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“Everything should be made as simple 
as possible, but not simpler.”  
 
— Albert Einstein 



               Motivations :

(1) Extra - dimensions and string theory

(2) Brane - world models

(3) Black holes as probes of extra dimensions

(4) Micro BHs production in colliders?

(5) Generic and non - generic properties of BHs



2

        Two big "surprises" in study of HD black holes: 

1. The topology of the horizon can be more complicated

     than the topology of the sphere . 5D exact solutions

     for stationary black rin

DS

gs  (Emparan and Reall, 2002) plus

     many later publications. Stability of such solutions?

2. Properties of HD stationary black holes with spherical

    topology of the horizon are quite similar to the properties

    of their 4D "cousins" (Kerr metric): geodesic equations are

    completely inegrable and wave equations are completely 

    separable (V.F. and Kubiznak, 2007, plus Alberta separatists'

    later publications)



5D vac. stationary black holes 



In this talk I shall focus on the "second big surprize":

Hidden Symmetries and Complete Integrability in HD BHs.

1. Brief history; 

2. Liouville theory of the complete integrability;

3. Origin and properties of the hidden symmetries; 

4. Killing tensors and Killing towers; 

5. Applications and results;

6. Recent developments.



Remark: Whenever I tell a black hole, it means 

that I discuss an isolated higher dimensional 

stationary rotating black hole with the spherical 

topology of  horizon in a ST, which asympotically 

is either flat or (Anti)DeSitter. Its metric is a solution

of the Einstein equations in 2  dimensions

                               = g

 

ab ab

D n
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Main Message: Properties of higher  
dimensional rotating BHS and the  
4D Kerr metric are very similar. 
 
HDBHs give a new wide (infinite)  
class of completely integrable  
dynamicalsystems.  



Higher Dimensional Black Holes 

Tangherlini '63 metric (HD Schw.analogue)

                .....................

Myers &Perry '86 metric (HD Kerr analogue)

                .....................

Kerr - NUT - AdS '06  (Chen, Lu, and Pope;

           The most general HD BH solution)



"General Kerr-NUT-AdS metrics in all dimensions“,  Chen, 
Lü and Pope, Class. Quant. Grav. 23 , 5323 (2006).  
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tStationary - Killing vector ξ ;

Axisymmetric - (n - 1 + ε) Killing vectors ξ ;

When cosmological constant λ and NUT parameters

vanish one has Myers - Perry metric (1986)



Generator of Symmetries 

Principal Closed Conformal  KY Tensor 
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2 - form with the following properties :

(i)   Non - degenerate (maximal matrix rank, )

(ii)  Closed

is

 

(iii) Conformal  KY tensor :

 a primary Killing ve

 

ctor

For briefness, we call this object  a "Principal Tensor" 



All Kerr-NUT-AdS metrics  
in any number of ST dimensions 
possess a PRINCIPAL TENSOR 

    (V.F.&Kubiznak ’07) 



 

A solution of Einstein equations 
with the cosmological constant, 
which possesses a PRINCIPAL 

TENSOR is a Kerr-NUT-AdS 
metric  

     
(Houri,Oota&Yasui ’07 ’09;  

Krtous, V.F. .&Kubiznak ’08;) 

Uniqueness Theorem 



Geodesic equations in ST with a 
PRINCIPAL TENSOR are 

completely integrable in Liouville 
sense. Important field equations 
allow a complete separation of 

variables. (“Alberta separatists”) 
 

In the rest of the talk I shall 
explain why it happens. 



BRIEF REMARKS ON 
COMPLETE INTEGRABILITY 
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Phase space: Differential manifold  with 

a symplectic form  (non-denerate rank 2 closed, 0).

Observables are scalar functions on .

=  is a Hamiltonian vect

  Hamiltonian system
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or field associated

with an observable .

The dynamical equations for the Hamiltonian  are .

Poisson bracket { , } [ , ].

Integral of motion { , } 0.

Integrals of motion ,  are in inv
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Darboux's theorem: Suppose that  is a simplectic 2 - form on

an 2  dimensional manifold . Then in a neighrhood of

each point  on ,  there is a coordinate chart  in which

= = ... .

 is

m m

n m M

q M U

d dq dp dq dp

U







    

 called a Darboux chart. The manifold can be covered by

such charts (Darboux atlas).



Liouville theorem: Dynamical 
equations in 2D dimensional phase 
space are completely integrable if 

there exist D independent 
commuting integrals of motion. 



General idea: D commuting independent integrals of motion  

can be used as coordinates  on the phase space.  

Denote by  the level set for { }. Gradients  are linearly

independent  is D dimens

i
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ional submanifold of .

