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“Everything should be made as simple
as possible, but not simpler.”

— Albert Einstein



Higher Dimensional BHs

Motivations:
(1) Extra - dimensions andstring theory
(2)Brane - worldmodels
(3)Black holes as probes of extradimensions
(4) MicroBHs productionincolliders?

(5) Genericandnon - generic properties of BHs



Two big "surprises" in study of HD black holes:

1. The topology of the horizon can be more complicated

than the topology of the sphere $°7°. 5D exact solutions
for stationary black rings (Emparan and Reall, 2002) plus

many later publications. Stability of such solutions?

2. Properties of HD stationary black holes with spherical
topology of the horizon are quite similar to the properties
of their 4D "cousins" (Kerr metric): geodesic equations are
completely inegrable and wave equations are completely
separable (V.F. and Kubiznak, 2007, plus Alberta separatists’

later publications)



5D vac. stationary black holes
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In this talk | shall focus on the "second big surprize":
Hidden Symmetries and Complete Integrability in HD BHs.
1. Brief history;

2. Liouville theory of the complete integrability;

3. Origin and properties of the hidden symmetries;

4. Killing tensors and Killing towers;

5. Applications and results;

6. Recent developments.



Remark: Whenever | tell a black hole, it means

that | discuss an 1solated higher dimensional

stationary rotating black hole with the spherical

topology of horizon ina ST, which asympotically

IS either flat or (Anti)DeSitter. Its metric Is a solution

of the Einstein equations in D = 2n + & dimensions
Rap =AG4




Main Message: Properties of higher
dimensional rotating BHS and the
4D Kerr metric are very similar.

HDBHs give a new wide (infinite)
class of completely integrable
dynamicalsystems.



Higher Dimensional Black Holes

Tangherlini'63 metric (HD Schw.analogue)

Kerr -NUT - AdS'06 (Chen,Lu,andPope;

The most generalHD BH solution)



"General Kerr-NUT-AdS metrics in all dimensions®, Chen,
LU and Pope, Class. Quant. Grav. 23, 5323 (2006).

n=|D/2], D=2n+¢
R, =(D-1)4g,,

A, M —mass, a,_ —(n—1+ ¢) rotation parameters,
M —(n-1-¢) NUT' parameters

Total #of parametersis D—¢ |
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Stationary -Killing vector ¢, ;

Axisymmetric - (n -1+ ¢)Killing vectors ¢, ;

When cosmologicalconstant A andNUT parameters

vanishone hasMyers - Perry metric (1986)



Generator of Symmetries

Principal Closed Conformal KY Tensor

2-form h . withthe following properties:

[uv]

(i) Non-degenerate (maximalmatrixrank, 2n)
(ii) Closed dh=0

(iii) Conformal KY tensor:V_h, =g.& -0.,<,,
E ==V°h _, & isaprimaryKilling vector

For briefness, we call this object a"Principal Tensor"



All Kerr-NUT-AdS metrics
IN any number of ST dimensions
possess a PRINCIPAL TENSOR
(V.F.&Kubiznak '07)



Uniqueness Theorem

A solution of Einstein equations
with the cosmological constant,
which possesses a PRINCIPAL
TENSOR is a Kerr-NUT-AdS
metric

(Houri,Oota&Yasui '07 '09;
Krtous, V.F. .&Kubiznak '08;)



Geodesic equations in ST with a
PRINCIPAL TENSOR are
completely integrable in Liouville
sense. Important field equations
allow a complete separation of
variables. ("Alberta separatists”)

In the rest of the talk | shall
explain why It happens.



BRIEF REMARKS ON
COMPLETE INTEGRABILITY



Hamiltonian system

Phase space : Differentialmanifold M*° with

asymplectic form Q (non-denerate rank 2 closed, d€2 =0).
Observables are scalar functions on M*°.

X_=Q'dF is a Hamiltonian vector field associated

with an observable F.

d
The dynamical equations for the Hamiltonian H are 9z _ X, .

dt
Poisson bracket {F,Q} =dF Q*dQ=[X,,X,].

