On F_{2}^{ε}-planar mappings of (pseudo-) Riemannian manifolds

Patrik Peška

(iv)

Palacký
 University

Olomouc

Joint work with Josef Mikeš and Irena Hinterleitner
Varna 2016

Outline

(1) Introduction
(2) On F-planar mappings
(3) $P Q^{\varepsilon}$-projective Riemannian manifolds
(1) F_{2}^{ε}-projective mapping with $\varepsilon \neq 0$

1. Introduction

- T. Levi-Civita used geodesic mappings for modeling mechanical processes, and A.Z. Petrov used quasigeodesic mappings for modeling in theoretical physics. More general mappings were studied by Hrdina, Slovák and Vašík.
- In 2003 Topalov introduced $P Q^{\varepsilon}$-projectivity of Riemannian metrics, $\varepsilon \in \mathbb{R}(\neq 1,1+n)$. In 2013 these mappings were studied by Matveev and Rosemann. They found that for $\varepsilon=0$ they are projective.
- We show that $P Q^{\varepsilon}$-projective equivalence corresponds to a special case of F-planar mapping studied by Mikeš and Sinyukov (1983) and F_{2}-planar mappings (Mikeš, 1994), with $F=Q$. Moreover, the tensor P is derived from the tensor Q and the non-zero number ε.

2. On F-planar mappings

Let $A_{n}=(M, \nabla, F)$ be an n-dimensional manifold M with affine connection ∇, and affinor structure F, i.e. a tensor field of type (1,1).

Definition 1. [Mikeš, Sinyukov]

A curve ℓ, which is given by the equations $\ell=\ell(t)$,
$\lambda(t)=d \ell(t) / d t(\neq 0), t \in I$, where t is a parameter, is called F-planar, if its tangent vector $\lambda\left(t_{0}\right)$, for any initial value t_{0} of the parameter t, remains under parallel translation along the curve ℓ, in the distribution generated by the vector functions λ and $F \lambda$ along ℓ.

A curve ℓ is F-planar if and only if the following condition holds:

$$
\nabla_{\lambda(t)} \lambda(t)=\varrho_{1}(t) \lambda(t)+\varrho_{2}(t) F \lambda(t)
$$

where ϱ_{1} and ϱ_{2} are some functions of the parameter t.

We suppose two spaces $A_{n}=(M, \nabla, F)$ and $\bar{A}_{n}=(\bar{M}, \bar{\nabla}, \bar{F})$ with torsion-free affine connections ∇ and $\bar{\nabla}$, respectively. Affine structures F and \bar{F} are defined on A_{n}, resp. \bar{A}_{n}.

Definition 2. [Mikeš, Sinyukov]

A diffeomorphism f between manifolds with affine connection A_{n} and \bar{A}_{n} is called an F-planar mapping if any F-planar curve in A_{n} is mapped onto an \bar{F}-planar curve in \bar{A}_{n}.

Assume an F-planar mapping $f: A_{n} \rightarrow \bar{A}_{n}$. Since f is a diffeomorphism, we can suppose local coordinate charts on M and \bar{M}, respectively, such that locally, $f: A_{n} \rightarrow \bar{A}_{n}$ maps points onto points with the same coordinates, and $\bar{M}=M$. We always suppose that $\nabla, \bar{\nabla}$ and the affinors F, \bar{F} are defined on $M(\equiv \bar{M})$.

The following theorem holds.

Theorem 1

An F-planar mapping f from A_{n} onto \bar{A}_{n} preserves F-structures (i.e. $\bar{F}=a F+b I d$, a,b are some functions on M), and is characterized by the following condition

$$
\begin{equation*}
P(X, Y)=\psi(X) \cdot Y+\psi(Y) \cdot X+\varphi(X) \cdot F Y+\varphi(Y) \cdot F X \tag{1}
\end{equation*}
$$

for any vector fields X, Y, where $P=f^{*} \bar{\nabla}-\nabla$ is the deformation tensor field of f, ψ and φ are some linear forms on M.

This Theorem was proved by Mikeš and Sinyukov for finite dimension $n>3$, a more concise proof of this Theorem for $n>3$ and also a proof for $n=3$ was given by J. Mikeš and I. Hinterleitner.

