Geodesic Mappings and Einstein Spaces

Josef Mikeš and Irena Hinterleitner

Palacky University Olomouc, Brno University of Technology

Varna 2016

Josef Mikeš and Irena Hinterleitner Geodesic Mappings and Einstein Spaces

Topics

- **(**) Geodesic mapping theory for $V_n \to \bar{V}_n$ of class C^1
- 2 Geodesic mapping theory for $V_n \rightarrow \bar{V}_n$ of class C^2
- **③** Geodesic mapping between $V_n \in C^r$ (r > 2) and $\bar{V}_n \in C^1$
- On geodesic mappings of Einstein spaces

1. Geodesic mapping theory for $V_n \to \bar{V}_n$ of class C^1

Assume the (pseudo-) Riemannian manifolds $V_n = (M, g, \nabla)$ and $\bar{V}_n = (\bar{M}, \bar{g}, \bar{\nabla})$. Here V_n , $\bar{V}_n \in C^1$, i.e. $g, \bar{g} \in C^1$ which means that their components $g_{ij}, \bar{g}_{ij} \in C^1$.

Definition

A diffeomorphism $f: V_n \to \overline{V}_n$ is called a *geodesic mapping* of V_n onto \overline{V}_n if f maps any geodesic in V_n onto a geodesic in \overline{V}_n .

A manifold V_n admits a geodesic mapping onto \overline{V}_n if and only if the *Levi-Civita equations*

(1)
$$\overline{\nabla}_X Y = \nabla_X Y + \psi(X)Y + \psi(Y)X$$

hold for any tangent fields X, Y and where ψ is a differential form. If $\psi \equiv 0$ than f is affine or trivially geodesic. In local form: $\overline{\Gamma}_{ij}^{h} = \Gamma_{ij}^{h} + \psi_i \delta_j^{h} + \psi_j \delta_i^{h}$, where $\Gamma_{ij}^{h}(\overline{\Gamma}_{ij}^{h})$ are the Christoffel symbols of V_n and \overline{V}_n , ψ_i are components of ψ and δ_i^{h} is the Kronecker delta. Equations (1) are equivalent to the following equations

(2)
$$\bar{g}_{ij,k} = 2\psi_k \bar{g}_{ij} + \psi_i \bar{g}_{jk} + \psi_j \bar{g}_{ik}$$

where "," denotes the covariant derivative on V_n . It is known that

$$\psi_i = \partial_i \Psi, \quad \Psi = rac{1}{2(n+1)} \ln \left| rac{\det \bar{g}}{\det g} \right|, \quad \partial_i = \partial / \partial x^i.$$

Sinyukov proved that the Levi-Civita equations are equivalent to

(3)
$$a_{ij,k} = \lambda_i g_{jk} + \lambda_j g_{ik},$$

where

(4) (a)
$$a_{ij} = e^{2\Psi} \bar{g}^{\alpha\beta} g_{\alpha i} g_{\beta j};$$
 (b) $\lambda_i = -e^{2\Psi} \bar{g}^{\alpha\beta} g_{\beta i} \psi_{\alpha}.$
From (3) follows $\lambda_i = \partial_i \lambda = \partial_i (\frac{1}{2} a_{\alpha\beta} g^{\alpha\beta}).$ On the other hand

(5)
$$\bar{g}_{ij} = e^{2\Psi}\tilde{g}_{ij}, \quad \Psi = \frac{1}{2}\ln\left|\frac{\det g}{\det g}\right|, \quad \|\tilde{g}_{ij}\| = \|g^{i\alpha}g^{j\beta}a_{\alpha\beta}\|^{-1}.$$

The above formulas are the criterion for geodesic mappings $V_n \rightarrow \bar{V}_n$ globally as well as locally.

Let V_n and $\bar{V}_n \in C^2$, then for geodesic mappings $V_n \to \bar{V}_n$ the Riemann and the Ricci tensors transform in this way (6) (a) $\bar{R}^h_{ijk} = R^h_{ijk} + \delta^h_k \psi_{ij} - \delta^h_j \psi_{ik}$; (b) $\bar{R}_{ij} = R_{ij} - (n-1)\psi_{ij}$, where $\psi_{ij} = \psi_{i,j} - \psi_i \psi_j$,

and the Weyl tensor of projective curvature, which is defined in the following form

$$W_{ijk}^{h} = R_{ijk}^{h} + \frac{1}{n-1} \left(\delta_{k}^{h} R_{ij} - \delta_{j}^{h} R_{ik} \right),$$

is invariant.

