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The harmonic and biharmonic problems

Harmonic and biharmonic maps

Let ϕ : (M,g)→ (N,h) be a smooth map.

Energy functional

E (ϕ) = E1 (ϕ) =
1
2

∫
M
|dϕ|2vg

Euler-Lagrange equation

τ(ϕ) = τ1(ϕ) = traceg∇dϕ

= 0

Critical points of E:
harmonic maps

Bienergy functional

E2 (ϕ) =
1
2

∫
M
|τ(ϕ)|2vg

Euler-Lagrange equation

τ2(ϕ) = ∆
ϕ

τ(ϕ)− traceg RN(dϕ,τ(ϕ))dϕ

= 0

Critical points of E2:
biharmonic maps
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The harmonic and biharmonic problems The biharmonic equation

The biharmonic equation (Jiang, 1986)

τ2(ϕ) = ∆
ϕ

τ(ϕ)− traceg RN(dϕ,τ(ϕ))dϕ = 0

where
∆

ϕ = traceg
(
∇

ϕ
∇

ϕ −∇
ϕ

∇

)
is the rough Laplacian on sections of ϕ−1TN

is a fourth-order non-linear elliptic equation
any harmonic map is biharmonic
a non-harmonic biharmonic map is called proper biharmonic
the biharmonic submanifolds M of a given space N are the
submanifolds such that the inclusion map i : M→ N is biharmonic
(the inclusion map i : M→ N is harmonic if and only if M is
minimal)
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The harmonic and biharmonic problems The biharmonic equation

The biharmonic equation

Theorem (Balmuş-Montaldo-Oniciuc, 2012)

A submanifold Σm in a Riemannian manifold N, with second
fundamental form σ , mean curvature vector field H, and shape
operator A, is biharmonic if and only if{

−∆⊥H+ traceσ(·,AH·)+ trace(RN(·,H)·)⊥ = 0
m
2 grad |H|2 +2traceA∇⊥· H(·)+2trace(RN(·,H)·)> = 0,

where ∆⊥ is the Laplacian in the normal bundle.
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The harmonic and biharmonic problems Biharmonic submanifolds in Euclidean spaces

Biharmonic submanifolds in Euclidean spaces

RN = 0⇒ τ2(ϕ) = ∆
ϕ

τ(ϕ)

Definition (Chen)
A submanifold i : M→ Rn is biharmonic if it has harmonic mean
curvature vector field, i.e.,

∆
iH = 0⇔ ∆

i
τ(i) = 0.
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The harmonic and biharmonic problems Biharmonic submanifolds in Euclidean spaces

Non existence of proper biharmonic submanifolds
For any of the following classes of submanifolds the biharmonicity is equivalent to
minimality:

submanifolds of N3(c), c≤ 0 (Chen/Caddeo - Montaldo - Oniciuc)

curves of Nn(c), c≤ 0 (Dimitric/Caddeo - Montaldo - Oniciuc)

submanifolds of finite type in Rn (Dimitric)

hypersurfaces of Rn with at most two principal curvatures (Dimitric)

pseudo-umbilical submanifolds of Nn(c), c≤ 0, n 6= 4
(Dimitric/Caddeo - Montaldo - Oniciuc)

hypersurfaces of R4 (Hasanis - Vlachos)

spherical submanifolds of Rn (Chen)

Chen’s conjecture (still open)

Any biharmonic submanifold of the Euclidean space is minimal.

Generalized Chen’s Conjecture (still open)

Biharmonic submanifolds of Nn(c), n > 3, c≤ 0, are minimal.
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The harmonic and biharmonic problems Main examples of biharmonic submanifolds in Sn

Main examples of biharmonic submanifolds in Sn

(Jiang, 1986/ Caddeo - Montaldo - Oniciuc, 2002)

The composition property

Sn−1(a) biharmonic // Sn ⇐⇒ a =
1√
2

Properties
M has parallel mean curvature vector field and |H|= 1

M is pseudo-umbilical in Sn, i.e., AH = |H|2 Id
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The harmonic and biharmonic problems Main examples of biharmonic submanifolds in Sn

Main examples of biharmonic submanifolds in Sn

The product composition property

Sn1(a)×Sn2(b) biharmonic // Sn ⇐⇒ a = b =
1√
2

and n1 6= n2

n1 +n2 = n−1, a2 +b2 = 1

Properties

M1×M2 has parallel mean curvature vector field and |H| ∈ (0,1)

M1×M2 is not pseudo-umbilical in Sn
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Biharmonic submanifolds of CPn Complex space forms

Complex space forms

Definition
A complex space form is a 2n-dimensional Kähler manifold Nn(ρ) of
constant holomorphic sectional curvature ρ.