Definition 3

(1) An F-planar mapping of a manifold $A_{n}=(M, \nabla)$ with affine connection onto a (pseudo-) Riemannian manifold $\bar{V}_{n}=(M, \bar{g})$ is called an F_{1}-planar mapping if the metric tensor \bar{g} satisfies the condition

$$
\begin{equation*}
\bar{g}(X, F X)=0, \text { for all } X \tag{2}
\end{equation*}
$$

(2) An F_{1}-planar mapping $A_{n} \rightarrow \bar{V}_{n}$ is called an F_{2}-planar mapping if the one-form ψ is gradient-like, i.e.

$$
\psi(X)=\nabla_{X} \Psi
$$

where Ψ is a function on A_{n}.

If a manifold A_{n} admits F_{2}-planar mapping onto \bar{V}_{n}, then the following equations are satisfied

$$
\begin{equation*}
\nabla_{k} a^{i j}=\lambda^{i} \delta_{k}^{j}+\lambda^{j} \delta_{k}^{i}+\xi^{i} F_{k}^{j}+\xi^{j} F_{k}^{i}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
a^{i j}=e^{2 \psi} \bar{g}^{i j}, \quad \lambda^{i}=-a^{i \alpha} \psi_{\alpha}, \quad \xi^{i}=-a^{i \alpha} \varphi_{\alpha} \tag{4}
\end{equation*}
$$

where $\psi_{j}, \varphi_{i}, F_{i}^{h}$ are components of ψ, φ, F and $\bar{g}^{i j}$ are components of the inverse matrix to the metric \bar{g}. From (2) and (4) follows that $a^{i \alpha} F_{\alpha}^{j}+a^{j \alpha} F_{\alpha}^{i}=0$.
If A_{n} is a (pseudo-) Riemannian manifold $V_{n}=(M, g)$ with metric tensor g, after lowering indices in (3), we obtain

$$
\begin{equation*}
\nabla_{k} a_{i j}=\lambda_{i} g_{j k}+\lambda_{j} g_{i k}+\xi_{i} F_{j k}+\xi_{j} F_{i k} \tag{5}
\end{equation*}
$$

where $a_{i j}=a^{\alpha \beta} g_{i \alpha} g_{j \beta}, \lambda_{i}=g_{i \alpha} \lambda^{\alpha}, \xi_{i}=g_{i \alpha} \xi^{\alpha}, \quad F_{i k}=g_{i \alpha} F_{k}^{\alpha}$.
Evidently $a_{i \alpha} F_{j}^{\alpha}+a_{j \alpha} F_{i}^{\alpha}=0$.

3. $P Q^{\varepsilon}$-projective Riemannian manifolds

3.1 Definition of $P Q^{\varepsilon}$-projective Riemannian manifolds

Let g and \bar{g} be two Riemannian metrics on an n-dimensional manifold M. Consider the $(1,1)$-tensors P, Q which are satisfying the following conditions:

$$
\begin{gathered}
P Q=\varepsilon I d, g(X, P X)=0, \bar{g}(X, P X)=0, \\
g(X, Q X)=0, \bar{g}(X, Q X)=0,
\end{gathered}
$$

for all X and where $\varepsilon \neq 1, n+1$ is a real number.

Definition 4. [Topalov]

The metrics g, \bar{g} are called $P Q^{\varepsilon}$ - projective $(\varepsilon \in \mathbb{R}, \varepsilon \neq 1, n+1)$ if for the 1-form Φ the Levi-Civita connections ∇ and $\bar{\nabla}$ of g and \bar{g} satisfy
$(\bar{\nabla}-\nabla)_{X} Y=\Phi(X) Y+\Phi(Y) X-\Phi(P X) Q Y-\Phi(P Y) Q X$
for all X, Y.

Two metrics g and \bar{g} are denoted by the synonym $P Q^{\varepsilon}$-projective if they are $P Q^{\varepsilon}$-projective equivalent. On the other hand this notation can be seen from the point of view of mappings. The study of these mappings lead us to implement F_{2}^{ε}-planar mapping.

Assume two Riemannian manifolds (M, g) and (\bar{M}, \bar{g}).
A diffeomorphism $f: M \rightarrow \bar{M}$ allows to identify the manifolds M and \bar{M}. For this reason we can speak about $P Q^{\varepsilon}$-projective mappings (or more precisely diffeomorphisms) between (M, g) and (\bar{M}, \bar{g}), when equations (6) and (7) hold.

