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Hypercomplex Cycles
Insight–Trivialisation–Oblivion

Why i2 = −1 not 1 or 0? Let us try!
We wish to have “analytic function theory”!!! Naturally:

f(x+ iy) =

∞∑
k=0

ak(x+ iy)k is analytic extension of f(x) =

∞∑
k=0

akx
k.

For j2 = 1 we have e± = 1
2(1± j) such that e+e− = 0, e2± = e±, then

(x+ jy)k = ((x+ y)e+ + (x− y)e−)
k = (x+ y)ke+ + (x− y)ke−.

Thus any “hyperbolic” analytic function has the form

f(x+ jy) = f(x+ y)e+ + f(x− y)e−. (wave eq. solution at least. . . )

Cauchy “integral” formulae—dependence from one or two points on the
real line.



Parabolic Analytic Theory
Even simpler :-( or trivial, in fact

For ε2 = 0, we have from the binomial formula

(x+ εy)k = xk + εkxk−1y.

Thus, from the Taylor expansion, a “parabolic” analytic function is

f(x+ εy) = f(x) + εf ′(x)y (is not even heat eq. solution. . . )

The Cauchy “integral” formulae—dependence from one point on real
line. Yet, this is an incarnation of non-standard analysis, i.e. ε2 is
negligible at ε-scale.
There are successful constructions of hyperbolic and parabolic analytic
theories through

• extension of the elliptic case (Sprößig, Gürlebeck, . . . );

• more advanced Clifford algebra (Cerejeiras, Kähler, Sommen, . . . ).

However, nothing interesting seems to be possible from dual and double
numbers.



Wavelets from the ax+ b group
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Scaling and shift (the affine
group) create a family of
wavelets, which are used for
wavelet transform:

f̂(a,b) =
〈
f, ρ(a,b)φ0

〉
=

〈
f,φ(a,b)

〉
The Gaussian φ(x) = e−x

2/2

as a mother wavelet pro-
duces an approximation of δ-
function.
The mother wavelet φ(x) =
1
x+i generates the Cauchy in-
tegral formula for the upper
half-plane.



Wavelets and Groups
Let G be a group and ρ be its unitary irreducible representation in a
Hilbert space H. For a fixed mother wavelet w0 ∈ H define wavelet
transform from H to Cb(G):

[Wf](g) = 〈f, ρgw0〉 =
〈
ρg−1f,w0

〉
, g ∈ G.

Let Λ be the left regular representation on G:

Λ(g) : f(h)→ f(g−1h).

The following properties of the wavelet transform are of interest:

Proposition

1 W intertwines ρ and Λ:

Wρ(g) = Λ(g)W.

2 The image of W is invariant under left shifts.

3 The image of W is spanned by translations of Ww0—the image of
the mother wavelet .



Proof.

1 Intertwining property:

[W(ρ(g)v)](h) =
〈
ρ(h−1)ρ(g)v,w0

〉
=

〈
ρ((g−1h)−1)v,w0

〉
= [Wv](g−1h)

= Λ(g)[Wv](h).

2 Since H is invariant under ρ and it is intertwined with Λ by W, the
image of W shall be invariant under Λ.

3 By the above property image of W is a closed linear span of all left
translation of Ww0.
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If we extend the group from
ax + b to SL2(R) then the same
Gaussian as the mother wavelet
will produces not only an ap-
proximation of the δ-function but
approximation δ ′ distribution as
well.

However the extension of the
group will not affect the mother
wavelet 1

x+i it will still generate
the Cauchy integral, because is an
eigenvector of the subgroup K.

Thus choices of group and mother
wavelets produce different frame-
works.



Induced Representations
Let G be a group, H its closed subgroup, χ be a linear representation of
H in a space V. The set of V-valued functions with the property

F(gh) = χ(h)F(g),

is invariant under left shifts.
The restriction of the left regular representation to this space is called an
induced representation.
Equivalently we consider the lifting of f(x), x ∈ X = G/H to F(g):

F(g) = χ(h)f(p(g)), p : G→ X, g = s(x)h, p(s(x)) = x.

This is a 1-1 map which transform the left regular representation on G to
the following action:

[ρ ′(g)f](x) = χ(h)f(g · x), where gs(x) = s(g · x)h.

In the case of SL2(R) we have three different types of actions.



