\pi\left(\widetilde{\Sigma}^{2}\right) \subset \mathbb{C} P^{n}(\rho), n \geq 3$, where $\pi: \mathbb{S}^{2 n+1}(\rho / 4) \rightarrow \mathbb{C} P^{n}(\rho)$ is the Hopf fibration and the horizontal lift $\tilde{\Sigma}^{2}$ of Σ^{2} is a complete minimal surface in a small hypersphere $\mathbb{S}^{2 n}(\rho / 2) \subset \mathbb{S}^{2 n+1}(\rho / 4)$; or
(2) Σ^{2} lies in $\mathbb{C} P^{2}(\rho)$ as a complete Lagrangian proper-biharmonic pmc surface.

Moreover, if $\rho=4$, then

$$
\Sigma^{2}=\pi\left(\mathbb{S}^{1}\left(\sqrt{\frac{9 \pm \sqrt{41}}{20}}\right) \times \mathbb{S}^{1}\left(\sqrt{\frac{11 \mp \sqrt{41}}{40}}\right) \times \mathbb{S}^{1}\left(\sqrt{\frac{11 \mp \sqrt{41}}{40}}\right)\right) \subset \mathbb{C} P^{2}(4) ; \text { or }
$$

(3) Σ^{2} lies in $\mathbb{C} P^{3}(\rho)$ and $\Sigma^{2}=\gamma_{1} \times \gamma_{2} \subset \mathbb{C} P^{3}(\rho)$, where $\gamma_{1}: \mathbb{R} \rightarrow \mathbb{C} P^{2}(\rho) \subset \mathbb{C} P^{3}(\rho)$ is a holomorphic helix of order 4 with curvatures $\kappa_{1}=\sqrt{\frac{7 \rho}{6}}, \kappa_{2}=\frac{1}{2} \sqrt{\frac{5 \rho}{42}}, \kappa_{3}=\frac{3}{2} \sqrt{\frac{\rho}{42}}$ and complex torsions $\tau_{12}=-\tau_{34}=\frac{11 \sqrt{14}}{42}, \tau_{23}=-\tau_{14}=\frac{\sqrt{70}}{42}, \tau_{13}=\tau_{2}=0$, and $\gamma_{2}: \mathbb{R} \rightarrow \mathbb{C} P^{3}(\rho)$ is a circle with curvature $\kappa=\sqrt{\rho / 2}$ and complex torsion $\tau_{12}=0$. Moreover, γ_{1} and γ_{2} always exist and are unique up to holomorphic isometries.

The classification theorem (the proof)

Case I: $T=(J H)^{\top}=0$

- let $\pi: \mathbb{S}^{2 n+1}(\rho / 4) \rightarrow \mathbb{C} P^{n}(\rho)$ be the Hopf fibration and $\widetilde{\Sigma}^{2}$ the horizontal lift of Σ^{2}
- $\Sigma^{2}=$ proper-biharmonic $\Rightarrow \Sigma^{2}=$ pseudo-umbilical and totally real with $|H|=\sqrt{\rho} / 2$
- [Reckziegel, 1985] $\Rightarrow \widetilde{\Sigma}^{2} \subset \mathbb{S}^{2 n+1}(\rho / 4)$ is pseudo-umbilical and pmc
- [F. - L. - M. - O., 2010] and $T=0 \Rightarrow \Sigma^{2}=$ proper-biharmonic iff $\widetilde{\Sigma}^{2}=$ proper-biharmonic
- [Balmuş - Montaldo - Oniciuc, 2008] $\Rightarrow \widetilde{\Sigma}^{2}=$ minimal in a small hypersphere $\mathbb{S}^{2 n}(\rho / 2) \subset \mathbb{S}^{2 n+1}(\rho / 4)$

The classification theorem (the proof)

Case II: $T=(J H)^{\top} \neq 0$

- $\Sigma^{2}=$ proper-biharmonic $\Rightarrow \Sigma^{2}=$ totally real and flat with $\nabla A_{H}=0$
- $U=$ normal, $U \perp H, U \perp J\left(T \Sigma^{2}\right)$, Ricci eq. $\Rightarrow\left[A_{H}, A_{U}\right]=0$
- $\Sigma^{2} \neq$ pseudo-umbilical $(|T|=$ constant $\neq 0) \Rightarrow A_{U}=0$
- consider the global orthonormal frame field $\left\{E_{1}=T /|T|, E_{2}\right\}$ on Σ^{2} [F. - P., 2015] $\Rightarrow \nabla E_{1}=0$ and $\nabla E_{2}=0$
- if $J H=$ tangent $(|T|=|H|)$, then $L=\operatorname{span}\left\{J E_{1}, J E_{2}\right\} \subset N \Sigma^{2}$ is parallel $\left(\nabla^{\perp} L \subset L\right)$, $J\left(T \Sigma^{2} \oplus L\right)=T \Sigma^{2} \oplus L$
[Eschenburg - Tribuzy, 1993] $\Rightarrow \Sigma^{2}$ is a complete Lagrangian proper-biharmonic pmc surface in $\mathbb{C} P^{2}(\rho)$
- $\rho=4$: [Sasahara, 2007] $\Rightarrow(2)$

The classification theorem (the proof)

- if $J H \neq$ tangent $(|T|<|H|)$, then
$L=\operatorname{span}\left\{E_{3}=J E_{1}, E_{4}=J E_{2}, E_{5}=\frac{1}{|N|} J N, E_{6}=\frac{1}{|N|} N\right\} \subset N \Sigma^{2}$ is parallel,
$J\left(T \Sigma^{2} \oplus L\right)=T \Sigma^{2} \oplus L\left(\right.$ where $\left.N=(J H)^{\perp}\right)$
[Eschenburg - Tribuzy, 1993] $\Rightarrow \Sigma^{2}$ lies in $\mathbb{C} P^{3}(\rho)$
- $\Sigma^{2}=$ totally real, Ricci eq., $\operatorname{trace}\left(A_{H} A_{U}\right)=(\rho / 4)\{2\langle H, U\rangle-3\langle J T, U\rangle\}, K=0$
$\Rightarrow|H|=\frac{\rho}{3}$ and

$$
A_{3}=\frac{1}{2} \sqrt{\frac{\rho}{3}}\left(\begin{array}{rr}
-\frac{11}{3} & 0 \tag{1}\\
0 & 1
\end{array}\right), \quad A_{4}=\frac{1}{2} \sqrt{\frac{\rho}{3}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad A_{5}=-\frac{1}{2} \sqrt{\frac{5 \rho}{3}}\left(\begin{array}{rr}
-\frac{1}{3} & 0 \\
0 & 1
\end{array}\right), \quad A_{6}=0
$$

- $\nabla E_{1}=\nabla E_{2}=0$, de Rham Decomposition Theorem $\Rightarrow \Sigma^{2}=\gamma_{1} \times \gamma_{2}$
- (1) and [Maeda - Adachi, 1997] \Rightarrow (3)

References

© D. Fetcu, E. Loubeau, S. Montaldo, and C. Oniciuc, Biharmonic submanifolds of $\mathbb{C} P^{n}$, Math. Z. 266(2010), 505-531.
(in D. Fetcu and A. L. Pinheiro, Biharmonic surfaces with parallel mean curvature in complex space forms, Kyoto J. Math. 55 (2015), 837-855.
The Bibliography of Biharmonic Maps.
http://people.unica.it/biharmonic/

Thank you