Integral of motion F ={F,H} =0.

Integrals of motion F,Q are in involution if {F,Q} =0



Darboux's theorem:Suppose that Q2isasimplectic2-formon
ann =2m dimensional manifold M. Then in a neighrhood of
each point g on M, there is a coordinate chart U in which
QO=dO=dq, ndp, +...+dq_Adp_.

U is called a Darboux chart. The manifold can be covered by

such charts (Darboux atlas).



Liouville theorem: Dynamical
eqguations in 2D dimensional phase
space are completely integrable if
there exist D independent
commuting Integrals of motion.



General idea: D commuting independent integrals of motion F,
can be used as coordinates on the phase space.

Denote by M. the level set for {F}. Gradients dF; are linearly

independent = M, is D dimensional submanifold of M?°.

The involution condition implies that Q. | = X: Q XFj =0,

|
ij 1Le
hence M, is a Lagrangian submanifold. The vector fields X.are

tangent to it and mutually commute.






Denote QQ=df and consider the function W(qg,P)= I 0 |Mf.

misapoint of the phase space,and g areits coordinates.

Since dQ2=00onM_,, the integral does not depend on a choice

of the path. W(q,P) can be used as a generating function, which

produces a canonical transformation from the original (g, p) to

, , ; . oW(q,P
new canonical coordinates (Q ,P. =F): Q = 8(;7 ).In these
new coordinates the Hamilton's equations become trivial:

b= {R.H}=0, & =10/ H)=2" = const

i



Lagrandgian
submanifold (@, p)
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Relativistic Particle as a
Dynamical System

Preferable coordinates in the phase space:

1 ~ab

(X, p, =9,X"), Hlp,X)=39"p,p,.

Monomial in momenta integrals of motion

K =K"°p_..p, imply that K_, is a Killing tensor:
K(a...b;c) =0

{H,H}=0& [K,K,]=0.

Motion of particle in D-dimensional ST is completely

integrable if there exist D independent commuting

Killing tensors (and vectors)



Metric Is a best known example
of rank 2 Killing tensor

if K, and K, are 2 monomial integrals
of order n and m, then K+ K, is a monomial

integral of order n+m. The corresponding

Killing tensor is called reducible.



Properties of 4D black holes

KT (Ko =0) KY =vKT (fa(b;c) =0)
Walker & Penrose'70 Penrose & Floyd'73

PCCKY (h=*f,h=db)

Carter '68
H-J separation — _
motion _ 1R b
ga — 3 hba
¢ =&y aisprimary KV Einsteinspace (R, = AQ,,)
(% =K®E isaSKV which admits PCCKY is either

, Kerr-NUT - AdS or C - metric
Hughston & Sommers'75



Paralleltransport: Consider ageodesic, and let p° be atangent vector.
Letk,, be a Killing-Yano tensor: k,,.., =0.Thenavectorq, = k., p’ is

parallel propagated. Really,
pcqa;c — kab;cpbpc + kabpb ;cpc — O

A 2-plane, determined by a 2-form o=*(p Aq) is also
parallel propagated along a geodesic. In order to find
2 parallel propagated vectors, that span ititis
sufficient to solve a simple ODE (Marck, 1983).



Tidal disruption of a white dwarf
by a massive black hole

L «Relativistic tidal interaction of a white
dpemes ! . .
I dwarf with a massive black hole»
g Frolov, V. P., Khokhlov, A. M., Novikov,

l. D., & Pethick, C. J.
Astrophysical Journal, vol. 432, p. 680-
689, (1994)