Algebraic Characters
from Euler’s Formula

Euler’s formula, expresses trigonometric functions through the exponent
of an imaginary number:

eit = cos t+ i sin t, with |w|2 = u2 + v2. (1)

There are other variants of imaginary units, for example j2 = 1.
Replacing i by j in (1) we get a key to hyperbolic trigonometry:

ejt = cosh t+ j sinh t, with |w|2 = u2 − v2. (2)

For the complete picture we add the parabolic case through the
imaginary unit of dual numbers defined by ε2 = 0. Since εn = 0 for
n > 1, Taylor’s series imply:

eεt = 1 + εt, with |w|2 = u2. (3)

http://en.wikipedia.org/wiki/Euler's_formula
http://en.wikipedia.org/wiki/Dual_number


Rotation of Wheels
Algebraic
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Figure: Rotations of algebraic wheels: elliptic (E), trivial parabolic (P0) and
hyperbolic (H). All blue rims of wheels are defined by the identity x2 − ι2y2 = 1.
Green “spokes” (straight lines from the origin to a point on the rims) are
“rotated” by multiplication by eιt.



Algebraic Expression
of hypercomplex rotations

Elliptic Parabolic Hyperbolic

i2 = −1 ε2 = 0 j2 = 1

w = x+ iy w = x+ εy w = x+ jy

w̄ = x− iy w̄ = x− εy w̄ = x− jy

eit = cos t+ i sin t eεt = 1 + εt ejt = cosh t+ j sinh t

|w|2e = ww̄ = x2 + y2 |w|2p = ww̄ = x2 |w|2h = ww̄ = x2 − y2

argw = tan−1 y
x argw = y

x argw = tanh−1 y
x

unit circle |w|2e = 1 “unit” strip x = ±1 unit hyperbola |w|2h = 1



Euler’s Identity
Matrix Form

Imaginary units are not abstract quantities, they are realised through
zero-trace 2× 2 matrices:

i =

(
0 −1
1 0

)
, ε =

(
0 0
1 0

)
, j =

(
0 1
1 0

)
, (4)

with the parabolic ε nicely sitting between the elliptic i and hyperbolic j.
Then the matrix multiplication implies i2 = −I, ε2 = 0 · I, j2 = I.
Correspondingly we have a matrix form of the Euler’s identity identities:

exp

(
0 −t
t 0

)
=

(
cos t − sin t
sin t cos t

)
, exp

(
0 t

t 0

)
=

(
cosh t sinh t
sinh t cosh t

)
.

(5)
However the above pattern is only partially reproduced in the matrix
form of (3):

exp

(
0 0
t 0

)
=

(
1 0
t 1

)
. (6)



Unitary Characters
and the Cayley Transform

A matrix form of Euler’s identity is provided by the Cayley transform:

1

2

(
1 −i
−i 1

)(
cos t − sin t
sin t cos t

)(
1 i
i 1

)
=

(
eit 0
0 e−it

)
, (7)

where the Cayley transform maps the upper-half plane to the unit disk.
Its hyperbolic cousin is:

1

2

(
1 j
−j 1

)(
cosh t sinh t
sinh t cosh t

)(
1 −j
j 1

)
=

(
ejt 0
0 e−jt

)
. (8)

In the parabolic case we use the same pattern:(
1 −ε
−ε 1

)(
1 t

0 1

)(
1 ε

ε 1

)
=

(
1 − εt t

0 1 + εt

)
=

(
e−εt −t

0 eεt

)
. (9)

However the complete harmony is spoilt by the off-diagonal term.



Characters from Möbius Maps

The matrix Euler’s identity folds back to numbers through the Möbius
maps, diagonal matrices act by multiplications by e2it and e2jt:(

eit 0
0 e−it

)
: −i 7→ sin 2t− i cos 2t;(

ejt 0
0 e−jt

)
: −j 7→ − sinh 2t− j cosh 2t.

However the parabolic action is not such a simple one:(
e−εt 0
t eεt

)
: −ε 7→ 1

t
+ ε

(
1

t2
− 1

)
. (10)

The parabolic “unit circle” is defined by the equation x2 − y = 1 (c.f.
previous x2 = 0).



Rotation of Wheels, Geometric
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Figure: Rotation of geometric wheels: elliptic (E), parabolic P ′ and hyperbolic
(H). Blue orbits are level lines for the respective moduli. Green straight lines
join points with the same value of argument and are drawn with the constant
“angular step” in each case.