The involution condition implies that | 0, 

hence  is a Lagrangian submanifold. The vector fields are

tangent to it and mutually commute. 
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Denote =  and consider the function   ( , ) | .

 is a point of the phase space, and  are its coordinates.

Since 0 on ,  the integral  does not depend on a choice 

of the path. ( , ) can be
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produces a canonical transformation from the original ( , ) to 

( , )
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Relativistic Particle as a 
Dynamical System 

...
...
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If  and  are 2 monomial integrals 

of order  and , then  is a monomial 

integral of order . The corresponding 

Killing tensor is called reducible.
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  K K

K K

Metric is a best known example 
of rank 2 Killing tensor 
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Hughston & Sommers '75

a is primary KV
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 ( )Einstein space

which admits PCCKY is either 

Kerr - NUT - AdS or C - metric

 ab abR g

Properties of 4D black holes 

Carter ’68  
H-J separation 
4th integral of 

motion 



 

  

( ; )

; ; ;

Parallel transport : Consider a geodesic, and  let  be a tangent vector.

Let  be a Killing-Yano tensor: 0. Then a vector  is

parallel propagated. Really,

0.

a

b
ab a b c a ab

c b c b c
a c ab c ab c

p

k k q k p

p q k p p k p p

A 2-plane, determined by a 2-form =*(p q) is also

parallel propagated along a geodesic. In order to find

2 parallel propagated vectors, that span it it is

sufficient to solve a simple ODE (Marck, 1983).
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«Relativistic tidal interaction of a white 
dwarf with a massive black hole» 
 Frolov, V. P., Khokhlov, A. M., Novikov, 
I. D., & Pethick, C. J. 
Astrophysical Journal, vol. 432, p. 680-
689, (1994) 

Tidal disruption of a white dwarf 
by a massive black hole 
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Denote

D - dimensional AdS - Kerr - NUT metric

has Killing vectors. For complete

integrability of geodesic equations one 

needs  more integrals of motion.
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Higher dimensions 



GENERAL SCHEME 



Forms (=AStensor) 
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(1) External product:  ( )

(2) Hodge dual: *( ) (* )

(3) External derivative: ( ) ( )
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Let  be - form on the Riemannian manifold.

Then its Hodge dual *  is ( - )- form.

Two operations: deri

(...) ( * *)

If

vative

  (...

  and coder
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Killing-Yano family 
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1 2 1 2... [ ... ]

Integrability conditions of the KY equation:

1

2
Maximal number of independent KY tensor 

(D+1)!
of rank  is 

(D-p)!(p+1)!
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(a;b) ; ;Example : Killing vector    0,

Maximum  number of independent Killing vectors :
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Flat sacetime (as well as (anti)deSitter space) has the maximum number of 

Killing-Yano and closed conformal Killing-Yano tensors. The Killing-Yano 

-forms  in the flat spacetime allow quite simple desn
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set of  integer numbers
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Properties of CKY tensor 

Hodge dual of CKY tensor is CKY tensor 
 
Hodge dual of CCKY tensor is KY tensor;  
 
Hodge dual of KY tensor is CCKY tensor;  
 
External product of two CCKY tensors is a 
CCKY tensor  

(Krtous,Kubiznak,Page &V.F. '07; V.F. '07)



CCKY 

KY 

CKY 

* 

R2-KT 



Principal Tensor 
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External powers of CCKY tensor give new CCKY. That is why they  are "better" 

as symmetry generators than KY tensors.

For a 1-form  one has =0. For higher than rank 1 forms their external 

powers are, generally, non-vanishing.

The lower rank of the CCKY form, the more non-trivial new CCKY tensors it can 

generate. The rank 2 CCKY form is in this sence the most promicing.

In order to generate the largest number of non-vanishing CCKY forms, a 2-form 

of the CCKY object must have the  highest possible 

The Principal CCKY tensor (or simply the Principal Tensor) is a no

matrix rank (2 )

n-denerate 

2 r

.

-fo
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m which is CCKY object. (Some additional requirements will be added later.)



Killing-Yano Tower 



Killing-Yano Tower 

1
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Total number of conserved quantities: 

The integrals of motion are functionally 

independent and in involution. The 

geodesic equations in the AdS-Kerr-NUT 

ST ar

( ) ( 1)

e completely integra

1 2

ble.
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Canonical Coordinates 

ˆ
( )h m ix m m e ie     

    

We include in the definition of the Principal Tensor 

 the following requirement: 

The 2-form  in the ST with 2  dimensions

has  non-equal independent eigen-values ,  so

that there exists n  (mutu

h

h D n

n x
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ally orthogonal) two-planes.