The integrability conditions of the Sinyukov equations (3)

have the following form

(7)
$$a_{i\alpha}R^{\alpha}_{jkl} + a_{j\alpha}R^{\alpha}_{ikl} = g_{ik}\lambda_{j,l} + g_{jk}\lambda_{i,l} - g_{il}\lambda_{j,k} - g_{jl}\lambda_{i,k}.$$

After contraction with g^{jk} we get

(8)
$$n\lambda_{i,l} = \mu g_{il} - a_{i\alpha} R_l^{\alpha} + a_{\alpha\beta} R_{il}^{\alpha\beta}$$

where $R^{\alpha}{}_{il}{}^{\beta} = g^{\beta k} R^{\alpha}{}_{ilk}$; $R^{\alpha}_{l} = g^{\alpha j} R_{jl}$ and $\mu = \lambda_{\alpha,\beta} g^{\alpha\beta}$.

通 と く ヨ と く ヨ と

3. Geodesic mapping between $V_n \in C^r$ (r > 2) and $\overline{V}_n \in C^1$

Theorem 1

If $V_n \in C^r$ (r > 2) admits geodesic mappings onto $\bar{V}_n \in C^1$, then $\bar{V}_n \in C^r$.

This Theorem is more strong than following theorem

Theorem 2

If $V_n \in C^r$ (r > 2) admits geodesic mappings onto $\bar{V}_n \in C^2$, then $\bar{V}_n \in C^r$.

Lemma 1

Let $\lambda^h \in C^1$ be a vector field and ϱ a function. If $\partial_i \lambda^h - \varrho \, \delta^h_i \in C^1$ then $\lambda^h \in C^2$ and $\varrho \in C^1$.

Sketch of the proof:

The condition $\partial_i \lambda^h - \varrho \, \delta^h_i \in C^1$ can be written in the following form

(9)
$$\partial_i \lambda^h - \varrho \delta^h_i = f^h_i(x),$$

where $f_i^h(x)$ are functions of class C^1 . Evidently, $\varrho \in C^0$. For fixed but arbitrary indices $h \neq i$ we integrate (9) with respect to dx^i :

$$\lambda^h = \Lambda^h + \int_{x_o^i}^{x^i} f_i^h(x^1, \dots, x^{i-1}, t, x^{i+1}, \dots, x^n) dt,$$

where Λ^h is a function, which does not depend on x^i . Because of the existence of the partial derivatives of the functions λ^h and the above integrals, also the derivatives $\partial_h \Lambda^h$ exist. Then we can write (9) for h = i:

(10)
$$\varrho = -f_h^h + \partial_h \Lambda^h + \int_{x_o^i}^{x^i} \partial_h f_i^h(x^1, \dots, x^{i-1}, t, x^{i+1}, \dots, x^n) dt.$$

Because the derivative with respect to x^i of the right-hand side of (10) exists, the derivative of the function ρ exists, too. Obviously $\partial_i \rho = \partial_h f_i^h - \partial_i f_h^h$, therefore $\rho \in C^1$ and from (9) follows $\lambda^h \in C^2$.

In a similar way we can prove the following: if $\lambda^h \in C^r$ $(r \ge 1)$ and $\partial_i \lambda^h - \varrho \delta^h_i \in C^r$ then $\lambda^h \in C^{r+1}$ and $\varrho \in C^r$.

Lemma 2

If $V_n \in C^3$ admits a geodesic mapping onto $\bar{V}_n \in C^2$, then $\bar{V}_n \in C^3$.

Skach of the proof

In this case Sinyukov's equations (3) and (8) hold. According to the assumptions $g_{ii} \in C^3$ and $\bar{g}_{ii} \in C^2$. By a simple check-up we find $\Psi \in C^2$, $\psi_i \in C^1$, $a_{ii} \in C^2$, $\lambda_i \in C^1$ and $R_{iik}^h, R_{ii}^h, R_{ii}, R_i^h \in C^1.$ From the above-mentioned conditions we easily convince ourselves that we can write equation (8) in the form (9), where $\lambda^h = g^{h\alpha} \lambda_{\alpha} \in C^1$, $\rho = \mu/n$ and $f_i^h = (-\lambda^{\alpha} \Gamma^h_{\alpha i} - g^{h\gamma} a_{\alpha\gamma} R_i^{\alpha} + g^{h\gamma} a_{\alpha\beta} R^{\alpha}{}_{i\gamma}{}^{\beta})/n \in C^1.$ From Lemma 1 follows that $\lambda^h \in C^2$, $\rho \in C^1$, and evidently $\lambda_i \in C^2$. Differentiating (3) twice we convince ourselves that $a_{ii} \in C^3$. From this and formula (5) follows that also $\Psi \in C^3$ and $\bar{g}_{ii} \in C^3$.