L e S e B |

FIG. 1—Density contours in the equatorial (X- ¥} plane, and the velocity ficld for the encounter N1. Results are presented in units in which G = M., = R, = 1.
The time step number and the velocity scale are shown in the upper left comer of cach frame. The innermast contout corresponds 1o 90% of the central density, and
at successive contours the density decreases by a factor of 2. The short thick line in cach frame indicates the ditection 1o the black hole (BH). Frames are obtained in
two runs with different spatial resolution. Frames (a)-{(e) are computed on the uniformly expanding grid. Frames ( {}-(1} are computed on the grid the expansion of
which was stopped in order o gel better resolution of the stellar care, The frame (j) belongs to the first run, and shows the geometry of the jets at the end of the
computations, The core is not well resolved in this [rame, The two last frames, (1) and (k), show the density contours and the velocity field in the ¥-Z and X-Z planes,
passing through the center of the star, for the moment of time corresponding to frame | ). Times corresponding to the various frames are (a) —4.87, (510, c) 135, (d}
3.24,(e) .34, () 8.18, (g) 12,52, (k) 15,34, (i) 17.62, and (/) 38.95,

© American Astronomical Society « Provided by the NASA Astrophysics Data System



Condition of a static disruption:

GMb Gm
= r=(M/m)"b




Higher dimensions

Denote D =2n+¢.

D - dimensional AdS -Kerr - NUT metric
has N + ¢ Killing vectors.For complete

integrability of geodesic equations one

needs N moreintegrals of motion.



GENERAL SCHEME



Forms (=AStensor)

(1) External product: a, A B, =(a A S)
(2) Hodge dual: *(«,) = (*a);_,

(3) External derivative: d(¢,) = (da),,,
(4) Closed form: d(«,) =0 (locally ¢, =d(5,))

q+p



Killing-Yano family

Let w be p-formontheRiemannian manifold.
ThenitsHodge dual* w is (D - p)- form.

Two operations: derivative d and coderivative 0.
Vo=dw+geow+...) (0 =*d*)

f (...)=0 w is a conformal KY tensor;

fow=(...)=0 wisa KY tensor;
Ifdow=(...)=0 wis a closed conformal

KY tensor.



Let f be aKilling - Yano tensor f =0, then

Haf -y paty (V)

f “ s a parallel propagated

Myl -y P
along a geodesic form;

= for i Jo #2415 the Killing tensor

y75%

K*"p,p, Isan integral of geodesic motion



Integrability conditions of the KY equation:

p+1 :
\ Vb €165 ---Cp TRea[bclf T ezl |
Maximal number of independent KY tensor
D+1)!
of rank p is ( )
(D-p)!(p+1)!
Maximal number of independent CCKY tensor
D+1)!
of rank p is ( )

(D-p+1)!p!



Example:Killing vector &, =0, &, =R,/&

abc

Maximum number of independentKilling vectors :

ND[§]=D+%D(D—1):%D(D+1)



Flat sacetime (as well as (anti)deSitter space) has the maximum number of
Killing-Yano and closed conformal Killing-Yano tensors. The Killing-Yano
n-forms in the flat spacetime allow quite simple description. Consider a
set of n integer numbers

{a,,..,a,}, 1<a,<..<a,<D

Translationally invariant Killing-Yano n-forms

ki) = dx® A dX AL A X

Consider another set of n+1 integer numbers

{a,,..,0,,}, 1<a,<..<a,<a,,<D

Rotational Killing-Yano n-forms

klarrond — ylo \ gx@ A A dx®

Closed conformal Killing-Yano tensors are dual of the above objects.



Properties of CKY tensor

Hodge dual of CKY tensor is CKY tensor
Hodge dual of CCKY tensor is KY tensor:;
Hodge dual of KY tensor is CCKY tensor;

External product of two CCKY tensors is a
CCKY tensor

(Krtous,Kubiznak,Page &V.F. '07; V.F. '07)






Principal Tensor

External powers of CCKY tensor give new CCKY. That is why they are "better"

as symmetry generators than KY tensors.

For a 1-form & one has & A £=0. For higher than rank 1 forms their external

powers are, generally, non-vanishing.

The lower rank of the CCKY form, the more non-trivial new CCKY tensors it can

generate. The rank 2 CCKY form is in this sence the most promicing.

In order to generate the largest number of non-vanishing CCKY forms, a 2-form

of the CCKY object must have the highest possible matrix rank (2n).