A complex space form Nn(ρ) is either:

the complex projective space CPn(ρ), if ρ > 0

the complex Euclidean space Cn, if ρ = 0

the complex hyperbolic space CHn(ρ), if ρ < 0

The curvature tensor

RN(U,V)W = ρ

4 {〈V,W〉U−〈U,W〉V + 〈JV,W〉JU−〈JU,W〉JV

+2〈JV,U〉JW}
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Biharmonic submanifolds of CPn Examples of biharmonic submanifolds in CPn

Biharmonic submanifolds of CPn

Let i : Σm→ Nn(ρ) be a submanifold of real dimension m.

(Gauss) ∇N
X Y = ∇XY +σ(X,Y)

(Weingarten) ∇N
X V =−AVX+∇⊥X V

Nn(ρ) = CPn(4)

The biharmonic equation is

τ2(i) = m{∆H+mH−3J (JH)>}= 0
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Biharmonic submanifolds of CPn Examples of biharmonic submanifolds in CPn

Biharmonic submanifolds of CPn

Proposition
If JH is tangent to Σm, then Σm is biharmonic iff{

−∆⊥H+ traceσ(·,AH(·))− (m+3)H = 0
4traceA

∇⊥
(·)H

(·)+mgrad(|H|2) = 0.

Theorem (F. - Loubeau - Montaldo - Oniciuc, 2010)
If JH is tangent to Σm and |H|= constant 6= 0, then

1 If Σm is proper-biharmonic, then |H|2 ∈ (0, m+3
m ].

2 If |H|2 = m+3
m , then Σm is proper-biharmonic iff it is pseudo

umbilical, i.e., AH = |H|2 Id, and ∇⊥H = 0.

Remark

The upper bound of |H|2 is reached for curves.
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Biharmonic submanifolds of CPn Examples of biharmonic submanifolds in CPn

Biharmonic submanifolds of CPn

Proposition

If JH is normal to Σm, then Σm is biharmonic if and only if{
−∆⊥H+ traceσ(·,AH(·))−mH = 0
4traceA

∇⊥(·)H
(·)+mgrad(|H|2) = 0.

Moreover, if Σm has parallel mean curvature, i.e., ∇⊥H = 0, then it is biharmonic iff

traceσ(·,AH(·)) = mH.

Theorem (F. - Loubeau - Montaldo - Oniciuc, 2010)

If JH is normal to Σm and |H|= constant 6= 0, then
1 If Σm is proper-biharmonic, then |H|2 ∈ (0,1].
2 If |H|2 = 1, then Σm is proper-biharmonic iff it is pseudo-umbilical and ∇⊥H = 0.

Remark

The upper bound is reached for curves.
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Biharmonic submanifolds of CPn The Hopf fibration and the biharmonic equation

The Hopf fibration and the biharmonic equation

let π : Cn+1 \{0}→ CPn be the natural projection.
the restriction to the sphere S2n+1 ⊂ Cn+1 is the Hopf fibration

π : S2n+1→ CPn

Σ̄ = π−1(Σm) is the Hopf tube over Σm ⊂ CPn(4)

Σ̄
ī−−−−→ S2n+1y y π

Σ
i−−−−→ CPn
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Biharmonic submanifolds of CPn The Hopf fibration and the biharmonic equation

The Hopf fibration and the biharmonic equation

Theorem (F.- Loubeau - Montaldo - Oniciuc, 2010)
Let i : Σm→ CPn be an m-dimensional submanifold and
ī : Σ̄ = π−1(Σ)→ S2n+1 the corresponding Hopf-tube. Then we have

(τ2(i))H = τ2(ī)−4Ĵ(Ĵτ(ī))>+2div((Ĵτ(ī))>)ξ

where X̄ = XH is the horizontal lift with respect to the Hopf map, ξ is
the Hopf vector field on S2n+1 tangent to the fibres of the Hopf fibration,
i.e., ξ (p) =−Ĵp at any p ∈ S2n+1, and Ĵ is the complex structure of
R2n+2.