Modulus and Argument
In the elliptic and hyperbolic cases orbits of rotations are points with the
constant norm (modulus): either x2 + y2 or x2 − y2.

Definition
Orbits of parabolic rotations are contour lines for moduli (norms):

|u+ εv| =
u2

v+ 1
. (11)

The only straight lines preserved by both the parabolic rotations are
vertical lines, thus we will treat them as “spokes” for parabolic wheels, or
“points on the complex plane with the same argument”:

Definition
Parabolic arguments are defined as follows:

arg(u+ εv) =
1

u
. (12)



Parabolic multiplication
Modulus and argument behave naturally under rotations:

Proposition

Let ws is a parabolic rotation of w by s = t−1. Then:

|ws| = |w| , argws = argw+ s.

Thus we revert theorems into definitions to assign multiplication.

Definition
The product of w1 and w2 is uniquely defined by:

1 arg(w1w2) = argw1 + argw2;

2 |w1w2| = |w1| · |w2|.

We also need a special form of parabolic conjugation.

Definition
Parabolic conjugation is given by u+ εv = −u+ εv.



Compatible Linear Structure
Tropical Form

Multiplication by a scalar is straightforward: it should preserve the
argument and scale the norm of vectors:

a · (u, v) =

(
u,
v+ 1

a
− 1

)
. (13)

Let us introduce the lexicographic order on R2:

(u, v) ≺ (u ′, v ′) if and only if

{
either u < u ′;
or u = u ′, v < v ′.

One can define functions min and max of a pair of points on R2

correspondingly. An addition of two vectors can be defined either as their
minimum or maximum. A similar definition is used in tropical
mathematics, also known as Maslov dequantisation or Rmin and Rmax

algebras. It is easy to check that such an addition is distributive with
respect to scalar multiplication and consequently is invariant under
parabolic rotations.



Compatible Linear Structure
Exotic Form

Definition
Parabolic addition of vectors is defined by the following formulae:

arg(w1 +w2) =
argw1 · |w1|+ argw2 · |w2|

|w1 +w2|
, (14)

|w1 +w2| = |w1|+ |w2| . (15)

The rule for the norm of sum (15) looks too trivial, however it nicely sits
in between the elliptic |w+w ′| 6 |w|+ |w ′| and hyperbolic
|w+w ′| > |w|+ |w ′| inequalities for norms.
Both formulae (14)–(15) together uniquely define explicit expressions for
addition of vectors. Although those expressions are rather cumbersome
and not really much needed.



We get an algebra!

Proposition

Vector addition satisfy the following conditions:

1 They are commutative and associative.

2 They are distributive for multiplication;

3 They are parabolic rotationally invariant;

4 They are distributive in both ways for the scalar multiplication:

a · (w1 +w2) = a ·w1 + a ·w2, (a+ b) ·w = a ·w+ b ·w.

Proposition

The zero vector is (∞,−1) and consequently the inverse of (u, v) is
(u,−v− 2).



Birational geometry

Basis representation: (u, v) = a · (1, 0) + b · (−1, 0) implies:

a = u2−v
2 (1 + u), b = u2−v

2 (1 − u).

To transfer parabolic rotations from (u, v)-plane to (a,b)-coordinates:(
eεt t

0 e−εt

)
: (a,b) 7→

(
a+

t

2
(a+ b),b−

t

2
(a+ b)

)
.

After euclidean rotation by 45◦ given by (a,b) 7→ (a+ b,a− b) this
coincides with the “rectangular” parabolic rotation. Moreover:

Proposition

The above transformations maps algebraic operations in the exotic form
to corresponding operations on dual numbers.

No surprise: any associative and commutative 2D algebra is isomorphic
to either complex, dual or double numbers. But presence of singularities
is the subject of birational geometry.



Affine Group
For G = SL2(R) and H = F the action on G/H is:

g : u 7→ p(g−1 ∗ s(u)) = au+ b

cu+ d
, where g−1 =

(
a b

c d

)
.

We calculate also that

r(g−1 ∗ s(u)) =
(
(cu+ d)−1 0

c cu+ d

)
.

A generic character of F is a power of its diagonal element:

ρκ

(
a 0
c a−1

)
= aκ.