In these formulas \bar{g} and $\bar{\nabla}$ mean in fact the pullbacks $f^{*} \bar{g}$ and $f^{*} \bar{\nabla}$.

$$
\begin{gather*}
F \text {-planar mapping } \\
P(X, Y)=\psi(X) \cdot Y+\psi(Y) \cdot X+\varphi(X) \cdot F Y+\varphi(Y) \cdot F X \tag{1}\\
P Q^{\varepsilon} \text {-projective mappings } \\
P(X, Y)=\Phi(X) Y+\Phi(Y) X-\Phi(P X) Q Y-\Phi(P Y) Q X \tag{7}
\end{gather*}
$$

Comparing formulas (1) and (7) we make sure that $P Q^{\varepsilon}$-projective equivalence is a special case of the F-planar mapping between Riemannian manifolds (M, g) and (M, \bar{g}). Evidently, this is if $\psi \equiv \Phi, F \equiv Q$ and $\varphi(\cdot)=-\Phi(P(\cdot))$. Moreover, it follows elementary from (7) that ψ is a gradient-like form, thus a $P Q^{\varepsilon}$-projective equivalence is a special case of an F_{2}-planar mapping.

Therefore the $P Q^{\varepsilon}$-projective equivalence formula 3:

$$
\begin{equation*}
\nabla_{k} a^{i j}=\lambda^{i} \delta_{k}^{j}+\lambda^{j} \delta_{k}^{i}+\xi^{i} F_{k}^{j}+\xi^{j} F_{k}^{i}, \tag{3}
\end{equation*}
$$

after lowering the indices i and j by the metric g, has the following form:

$$
\begin{equation*}
\nabla_{k} a_{i j}=\lambda_{i} g_{j k}+\lambda_{j} g_{i k}-\lambda_{\alpha} P_{i}^{\alpha} g_{j \beta} Q_{k}^{\beta}-\lambda_{\alpha} P_{j}^{\alpha} g_{i \beta} Q_{k}^{\beta} \tag{8}
\end{equation*}
$$

From conditions (4):

$$
\begin{equation*}
a^{i j}=e^{2 \psi} \bar{g}^{i j}, \quad \lambda^{i}=-a^{i \alpha} \psi_{\alpha}, \quad \xi^{i}=-a^{i \alpha} \varphi_{\alpha} \tag{4}
\end{equation*}
$$

and (6):

$$
\begin{gathered}
P Q=\varepsilon I d, g(X, P X)=0, \bar{g}(X, P X)=0 \\
g(X, Q X)=0, \bar{g}(X, Q X)=0
\end{gathered}
$$

we obtain $a(X, P X)=0$ and $a(X, Q X)=0$ for all X, and equivalently in local form

$$
\begin{equation*}
a_{i \alpha} P_{j}^{\alpha}+a_{j \alpha} P_{i}^{\alpha}=0 \text { and } a_{i \alpha} Q_{j}^{\alpha}+a_{j \alpha} Q_{i}^{\alpha}=0 \tag{9}
\end{equation*}
$$

3.2. New results about $P Q^{\varepsilon}$-projective Riemannian manifolds for $\varepsilon \neq 0$

We will study $P Q^{\varepsilon}$-projective mappings for $\mathrm{f} \varepsilon \neq 0$. From the condition $P Q=\varepsilon I d$ follows

$$
\begin{equation*}
P=\varepsilon Q^{-1} \tag{10}
\end{equation*}
$$

This implies that P depends on Q and ε. Moreover two conditions in (6) depend on the other ones, i.e. in the definition of $P Q^{\varepsilon}$-projective mappings we can restrict on the conditions $P Q=\varepsilon I d, g(X, Q X)=0, \bar{g}(X, Q X)=0$. This fact implies the following lemma:

Lemma 1.

If Q satisfies the conditions $g(X, Q X)=0$ and $\bar{g}(X, Q X)=0$ for $\varepsilon \neq 0$, then we obtain $g(X, P X)=0$ and $\bar{g}(X, P X)=0$.

4. F_{2}^{ε}-projective mapping with $\varepsilon \neq 0$

Due to the above properties, from formula (7) and Lemma 1, we can simplify the Definition 4 .
Let g and \bar{g} be two (pseudo-) Riemannian metrics on an n-dimensional manifold M. Consider the regular (1,1)-tensors F which are satisfying the following conditions

$$
\begin{equation*}
g(X, F X)=0 \text { and } \bar{g}(X, F X)=0 \text { for all } X \tag{11}
\end{equation*}
$$

Definition 5.

The metrics g and \bar{g} are called F_{2}^{ε}-projective if for a certain gradient-like form ψ the Levi-Civita connections ∇ and $\bar{\nabla}$ of g and \bar{g} satisfy
$\left(f^{*} \bar{\nabla}-\nabla\right)_{X} Y=\psi(X) Y+\psi(Y) X-\varepsilon \psi\left(F^{-1} X\right) F Y-\varepsilon \psi\left(F^{-1} Y\right) F X$,
for all vector fields X, Y and for all $x \in M, \varepsilon$ is non-zero constant.

