On F_2^{ε} -planar mappings of (pseudo-) Riemannian manifolds

Patrik Peška

Palacký University

Olomouc

Joint work with Josef Mikeš and Irena Hinterleitner

Varna 2016

Introduction

- 0 On F-planar mappings
- F_2^{ε} -projective mapping with $\varepsilon \neq 0$

- T. Levi-Civita used geodesic mappings for modeling mechanical processes, and A.Z. Petrov used quasigeodesic mappings for modeling in theoretical physics. More general mappings were studied by Hrdina, Slovák and Vašík.
- In 2003 Topalov introduced PQ^{ε} -projectivity of Riemannian metrics, $\varepsilon \in \mathbb{R} (\neq 1, 1 + n)$. In 2013 these mappings were studied by Matveev and Rosemann. They found that for $\varepsilon = 0$ they are projective.
- We show that PQ^ε-projective equivalence corresponds to a special case of F-planar mapping studied by Mikeš and Sinyukov (1983) and F₂-planar mappings (Mikeš, 1994), with F = Q. Moreover, the tensor P is derived from the tensor Q and the non-zero number ε.

2. On F-planar mappings

Let $A_n = (M, \nabla, F)$ be an *n*-dimensional manifold M with affine connection ∇ , and affinor structure F, i.e. a tensor field of type (1, 1).

Definition 1. [Mikeš, Sinyukov]

A curve ℓ , which is given by the equations $\ell = \ell(t)$, $\lambda(t) = d\ell(t)/dt \ (\neq 0), t \in I$, where t is a parameter, is called *F-planar*, if its tangent vector $\lambda(t_0)$, for any initial value t_0 of the parameter t, remains under parallel translation along the curve ℓ , in the distribution generated by the vector functions λ and $F\lambda$ along ℓ .

A curve ℓ is F-planar if and only if the following condition holds:

$$\nabla_{\lambda(t)}\lambda(t) = \varrho_1(t)\lambda(t) + \varrho_2(t)F\lambda(t),$$

where ρ_1 and ρ_2 are some functions of the parameter t.

We suppose two spaces $A_n = (M, \nabla, F)$ and $\bar{A}_n = (\bar{M}, \bar{\nabla}, \bar{F})$ with torsion-free affine connections ∇ and $\bar{\nabla}$, respectively. Affine structures F and \bar{F} are defined on A_n , resp. \bar{A}_n .

Definition 2. [Mikeš, Sinyukov]

A diffeomorphism f between manifolds with affine connection A_n and \bar{A}_n is called an *F*-planar mapping if any *F*-planar curve in A_n is mapped onto an \bar{F} -planar curve in \bar{A}_n .

Assume an *F*-planar mapping $f: A_n \to \overline{A}_n$. Since f is a diffeomorphism, we can suppose local coordinate charts on M and \overline{M} , respectively, such that locally, $f: A_n \to \overline{A}_n$ maps points onto points with the same coordinates, and $\overline{M} = M$. We always suppose that ∇ , $\overline{\nabla}$ and the affinors F, \overline{F} are defined on $M \ (\equiv \overline{M})$.

The following theorem holds.

Theorem 1

An F-planar mapping f from A_n onto \overline{A}_n preserves F-structures (i.e. $\overline{F} = a F + b Id$, a,b are some functions on M), and is characterized by the following condition

$$P(X,Y) = \psi(X) \cdot Y + \psi(Y) \cdot X + \varphi(X) \cdot FY + \varphi(Y) \cdot FX \quad (1)$$

for any vector fields X, Y, where $P = f^* \overline{\nabla} - \nabla$ is the deformation tensor field of f, ψ and φ are some linear forms on M.

This Theorem was proved by Mikeš and Sinyukov for finite dimension n > 3, a more concise proof of this Theorem for n > 3 and also a proof for n = 3 was given by J. Mikeš and I. Hinterleitner.

Definition 3

• An *F*-planar mapping of a manifold $A_n = (M, \nabla)$ with affine connection onto a (pseudo-) Riemannian manifold $\bar{V}_n = (M, \bar{g})$ is called an *F*₁-planar mapping if the metric tensor \bar{g} satisfies the condition

(2)
$$\overline{g}(X, FX) = 0$$
, for all X.

• An F_1 -planar mapping $A_n \to \overline{V}_n$ is called an F_2 -planar mapping if the one-form ψ is gradient-like, i.e.

$$\psi(X) = \nabla_X \Psi,$$

where Ψ is a function on A_n .

If a manifold A_n admits F_2 -planar mapping onto \overline{V}_n , then the following equations are satisfied

$$\nabla_k a^{ij} = \lambda^i \delta^j_k + \lambda^j \delta^i_k + \xi^i F^j_k + \xi^j F^i_k, \quad (3)$$

where

$$a^{ij} = e^{2\psi}\bar{g}^{ij}, \quad \lambda^i = -a^{i\alpha}\psi_{\alpha}, \quad \xi^i = -a^{i\alpha}\varphi_{\alpha}, \quad (4)$$

where ψ_j , φ_i , F_i^h are components of ψ , φ , F and \bar{g}^{ij} are components of the inverse matrix to the metric \bar{g} . From (2) and (4) follows that $a^{i\alpha}F_{\alpha}^j + a^{j\alpha}F_{\alpha}^i = 0$. If A_n is a (pseudo-) Riemannian manifold $V_n = (M, g)$ with metric tensor g, after lowering indices in (3), we obtain

$$\nabla_k a_{ij} = \lambda_i g_{jk} + \lambda_j g_{ik} + \xi_i F_{jk} + \xi_j F_{ik}, \quad (5)$$

where $a_{ij} = a^{\alpha\beta}g_{i\alpha}g_{j\beta}$, $\lambda_i = g_{i\alpha}\lambda^{\alpha}$, $\xi_i = g_{i\alpha}\xi^{\alpha}$, $F_{ik} = g_{i\alpha}F_k^{\alpha}$. Evidently $a_{i\alpha}F_j^{\alpha} + a_{j\alpha}F_i^{\alpha} = 0$.