Thus the corresponding realisation of induced representation is:

ρκ(g) : f(u) 7→
1

(cu+ d)κ
f

(
au+ b

cu+ d

)
where g−1 =

(
a b

c d

)
.



Induced Wavelet Transform

Let v0 ∈ H be an eigenfunction as follows:

ρ(h)v0 = χ̃(h) · v0, for all h ∈ H̃.

It is suitable to be the mother wavelet (vacuum vector). Then we have

[Wf](gh) = 〈f, ρ(gh)v0〉 = 〈f, ρ(g)ρ(h)v0〉
= 〈f, χ̃(h) · ρ(g)v0〉 = χ̃(h−1) 〈f, ρ(g)v0〉 .

For v0 the induced wavelet transform W : H→ L∞(G/H̃) by

[Wf](w) = 〈f, ρ0(s(w))v0〉 , (16)

where w ∈ G/H̃ and s : G/H̃→ G.
It intertwines ρ with a representation induced by χ̃−1 of H̃.
Particularly, it intertwines ρ with the representation associated to
G-action on the homogeneous space G/H̃.



Lie algebra
and derived representation

The Lie algebra sl2 of SL2(R) consists of all 2× 2 real matrices of trace
zero. One can introduce a basis:

A =
1

2

(
−1 0
0 1

)
, B =

1

2

(
0 1
1 0

)
, Z =

(
0 1
−1 0

)
.

The commutator relations are

[Z,A] = 2B, [Z,B] = −2A, [A,B] = −
1

2
Z.

The derived representation for a vector field Y ∈ sl2 is defined through
the exponential map exp : sl2 → SL2(R) by the standard formula:

dρY =
d

dt
ρ(etY)

∣∣∣∣
t=0

. (17)



Derived representation
on the real line

Example

For A = 1
2

(
−1 0
0 1

)
we get etA =

(
e−t/2 0

0 et/2

)
. Thus

dρA =
d

dt
ρ(etA)

∣∣∣∣
t=0

=
d

dt

[
1

eκt/2
f
(
e−tu

)]∣∣∣∣
t=0

= −
κ

2
f(u) − uf ′(u).

On the real line the derived representation is represented by the vector
fields:

dρAκ = −
κ

2
· I− u∂u, (18)

dρBκ =
κ

2
u · I+ 1

2
(u2 − 1)∂u, (19)

dρZκ = −κu · I− (u2 + 1)∂u. (20)



Cauchy–Riemann Equation
from Invariant Fields

Let ρ be a unitary representation of Lie group G with the derived
representation dρ of g. Let a mother wavelet w0 be a null-solution, i.e.
Aw0 = 0, for the operator A =

∑
J ajdρ

Xj , where Xj ∈ g. Then the
wavelet transform F(g) = Wf(g) = 〈f, ρ(g)w0〉 for any f satisfies to:

DF(g) = 0, where D =
∑
j ajL

Xj .

Here LXj are left the invariant fields (Lie derivatives) on G corresponding
to Xj.

If LXj is derived representation of Lie derivative A, N, K (without the
matching subgroup) then C-R operator and Laplacian are given by:

D = ιLA + LX, and ∆ = DD̄ = −σLA
2
+ LX

2
, (21)

where X is in the orthogonal complement (with respect to the Killing
form) of the corresponding subgroup K, N, A.



Cauchy–Riemann Equation
Example

Consider the representation ρ

ρ2(g) : f(u) 7→
1

(cu+ d)2
f

(
au+ b

cu+ d

)
where g−1 =

(
a b

c d

)
.

Let A and N ∈ sl2 generates

(
et/2 0

0 e−t/2

)
and

(
1 t

0 1

)
. Then the

derived representations are:

[dρAf](x) = f(x) + xf ′(x), [dρNf](x) = f ′(x).

The corresponding left invariant vector fields on upper half-plane are:

LA = a∂a, LN = a∂b.

The mother wavelet 1
x+i is a null solution of the operator

dρA + idρN = I+ (x+ i) ddx . Therefore the wavelet transform will consist
of the null solutions to the operator LA − iLN = a(∂a + i∂b)—the
Cauchy-Riemann operator.



Cauchy Integral Formula
Eigenvector of K

The infinitesimal version of the eigenvector property ρ(h)v0 = χ(h) · v0 is
dρZnv0 = λv0, explicitly, cf. (20)

nuf(u) + f ′(u)(1 + u2) = λf(u).