Remark

If Ĵτ(ī) is normal to Σ̄, then τ2(i) = 0 iff τ2(ī) = 0.
If Ĵτ(ī) is tangent to Σ̄, then τ2(i) = 0 and divΣ((Jτ(i))>) = 0 iff
τ2(ī)+4τ(ī) = 0.
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Biharmonic submanifolds of CPn The Hopf fibration and the biharmonic equation

The Hopf fibration and the biharmonic equation

Theorem (Reckziegel, 1985)

A totally real isometric immersion i : Σm→ CPn(ρ) can be lifted locally
(or globally, if Σm is simply connected) to a horizontal immersion
ĩ : Σ̃m→ S2n+1(ρ/4). Conversely, if ĩ : Σ̃m→ S2n+1(ρ/4) is a horizontal
isometric immersion, then π (̃i) : Σm→ CPn(ρ) is a totally real isometric
immersion. Moreover, we have π∗σ̃ = σ , where σ̃ and σ are the
second fundamental forms of the immersions ĩ and i, respectively.

Proposition (F.-Loubeau-Montaldo-Oniciuc, 2010)

Let ĩ : Σ̃m→ S2n+1(ρ/4) be a horizontal isometric immersion and
consider the totally real isometric immersion i = π (̃i) : Σm→ CPn(ρ).
Then

(τ2(i))H = τ2(̃i)−4Ĵ(Ĵτ (̃i))>+2div
Σ̃m((Ĵτ (̃i))>)ξ .
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Biharmonic submanifolds of CPn Biharmonic pmc surfaces

Curves in CPn

Definition
A curve γ : I ⊂ R→ CPn(ρ) parametrized by arc-length is called a
Frenet curve of osculating order r, 1≤ r ≤ 2n, if there exist r
orthonormal vector fields {E1 = γ ′, . . . ,Er} along γ such that

∇CPn

E1
E1 = κ1E2

∇CPn

E1
Ei =−κi−1Ei−1 +κiEi+1

. . .
∇CPn

E1
Er =−κr−1Er−1

for all i ∈ {2, . . . ,r−1}, where {κ1,κ2, . . . ,κr−1} are positive functions on
I called the curvatures of γ.
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Biharmonic submanifolds of CPn Biharmonic pmc surfaces

Curves in CPn

a Frenet curve of osculating order r is called a helix of order r if
κi = constant > 0 for 1≤ i≤ r−1. A helix of order 2 is called a
circle, and a helix of order 3 is called a helix
the complex torsions τij of the curve γ are given by

τij = 〈Ei,JEj〉

where 1≤ i < j≤ r

a helix of order r is called a holomorphic helix of order r if all its
complex torsions are constant
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Biharmonic submanifolds of CPn Biharmonic pmc surfaces

The existence of holomorphic helices

Theorem (Maeda-Adachi, 1997)
For given positive constants κ1, κ2, and κ3, there exist four equivalence
classes of holomorphic helices of order 4 in CP2(ρ) with curvatures κ1,
κ2, and κ3 with respect to holomorphic isometries of CP2(ρ).

Theorem (Maeda-Adachi, 1997)
For any positive number κ and for any number τ, such that |τ|< 1,
there exits a holomorphic circle with curvature κ and complex torsion τ

in any complex space form.
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Biharmonic submanifolds of CPn Biharmonic pmc surfaces

Biharmonic pmc surfaces in CPn(ρ)

Definition

If the mean curvature vector field H of a surface Σ2 immersed in a
complex space form is parallel in the normal bundle, i.e., ∇⊥H = 0,
then Σ2 is called a pmc surface.