Further we notice that for geodesic mappings between V_n and \bar{V}_n of class C^3 holds the third set of Sinyukov equations:

(11)
$$(n-1)\mu_{,k} = 2(n+1)\lambda_{\alpha}R_{k}^{\alpha} + a_{\alpha\beta}(2R_{k}^{\alpha}, \beta - R_{k}^{\alpha\beta}, k).$$

If $V_n \in C^r$ and $\overline{V}_n \in C^2$, then by Lemma 2, $\overline{V}_n \in C^3$ and (11) hold. Because Sinyukov's system (3), (8) and (11) is closed, we can differentiate equations (3) (r-1) times. So we convince ourselves that $a_{ij} \in C^r$, and also $\overline{g}_{ij} \in C^r$ ($\equiv \overline{V}_n \in C^r$).

Remark

Because for holomorphically projective mappings of Kähler (and also hyperbolic and parabolic Kähler) spaces hold equations analogical to (3) and (8), from Lemma 1 follows an analog to Theorem 1 for these mappings.

4.On geodesic mappings of Einstein spaces

Einstein spaces V_n are characterized by the condition

 $Ric = const \cdot g$,

so $V_n \in C^2$ would be sufficient.

We remark that spaces of constant curvature are Einstein spaces and Einstein spaces V_3 are always have constant curvature. Therefore many properties of Einstein spaces appear when

$$V \in C^3$$
 and $n > 3$.

Moreover, it is known (D.M. DeTurck and J.L. Kazdan) that an Einstein space V_n belongs to C^{ω} , i.e., for all points of V_n , there exists local coordinate system x for which $g_{ij}(x) \in C^{\omega}$ (analytic coordinate system).

It is known that Riemannian spaces of constant curvature form a closed class with respect to geodesic mappings (Beltrami theorem).

Theorem 3

If the Einstein space V_n admits a nontrivial geodesic mapping onto a (pseudo-) Riemannian space \bar{V}_n , then \bar{V}_n is an Einstein space. In 1978 in the PhD thesis Mikeš proved that above Theorem holds locally for $V_n \in C^3$ and $\bar{V}_n \in C^3$. From Theorem 2 this Theorem holds for $V_n \in C^3$ and $\bar{V}_n \in C^1$. Moreover from results by DeTurck this Theorem holds GLOBALLY and exists common coordinate system in which $V_n \in C^{\omega}$ and $\bar{V}_n \in C^{\omega}$.

Literature:

- L. P. Eisenhart, Non-Riemannian Geometry. Princeton Univ. Press. 1926. Amer. Math. Soc. Colloquium Publications 8 (2000).
- S. Formella, J. Mikeš, Geodesic mappings of Einstein spaces. Szczecińske rocz. naukove, Ann. Sci. Stetinenses. 9 I. (1994) 31-40.
- J. Mikeš, Geodesic and holomorphically projective mappings of special Riemannian spaces. PhD thesis, Odessa, 1979.
- J. Mikeš, *Geodesic mappings of Einstein spaces*. Math. Notes 28 (1981) 922-923; transl. from Mat. Zametki 28 (1980) 935-938.
- L. D. Kudrjavcev, Kurs matematicheskogo analiza. Moscow, Vyssh. skola, 1981.
- J. Mikeš, Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 78 (1996) 311-333.

- J. Mikeš, Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89 (1998) 1334-1353.
- J. Mikeš, V.A. Kiosak, On geodesic maps of four dimensional Einstein spaces. Odessk. Univ. Moscow: Archives at VINITI, 9.4.82, No. 1678-82, (1982).
- J. Mikeš, A. Vanžurová, I. Hinterleitner, Geodesic mappings and some generalizations. Palacky University Press, 2009.
- A. Z. Petrov, New methods in the general theory of relativity. M., Nauka, 1966.
- Zh. Radulovich, J. Mikeš, M. L. Gavril'chenko, Geodesic mappings and deformations of Riemannian spaces. (Russian) Podgorica: CID. Odessa: OGU, 1997.
- N. S. Sinyukov, Geodesic mappings of Riemannian spaces. M., Nauka, 1979.

Thank you for your attention!