The generic solution is:

f(u) =
1

(1 + u2)n/2

(
u+ i

u− i

)iλ/2

=
(u+ i)(iλ−n)/2

(u− i)(iλ+n)/2
.

To avoid multivalent function we need to put λ = im with an integer m.
The Cauchy–Riemann condition (which turn to be later the same as “the
minimal weight condition”) suggests m = n. Thus, the induced wavelet
transform is:

f̂(x,y) = 〈f, ρnf0〉 =
∫
R
f(u)

√
y

u− x− iy
dx =

√
y

∫
R
f(u)

dx

u− (x+ iy)

And its image consists of null solutions of Cauchy–Riemann type
equations. For m > n we obtain polyanalytic functions annihilated by
powers of Cauchy–Riemann operator.



Fix Subgroups of i and j

1

1
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Figure: Elliptic and hyperbolic fix groups of the imaginary units.
In the hyperbolic case there are fixed geometric sets: {−1, 1}, (−1, 1), R.



Other Integral Transforms
Eigenvalues of A

For the subgroup A ′ generated by B ∈ sl2 the derived representation,
cf. (19):

dρBnf(u) = −nuf(u) + (u2 − 1)f ′(u).

It has two singular point ±1, its solution has compact support [−1, 1].

f(x) =
1

(u2 − 1)n/2

(
u+ 1

u− 1

)λ/2
=

(u+ 1)(λ−n)/2

(u− 1)(λ+n)/2
.

For λ = jm we also get, cf. K-case:

f(x) =
(x+ j)(m−κ)/2

(x− j)(m+κ)/2
.

−1

−0, 5

0, 5

1

−1 −0, 5 0, 5 1



Hyperbolic Wavelets from Double
Numbers

The choice of the A-eigenvector as mother wavelet:

• f0 = δ(x± 1)—Dirichlet condition.

• f0 =
1

(x− j)σ
=

(
x+ j

x2 − 1

)σ
—Neumann condition.

• f0 =
χ(1 − x2)

(x− j)σ
—space-like and time-like separation, Fig. 3.

• . . . (combination of above)

Then we follow the general scheme both for wavelets with complex and
double valued wavelets:

• wavelets or coherent states vσ(g, z) = ρσ(g)v0(z).

• d’Alambert integral from the universal wavelet transforms

Wσ : f(z) 7→Wσf(u) = 〈f(z), ρσv0(u, z)〉



Other Integral Transforms
Eigenvalues of N

The subgroup N consists of shifts, the eigenfunction is eλu and the
induced wavelet transform coincides with the Fourier transform.
For the subgroup N ′, the generator is dρ

Z/2−B
n = (un) · I− u2 · ∂u,

cf. (19–20). The eigenvector dρ
Z/2−B
n f = λf is f0(u) = u

ne
λ
u .

Consider some identities for dual numbers:

eεαt = 1 + εαt; (t± ε)α = tα−1(t± εα); (t− ε)(t+ ε) = t2.

Combining them together we can write for λ = εm:

e
εm
u = 1 +

εm

u
=

(
u+ ε

u− ε

)m/2
Then the solution f0(u) = u

ne
λ
u is:

|u|−κ e−
εm
u =

1

((u+ ε)(u− ε))κ/2

(
u+ ε

u− ε

)m/2
=

(u+ ε)(m−κ)/2

(u− ε)(m+κ)/2
(22)

The respective wavelet transform is again very similar to the complex
case.



Expansion over Eigenfunctions
Wavelet are decomposable vg(x) =

∑
λ cλ(x)φλ(g) over the complete set

of its eigenfunctions φα(u) of the subgroup H̃. Then from the wavelet
transform:

〈f(z), vg(z)〉 =
〈
f(z),

∑
λ

cλ(z)φλ(g)

〉
=
∑
λ

φλ(g) 〈f(z), cλ(z)〉

In the elliptic case eigenvectors of K are

fm,κ(u) =
(u− i)(m−κ)/2

(u+ i)(m+κ)/2
.

If we make an Cayley transform to the unit disk those function become
zm, m = 0, 1, 2, . . . and the decomposition is the Taylor series:

f(z) =

∞∑
0

cnz
n.