Theorem (F., 2012)

The (2,0)-part Q(2,0) of the quadratic form Q defined on a pmc surface
Σ2 ⊂ Nn(ρ) by

Q(X,Y) = 8|H|2〈AHX,Y〉+3ρ〈X,T〉〈Y,T〉,

where T = (JH)> is the tangent part of JH, is holomorphic.
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Biharmonic submanifolds of CPn Biharmonic pmc surfaces

Biharmonic pmc surfaces in CPn(ρ)

Theorem (F. - Pinheiro, 2015)

Let Σ2 be a complete non-minimal pmc surface with non-negative
Gaussian curvature K isometrically immersed in a complex space form
Nn(ρ), ρ 6= 0. Then one of the following holds:

1 the surface is flat;
2 there exists a point p ∈ Σ2 such that K(p)> 0 and Q(2,0) vanishes

on Σ2.
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Biharmonic submanifolds of CPn Biharmonic pmc surfaces

Biharmonic pmc surfaces in CPn(ρ)

Sketch of the proof

Consider a symmetric traceless operator S on Σ2, given by

S = 8|H|2AH +3ρ〈T, ·〉T−
(3ρ

2
|T|2 +8|H|4

)
Id

〈SX,Y〉= Q(X,Y)− traceQ
2 〈X,Y〉

[Cheng-Yau, 1977]⇒ 1
2 ∆|S|2 = 2K|S|2 + |∇S|2 ≥ 0

where K is the Gaussian curvature of the surface
K ≥ 0 (⇒ Σ2 = parabolic)⇒ |S|2 = bounded⇒ Q.E.D.
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Biharmonic submanifolds of CPn Biharmonic pmc surfaces

Biharmonic pmc surfaces in CPn(ρ)

Proposition

Let Σ2 be a pmc surface in a complex space form (N(ρ),J,〈,〉). Then
Σ2 is biharmonic iff

traceσ(·,AH·) =
ρ

4
{2H−3(JT)⊥} and (JT)> = 0

where T is the tangent part of JH.

Remark
Proper-biharmonic pmc surfaces exist only in CPn(ρ), since

0 < |AH|2 =
ρ

4
{2|H|2 +3|T|2}
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Biharmonic pmc surfaces in CPn(ρ)

Proposition (F. - Pinheiro, 2015)

If Σ2 is a proper-biharmonic pmc surface in CPn(ρ) then T = (JH)> has
constant length. Moreover, if |T|= constant 6= 0, then ∇T = 0.

Proposition (F. - Pinheiro, 2015)

If Σ2 is a complete proper-biharmonic pmc surface in CPn(ρ) with K ≥ 0
and T = 0, then n≥ 3 and Σ2 is pseudo-umbilical and totally real.
Moreover, the mean curvature of Σ2 is |H|=√ρ/2.

Proposition (F. - Pinheiro, 2015)

If Σ2 is a complete proper-biharmonic pmc surface in CPn(ρ) with K ≥ 0
and T 6= 0, then the surface is flat and ∇AH = 0.
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Biharmonic submanifolds of CPn Biharmonic pmc surfaces

Biharmonic pmc surfaces in CPn(ρ)

Theorem (Balmuş - Montaldo - Oniciuc, 2008)

Let Σm be a proper-biharmonic cmc submanifold in Sn(ρ/4) with mean
curvature vector field H. Then |H| ∈ (0,

√
ρ/2] and, moreover,

|H|=√ρ/2 if and only if Σm is minimal in a small hypersphere
Sn−1(ρ/2)⊂ Sn(ρ/4).
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Biharmonic submanifolds of CPn Biharmonic pmc surfaces

The classification theorem

Theorem (F. - Pinheiro, 2015)

Let Σ2 be a complete proper-biharmonic pmc surface with non-negative Gaussian
curvature in CPn(ρ). Then Σ2 is totally real and either

1 Σ2 is pseudo-umbilical and its mean curvature is equal to
√

ρ/2. Moreover,
Σ2 = π(Σ̃2)⊂ CPn(ρ), n≥ 3, where π : S2n+1(ρ/4)→ CPn(ρ) is the Hopf fibration
and the horizontal lift Σ̃2 of Σ2 is a complete minimal surface in a small
hypersphere S2n(ρ/2)⊂ S2n+1(ρ/4); or