Canonical coordinates: essential coordinates x

and  Killing  coordinates . Total number of

such "canonical" coordinates is 2 .
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The components of Killing tower objects in such 

a basis are polynomials in .x



“Off-shell” metrics, which admit the 
Principal Tensor, allow complete description 
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Houri, Oota, and Yasui [PLB (2007); JP A41 (2008)] proved this result 

under additional assumptions:  0 and 0.  Later Krtous, V.F., 

Kubiznak [arXiv:0804.4705 (2008)] and Houri, Oota, and Yasui  

[ar

L g L h  

Xiv:0805.3877 (2008)] proved this without additional assumptions.

Arbitrary functions ( ) after substitution into Einstein equations 

become polynomials. Their coefficients are just papameters of the metric.

X x



Solutions of the Einstein equations with the 
cosmological constant (“On-shell” metrics)  

2

0

  for  even.

A similar expression for  odd.
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This is nothing but the Kerr-NUT-(A)dS metric,

written in special (canonical) coordinates.



1. The Principal Tensor (if it exists) generates the Killing tower, which 

roughly contains a half of the Ki

                          

lling vectors and a half of  the Killing

t so

 

 

en

Intermediate Summary

rs. The Killing vectors are responcible for explicite symmetry of 

the spacetime, while the Killing tensors describe its hidden symmetries.

2. Eigen-values of the Principal Tensor together with the Killing parameters, 

determined by the Killing vectors provide one with special coordinates, in 

which the metric and the PT has "simple" canonical form.

3. Equations for  the Principal Tensor and their integrability conditions, 

written in the canonical coordinates, allows one to find the (off-shell) metric.

4. After imposing the Einstein equations, this metric becomes 

Kerr-NUT-(A)dS solution.
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Separation of variables 

This is a very special property, which depends both on the 

type of the equaion and special choice of the coordinates.



Separation of variables in HJ eqs 
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 The constants generate  first integrals  on the  phase 

s

Complete separation of variables:
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stem is integrable in the Liouville sence.
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Separability of the Hamilton–Jacobi equation  
in canonical coordinates  
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V. F., P. Krtous , D. Kubiznak , JHEP 0702:005 (2007) 

Separation of variables in HJ and KG equations in 5D ST (V.F. and Stojkovic ’03) 



Separability of the Klein–Gordon equation 
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,  

V. F., P. Krtous , D. Kubiznak , JHEP 0702:005 (2007) 



Weakly charged higher dimensional  
rotating black holes  

1
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For a primary Killing vector field one again  
has a complete separation of variables 

[V.F.  and Krtous, 2011] 



Complete separation of variables in KG and HJ 
eqns in Kerr-NUT-AdS ST (V.F.,Krtous&Kubiznak 
’07) 
 
Separation constants KG and HJ eqns and 
integrals of motion (Sergyeyev&Krtous ‘08) 
 
Separation of variables in Dirac eqns in Kerr-NUT-
AdS metric (Oota&Yasui ‘08, Cariglia, 
Krtous&Kubiznak ’11) 
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Parallel transport along timelike geodesics 

Let  be a vector of velocity and  be a PCKYT. 

 is a projector to the plane orthogona
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Proof: We use the definition of the PCKYT
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Suppose  is a non-degenerate, then for a generic geodesic

eigen spaces of  with non-vanishing eigen values are two

dimensional. These 2D eigen spaces are parallel propagated.

Thus a problem reduces

ab

ab

h

F

 to finding a parallel propagated basis in 2D

spaces. They can be obtained from initially chosen basis by  2D

rotations. The ODE for the angle of rotation can be solved by

a separation of variables.

[Connell, V.F., Kubiznak, PRD 78, 024042 (2008)] 



Possible generalizations to degenerate PCKY 
tensor and non-vacuum STs 

 
Infinite set of new interesting completely integrable 
dynamical systems. 



Lax-pairs for integrable geodesics in Kerr-NUT-(A)dS, 

(Cariglia, V.F., Krtous, Kubiznak, '13)

Deformed and twisted black holes with NUTs, (Krtous, 

Kubiznak, V.F., Kolar, '16)

Review in Living Review in Relativity (V.F., Krtous, 

Kubiznak), under preparation



A higher dimensional black hole demonstrates  
approximately half of its symmetries as explicit  
ST symmetries, while the other half is hidden.  



BIG PICTURE 

BLACK HOLES HIDE THEIR SYMMETRIES. 
WHY AT ALL HAVE THEY SOMETHING  

TO HIDE? 
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