Raising/Lowering Operators

Denote X̃ = dρ(X) for X ∈ sl2. Let X = Z be the generator of the
compact subgroup K, eigenspaces Z̃vk = ikvk are parametrised by an
integer k ∈ Z. The raising/lowering operators L±:

[Z̃,L±] = λ±L±. (23)

[L± are eigenvectors for operators adZ of adjoint representation of sl2.]
From the commutators (23) L+vk are eigenvectors of Z̃ as well:

Z̃(L+vk) = (L+Z̃+ λ+L+)vk = L+(Z̃vk) + λ+L+vk

= ikL+vk + λ+L+vk = (ik+ λ+)L+vk.

Thus those operators acts on a chain of eigenspaces:

. . .
L+ // Vik−λ
L−

oo
L+ // Vik
L−

oo
L+ // Vik+λ
L−

oo
L+ // . . .
L−

oo



Finding Raising/Lowering Operators
Elliptic and hyperbolic

Subgroup K. Assuming L+ = aÃ+ bB̃+ cZ̃ we obtain a linear equation:

c = 0, 2a = λ+b, −2b = λ+a.

The equations have a solution if and only if λ2+ + 4 = 0, and the raising
operator is L+ = iÃ+ B̃.

Subgroup A. For the commutator [B̃,L+] = λL+ we will got the system:

2c = λa, b = 0,
a

2
= λc.

A solution exists if and only if λ2 = 1. The obvious values λ = ±1 with
the operator L± = ±Ã+ Z̃/2. Each indecomposable sl2-module is formed
by one-dimensional chain of eigenvalue with transitive action of
raising/lowering operators.



Hyperbolic Ladder Operators
Double numbers: λ = ±j solves λ2 = 1 additionally to λ = ±1.
The raising/lowering operators Lh± = ±jÃ+ Z̃/2 “orthogonal” to L±.

. . .

L+j
��

. . .

L+j
��

. . .

L+j
��

. . .
L+h// V(n−2)+j(k−2)
L−h

oo
L+h //

L−j

OO

L+j

��

Vn+j(k−2)
L−h

oo
L+h//

L−j

OO

L+j

��

V(n+2)+j(k−2)
L−h

oo
L+h //

L−j

OO

L+j

��

. . .
L−h

oo

. . .
L+h// V(n−2)+jk
L−h

oo
L+h //

L−j

OO

L+j

��

Vn+jk
L−h

oo
L+h //

L−j

OO

L+j

��

V(n+2)+jk
L−h

oo
L+h //

L−j

OO

L+j

��

. . .
L−h

oo

. . .
L+h// V(n−2)+j(k+2)
L−h

oo
L+h //

L−j

OO

L+j

��

Vn+j(k+2)
L−h

oo
L+h//

L−j

OO

L+j

��

V(n+2)+j(k+2)
L−h

oo
L+h //

L−j
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Finding Raising/Lowering Operators
Parabolic

A generator X = −B+ Z/2 of the subgroup N ′ gets the equations:

b+ 2c = λa, −a = λb,
a

2
= λc,

which can be resolved if and only if λ2 = 0. Restricted with the real
(complex) root λ = 0 make operators L± = −B̃+ Z̃/2. Does not affect
eigenvalues and thus are useless. However, a dual number λt = tε, t ∈ R
leads to the operator L± = ±tεÃ− B̃+ B̃/2, which allow us to build a
sl2-modules with a one-dimensional continuous(!) chain of eigenvalues.

K Introduction of complex numbers is a necessity for the existence of
raising/lowering operators;

N we need dual numbers to make raising/lowering operators useful;

A double number are required for neither existence nor usability of
raising/lowering operators, but do provide an enhancement.



Similarity and Correspondence

Principle of Similarity and correspondence

1 Subgroups K, N and A play the similar role in a structure of the
group SL2(R) and its representations.

2 The subgroups shall be swapped together with the respective
replacement of hypercomplex unit ι.

Manifestations:

• The action of SL2(R) on SL2(R)/H for H = A ′, N ′ or K and
linear-fractional transformations of respective numbers.

• Subgroups K, N ′ and A ′ and unitary rotations of respective unit
cycles.

• Representations induced from subgroup K, N ′ or A ′ and unitarity in
respective numbers.

• The connection between raising/lowering operators for subgroups K,
N ′ or A ′ and corresponding numbers.
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