From the discussion in section 3 we obtain the following proposition:

Proposition 1.

A $P Q^{\varepsilon}$-projective mapping can be understood as an F_{2}^{ε} with

$$
\begin{equation*}
P=\varepsilon F^{-1} \quad \text { and } \quad Q=F . \tag{13}
\end{equation*}
$$

We also prooved following theorem:

Theorem 2.

If a (pseudo-) Riemannian manifold (M, g, F) with regular structure F, for which $F^{2} \neq \kappa I d$ and $g(X, F X)=0$ for all X, admits an F_{2}^{ε}-projective mapping onto a (pseudo-) Riemannian manifold (\bar{M}, \bar{g}), then the linear system of differential equations

$$
\begin{equation*}
\nabla_{k} a_{i j}=\lambda_{i} g_{j k}+\lambda_{j} g_{i k}-\lambda_{\alpha} P_{i}^{\alpha} g_{j \beta} F_{k}^{\beta}-\lambda_{\alpha} P_{j}^{\alpha} g_{i \beta} F_{k}^{\beta} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i \alpha} F_{j}^{\alpha}+a_{j \alpha} F_{i}^{\alpha}=0 \tag{15}
\end{equation*}
$$

hold, where $P=\varepsilon F^{-1}, \lambda_{i}=a_{\alpha \beta} T_{i}^{\alpha \beta}$ and $T_{i}^{\alpha \beta}$ is a certain tensor obtained from $g_{i j}$ and F_{i}^{h}.

Proof.

We covariantly differentiate (15) and obtain

$$
\nabla_{k} a_{i \alpha} F_{j}^{\alpha}+\nabla_{k} a_{j \alpha} F_{i}^{\alpha}=\stackrel{1}{T}_{i j k}
$$

where $\stackrel{1}{T}_{i j k}=-a_{i \alpha} \nabla_{k} F_{j}^{\alpha}-a_{j \alpha} \nabla_{k} F_{i}^{\alpha}$.
Using formula (14), we obtain

$$
\begin{gathered}
\lambda_{i} g_{\alpha k} F_{j}^{\alpha}+\lambda_{\alpha} F_{j}^{\alpha} g_{i k}-\lambda_{\beta} P_{i}^{\beta} g_{\alpha \gamma} F_{j}^{\alpha} F_{k}^{\gamma}-\varepsilon \lambda_{j} g_{i \alpha} F_{k}^{\alpha}+\lambda_{j} g_{\alpha k} F_{i}^{\alpha} \\
+\lambda_{\alpha} F_{i}^{\alpha} g_{j k}-\lambda_{\beta} P_{j}^{\beta} g_{\alpha \gamma} F_{i}^{\alpha} F_{k}^{\gamma}-\varepsilon \lambda_{i} g_{j \alpha} F_{k}^{\alpha}=\stackrel{1}{T}_{i j k} .
\end{gathered}
$$

After some calculation we get

$$
\begin{align*}
& (\varepsilon+1)\left(g_{\alpha k} F_{j}^{\alpha} \lambda_{i}+g_{\alpha k} F_{i}^{\alpha} \lambda_{j}\right)+\lambda_{\alpha} F_{j}^{\alpha} g_{i k}+\lambda_{\alpha} F_{i}^{\alpha} g_{j k}- \\
& \quad-\lambda_{\alpha} P_{i}^{\alpha} g_{\beta \gamma} F_{j}^{\beta} F_{k}^{\gamma}-\lambda_{\alpha} P_{j}^{\alpha} g_{\beta \gamma} F_{i}^{\beta} F_{k}^{\gamma}=\stackrel{1}{T}_{i j k} . \tag{16}
\end{align*}
$$

By cyclic permutation of the indices i, j, k we obtain

$$
\begin{gather*}
\lambda_{\alpha} F_{j}^{\alpha} g_{i k}+\lambda_{\alpha} F_{i}^{\alpha} g_{j k}+\lambda_{\alpha} F_{k}^{\alpha} g_{i j}-\lambda_{\alpha} P_{i}^{\alpha} g_{\beta \gamma} F_{j}^{\beta} F_{k}^{\gamma}- \\
-\lambda_{\alpha} P_{j}^{\alpha} g_{\beta \gamma} F_{i}^{\beta} F_{k}^{\gamma}-\lambda_{\alpha} P_{k}^{\alpha} g_{\beta \gamma} F_{i}^{\beta} F_{j}^{\gamma}=\stackrel{1}{T}_{i j k}+\stackrel{1}{T}_{j k i}+\stackrel{1}{T}_{k i j} . \tag{17}
\end{gather*}
$$