The Principal CCKY tensor (or simply the Principal Tensor) is a non-denerate

2-form which is CCKY object. (Some additional requirements will be added later.)



Killing-Yano Tower




Killing-Yano Tower

CCKY: h = hY=hAhA..AhB

J times

KY tensors: k. =*h"

J

Killing tensors: K’ =k ek,

Primary Killing vector: & =--V°h,_
Secondary Killing vectors: ¢, =K;+¢



Total number of conserved quantities:

(n+&)+(n—1)+1=2n+&=D
KV KT g

The integrals of motion are functionally

independent and in involution. The
geodesic equations in the AdS-Kerr-NUT

ST are completely integrable.



Canonical Coordinates

h (m*) = Fix“m* m* =e“ +ie”
+ + +

We include in the definition of the Principal Tensor
h the following requirement:
The 2-form h in the ST with D =2n+ ¢ dimensions

has n non-equal independent eigen-values x*, so

that there exists n (mutually orthogonal) two-planes.



Canonical coordinates: n essential coordinates x“

and n+ ¢ Killing coordinates ;. Total number of

such "canonical" coordinates is D =2n

E.

g =) (e“e” +efe’)+ee"e"™ h="> x“e" ne’

Jz M

The components of Killing tower objects in such

a basis are polynomials in x*.



“Off-shell” metrics, which admit the
Principal Tensor, allow complete description

0. = 2 (eXef +er'ey’) + ey ey ™,
7,

o ¢ _ 2, S AYdy,
L 1=0

Qﬂ:_ﬂ’ ) Uﬂ:H(Xs_X/ZJ)’ Xﬂ:Xﬂ(Xﬂ)

H VU



[]a+e)=> t!AY,
v=1 j=0
n n—1
@+oc) [ @a+t) =D tAA.
v=1 k=0

Arbitrary functions X (x”) after substitution into Einstein equations

become polynomials. Their coefficients are just papameters of the metric.

Houri, Oota, and Yasui [PLB (2007); JP A41 (2008)] proved this result
under additional assumptions: L.g=0 and L[.h=0. Later Krtous, V.F.,

Kubiznak [arXiv:0804.4705 (2008)] and Houri, Oota, and Yasui
[arXiv:0805.3877 (2008)] proved this without additional assumptions.



Solutions of the Einstein equations with the
cosmological constant (“On-shell” metrics)

n
_ 2k
Xﬂ —bﬂxﬂ+ E X, for D even.
k=0

A similar expression for D odd.

This is nothing but the Kerr-NUT-(A)dS metric,

written in special (canonical) coordinates.



Intermediate Summary
1. The Principal Tensor (if it exists) generates the Killing tower, which
roughly contains a half of the Killing vectors and a half of the Killing
tensors. The Killing vectors are responcible for explicite symmetry of
the spacetime, while the Killing tensors describe its hidden symmetries.
2. Eigen-values of the Principal Tensor together with the Killing parameters,
determined by the Killing vectors provide one with special coordinates, in
which the metric and the PT has "simple" canonical form.
3. Equations for the Principal Tensor and their integrability conditions,
written in the canonical coordinates, allows one to find the (off-shell) metric.
4. After imposing the Einstein equations, this metric becomes
Kerr-NUT-(A)dS solution.



Separation of variables

This is a very special property, which depends both on the

type of the equaion and special choice of the coordinates.

Hamilton-Jacobi (VS)> =m’
§ WKB @ ~ exp(iS)

Klein-Gordon (o—m*)® =0
§ "Dirac eqn=,/KG egn "

Dirac equation (y*V ,+m)¥ =0



Separation of variables in HJ eqgs

For the Hamiltonian

H(P,Q),P=p,....p,.Q=0,...,d,,
the Hamilton-Jacobi equation is
H(0,S,Q)=0.

Suppose g, and ¢, S enter this equation as @, (9, S, q,).
Then the variable g, can be separated:

S =5,(0,,C,) +S(dy,...,qp),
(D1(6q18’q1)2C1’

H,(0,5"...,0,,..-;C;) =0




Complete separation of variables:
S =35,(0,,C,)+5S,(9,,C,,C, ) +...5 (q.,C,,...,C ).