2 Σ2 lies in CP2(ρ) as a complete Lagrangian proper-biharmonic pmc surface.
Moreover, if ρ = 4, then

Σ2 = π

(
S1
(√

9±
√

41
20

)
×S1

(√
11∓
√

41
40

)
×S1

(√
11∓
√

41
40

))
⊂ CP2(4); or

3 Σ2 lies in CP3(ρ) and Σ2 = γ1× γ2 ⊂CP3(ρ), where γ1 : R→ CP2(ρ)⊂CP3(ρ) is a

holomorphic helix of order 4 with curvatures κ1 =
√

7ρ

6 , κ2 =
1
2

√
5ρ

42 , κ3 =
3
2

√
ρ

42

and complex torsions τ12 =−τ34 =
11
√

14
42 , τ23 =−τ14 =

√
70

42 , τ13 = τ2 = 0, and
γ2 : R→ CP3(ρ) is a circle with curvature κ =

√
ρ/2 and complex torsion τ12 = 0.

Moreover, γ1 and γ2 always exist and are unique up to holomorphic isometries.
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Biharmonic submanifolds of CPn Biharmonic pmc surfaces

The classification theorem (the proof)

Case I: T = (JH)> = 0

let π : S2n+1(ρ/4)→ CPn(ρ) be the Hopf fibration and Σ̃2 the
horizontal lift of Σ2

Σ2 = proper-biharmonic⇒ Σ2 = pseudo-umbilical and totally real
with |H|=√ρ/2

[Reckziegel, 1985]⇒ Σ̃2 ⊂ S2n+1(ρ/4) is pseudo-umbilical and
pmc
[F. - L. - M. - O., 2010] and T = 0⇒ Σ2 = proper-biharmonic iff
Σ̃2 = proper-biharmonic
[Balmuş - Montaldo - Oniciuc, 2008]⇒ Σ̃2 = minimal in a small
hypersphere S2n(ρ/2)⊂ S2n+1(ρ/4)
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Biharmonic submanifolds of CPn Biharmonic pmc surfaces

The classification theorem (the proof)

Case II: T = (JH)> 6= 0

Σ2 = proper-biharmonic⇒ Σ2 = totally real and flat with ∇AH = 0

U = normal, U ⊥ H, U ⊥ J(TΣ2), Ricci eq. ⇒ [AH ,AU ] = 0

Σ2 6= pseudo-umbilical (|T|= constant 6= 0)⇒ AU = 0

consider the global orthonormal frame field {E1 = T/|T|,E2} on Σ2

[F. - P., 2015]⇒ ∇E1 = 0 and ∇E2 = 0

if JH = tangent (|T|= |H|), then L = span{JE1,JE2} ⊂ NΣ2 is parallel (∇⊥L⊂ L),
J(TΣ2⊕L) = TΣ2⊕L
[Eschenburg - Tribuzy, 1993]⇒ Σ2 is a complete Lagrangian proper-biharmonic
pmc surface in CP2(ρ)

ρ = 4: [Sasahara, 2007]⇒ (2)
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Biharmonic submanifolds of CPn Biharmonic pmc surfaces

The classification theorem (the proof)

if JH 6= tangent (|T|< |H|), then
L = span{E3 = JE1,E4 = JE2,E5 =

1
|N|JN,E6 =

1
|N|N

}
⊂ NΣ2 is parallel,

J(TΣ2⊕L) = TΣ2⊕L (where N = (JH)⊥)

[Eschenburg - Tribuzy, 1993]⇒ Σ2 lies in CP3(ρ)

Σ2 = totally real, Ricci eq., trace(AHAU) = (ρ/4){2〈H,U〉−3〈JT,U〉}, K = 0
⇒ |H|= ρ

3 and

A3 =
1
2

√
ρ

3

(
− 11

3 0
0 1

)
, A4 =

1
2

√
ρ

3

(
0 1
1 0

)
, A5 =− 1

2

√
5ρ

3

(
− 1

3 0
0 1

)
, A6 = 0 (1)

∇E1 = ∇E2 = 0, de Rham Decomposition Theorem⇒ Σ2 = γ1× γ2

(1) and [Maeda - Adachi, 1997]⇒ (3)
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Thank you
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