Next, we will subtract equations (16) and (17) :
$(\varepsilon+1)\left(g_{\alpha k} F_{j}^{\alpha} \lambda_{i}+g_{\alpha k} F_{i}^{\alpha} \lambda_{j}\right)-\lambda_{\alpha} F_{k}^{\alpha} g_{i j}+\lambda_{\alpha} P_{k}^{\alpha} g_{\beta \gamma} F_{i}^{\beta} F_{j}^{\gamma}=\stackrel{2}{T}_{i j k}$,
where $\stackrel{2}{T}_{i j k}=-\stackrel{1}{T}_{j k i}-\stackrel{1}{T}_{k i j}$.

We write the homogeneous linear equation to equation (18)

$$
\begin{equation*}
g_{\alpha k} F_{j}^{\alpha} A_{i}+g_{\alpha k} F_{i}^{\alpha} A_{j}-B_{k} g_{i j}+C_{k} g_{\beta \gamma} F_{i}^{\beta} F_{j}^{\gamma}=0 \tag{19}
\end{equation*}
$$

where $A_{i}=(\varepsilon+1) \lambda_{i}, B_{k}=\lambda_{\alpha} F_{k}^{\alpha}, C_{k}=\lambda_{\alpha} P_{k}^{\alpha}$.
Now we prove that (19) has only trivial solution. From that follows that $\lambda_{i}=T$, i.e. is a linear combination of the tensor components $a_{i j}$ with coefficients generated by g and F on V_{n}.

If $A_{i} \neq 0$, from (19) follows rank $\left\|g_{\alpha k} F_{j}^{\alpha}\right\| \leq 3$, in the other case $g_{\alpha k} F_{j}^{\alpha}$ we can decompose into 3 bivectors.

And because the tensors g and F are regular, it follows that $\operatorname{rank}\left\|g_{\alpha k} F_{j}^{\alpha}\right\|=n$.

We suppose that $n \geq 4$.

$$
\begin{equation*}
-B_{k} g_{i j}+C_{k} g_{\beta \gamma} F_{i}^{\beta} F_{j}^{\gamma}=0 \tag{20}
\end{equation*}
$$

If B_{k} or $C_{k} \neq 0$:

$$
\begin{equation*}
g_{\beta \gamma} F_{i}^{\beta} F_{j}^{\gamma}=\rho g_{i j} \tag{21}
\end{equation*}
$$

where ρ is a function.
We multiply formula (21) by P_{k}^{i}. From that follows $F^{2}=\kappa I d$, where κ is a function, which is in contradiction with our assumption. For this reason in the formula (19) we suppose that $A_{i}=B_{i}=C_{i}=0$. Therefore $\lambda_{\alpha} F_{k}^{\alpha}=\stackrel{3}{T}_{k}$, where $\stackrel{3}{T}_{k}$ is a tensor which is a linear combination of $a_{i j}$ with coefficients generated by g and F. Let be $G=F^{-1}$, then $\lambda_{i}=\stackrel{3}{T}_{k} G_{i}^{k}$. This means $\lambda_{i}=a_{\alpha \beta} T_{i}^{\alpha \beta}$.

References

(1) P. Topalov, Geodesic compatibility and integrability of geodesic flows, J. Math. Phys. 44 (2003), No. 2, 913-929.
(2) V. Matveev, S. Rosemann, Two remarks on $P Q^{\varepsilon}$-projectivity of Riemanninan metrics, Glasgow Math. J. 55 (2013), no. 1, 131-138.
(3) J. Mikeš, N.S. Sinyukov, On quasiplanar mappings of space of affine connection, Sov. Math. 27 (1983), 63-70; transl. from Izv. Vyssh. Uchebn. Zaved., Mat. (1983), 55-61.
© I. Hinterleitner, J. Mikeš, On F-planar mappings of spaces with affine connections, Note Mat. 27 (2007), 111-118.
© J. Mikeš, A. Vanžurová, I. Hinterleitner, Geodesic mappings and some generalizations. Palacky University Press, 2009.
© I. Hinterleitner, J. Mikeš and P. Peška, On F_{2}^{ε}-planar mappings of (pseudo-) Riemannian manifolds, Arch. Math. (Brno) 50 (5) (2014), 287-295.

Thank you for your attention!