The constants C. generate first integrals on the phase
space. When these integrals are independent and In
Involution the system is integrable in the Liouville sence.



Separation of variables in HJ and KG equations in 5D ST (V.F. and Stojkovic '03)

Separability of the Hamilton—Jacobi equation
In canonical coordinates

S L g®0.58,5=0
oA

S=-WA+> S, (x)+> ¥y,
u=1 k=0

(5,) =- (Z( X)) +—ch( X, )"

ﬂko ﬂko

V. F.,, P. Krtous, D. Kubiznak , JHEP 0702:005 (2007)



Separability of the Klein—Gordon equation

@ )®=0  o-lIROIT[e

X R m m
(X,R,)+ gx—“ R, —X—“ (Z (—xfl)”‘l‘k\Pk)z — Z b, (—xfl)“—l—k R,=0
k=0

u p k=0

V. F., P. Krtous , D. Kubiznak , JHEP 0702:005 (2007)



Weakly charged higher dimensional
rotating black holes

Hamiltonian  H =§gab<pa _gA)(p, —GA)

OS
ox*?

HJ equation —u®=g® [( —qAa)(%—OIAD)}

Klein-Gordon equation
9%(V, —igA (Y, —igA,) - u* |® =0



F =0 < AL, =0 < A*™ =0

=0 o A =Q¢ (inRicci flat)

b 05 0S

Ox* OX”
[0-M “]® =0,

M?* = u®—2e¥, + ezé‘(zo)

+M?*=0,

For a primary Killing vector field one again
has a complete separation of variables

[V.F. and Krtous, 2011]



Complete separation of variables in KG and HJ
egns in Kerr-NUT-AdS ST (V.F.,Krtous&Kubiznak
'07)

Separation constants KG and HJ egns and
Integrals of motion (Sergyeyev&Krtous ‘08)

Separation of variables in Dirac egns in Kerr-NUT-
AdS metric (Oota&Yasui ‘08, Cariglia,
Krtous&Kubiznak 11)



Separability of gravitational perturbations in
Kerr-NUT-(A)dS Spacetime (Oota andYasui '10)

Metrics admitting a principal Killing-Yano
tensor with torsion (Houri, Kubiznak,
Warnick and Yasui '12)



Parallel transport along timelike geodesics

Let u® be a vector of velocity and h,, be a PCKYT.
P® =67 +u,u® is a projector to the plane orthogonal to u®.

Denote F,, = P°P'h, =h, +u.u’h, +h_uu,

Lemma (Page): F,, Is parallel propagated along a geodesic:
V.F. =0

u' ab

Proof: We use the definition of the PCKYT
Vuhab - uafb o faub



Suppose h,, Is a non-degenerate, then for a generic geodesic

eigen spaces of F,, with non-vanishing eigen values are two
dimensional. These 2D eigen spaces are parallel propagated.

Thus a problem reduces to finding a parallel propagated basis in 2D
spaces. They can be obtained from initially chosen basis by 2D
rotations. The ODE for the angle of rotation can be solved by

a separation of variables.

[Connell, V.F., Kubiznak, PRD 78, 024042 (2008)]



Possible generalizations to degenerate PCKY
tensor and non-vacuum STs

Infinite set of new interesting completely integrable
dynamical systems.



Lax-pairs for integrable geodesics in Kerr-NUT-(A)dS,
(Cariglia, V.F., Krtous, Kubiznak, '13)

Deformed and twisted black holes with NUTSs, (Krtous,
Kubiznak, V.F., Kolar, '16)

Review in Living Review in Relativity (V.F., Krtous,

Kubiznak), under preparation



A higher dimensional black hole demonstrates
approximately half of its symmetries as explicit
ST symmetries, while the other half is hidden.



BIG PICTURE

N e s \\\

BLACK HOLES HIDE THEIR SYMMETRIES.
WHY AT ALL HAVE THEY SOMETHING

TO HIDE?
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