3. PQ^{ε} -projective Riemannian manifolds

3.1 Definition of PQ^{ε} -projective Riemannian manifolds

Let g and \overline{g} be two Riemannian metrics on an *n*-dimensional manifold M. Consider the (1, 1)-tensors P, Q which are satisfying the following conditions:

$$PQ = \varepsilon Id, \ g(X, PX) = 0, \ \bar{g}(X, PX) = 0, \quad (6)$$
$$g(X, QX) = 0, \ \bar{g}(X, QX) = 0,$$

for all X and where $\varepsilon \neq 1$, n+1 is a real number.

Definition 4. [Topalov]

The metrics g, \bar{g} are called PQ^{ε} - projective ($\varepsilon \in \mathbb{R}, \varepsilon \neq 1, n+1$) if for the 1-form Φ the Levi-Civita connections ∇ and $\bar{\nabla}$ of gand \bar{g} satisfy

$$(\bar{\nabla} - \nabla)_X Y = \Phi(X)Y + \Phi(Y)X - \Phi(PX)QY - \Phi(PY)QX \quad (7)$$

for all X, Y.

Two metrics g and \bar{g} are denoted by the synonym PQ^{ε} -projective if they are PQ^{ε} -projective equivalent. On the other hand this notation can be seen from the point of view of mappings. The study of these mappings lead us to implement F_2^{ε} -planar mapping. Assume two Riemannian manifolds (M, g) and $(\overline{M}, \overline{g})$.

A diffeomorphism $f: M \to \overline{M}$ allows to identify the manifolds M and \overline{M} . For this reason we can speak about PQ^{ε} -projective mappings (or more precisely diffeomorphisms) between (M, g) and $(\overline{M}, \overline{g})$, when equations (6) and (7) hold.

In these formulas \bar{g} and $\bar{\nabla}$ mean in fact the pullbacks $f^*\bar{g}$ and $f^*\bar{\nabla}$.

F-planar mapping

 $P(X,Y) = \psi(X) \cdot Y + \psi(Y) \cdot X + \varphi(X) \cdot FY + \varphi(Y) \cdot FX \quad (1)$

PQ^{ε} -projective mappings

 $P(X,Y) = \Phi(X)Y + \Phi(Y)X - \Phi(PX)QY - \Phi(PY)QX \quad (7)$

Comparing formulas (1) and (7) we make sure that PQ^{ε} -projective equivalence is a special case of the *F*-planar mapping between Riemannian manifolds (M, g) and (M, \bar{g}) . Evidently, this is if $\psi \equiv \Phi$, $F \equiv Q$ and $\varphi(\cdot) = -\Phi(P(\cdot))$. Moreover, it follows elementary from (7) that ψ is a gradient-like form, thus a PQ^{ε} -projective equivalence is a special case of an F_2 -planar mapping. Therefore the PQ^{ε} -projective equivalence formula 3:

$$\nabla_k a^{ij} = \lambda^i \delta^j_k + \lambda^j \delta^i_k + \xi^i F^j_k + \xi^j F^i_k, \quad (3)$$

after lowering the indices i and j by the metric g, has the following form:

$$\nabla_k a_{ij} = \lambda_i g_{jk} + \lambda_j g_{ik} - \lambda_\alpha P_i^\alpha g_{j\beta} Q_k^\beta - \lambda_\alpha P_j^\alpha g_{i\beta} Q_k^\beta.$$
(8)
From conditions (4):

$$a^{ij} = e^{2\psi} \bar{g}^{ij}, \quad \lambda^i = -a^{i\alpha}\psi_{\alpha}, \quad \xi^i = -a^{i\alpha}\varphi_{\alpha}, \quad (4)$$

and (6):

$$PQ = \varepsilon Id, \ g(X, PX) = 0, \ \bar{g}(X, PX) = 0,$$
(6)

$$g(X,QX) = 0, \ \bar{g}(X,QX) = 0,$$

we obtain a(X, PX) = 0 and a(X, QX) = 0 for all X, and equivalently in local form

$$a_{i\alpha}P_j^{\alpha} + a_{j\alpha}P_i^{\alpha} = 0 \text{ and } a_{i\alpha}Q_j^{\alpha} + a_{j\alpha}Q_i^{\alpha} = 0.$$
 (9)

3.2. New results about PQ^{ε} -projective Riemannian manifolds for $\varepsilon \neq 0$

We will study PQ^{ε} -projective mappings for f $\varepsilon \neq 0$. From the condition $PQ = \varepsilon Id$ follows

$$P = \varepsilon Q^{-1}.$$
 (10)

This implies that P depends on Q and ε . Moreover two conditions in (6) depend on the other ones, i.e. in the definition of PQ^{ε} -projective mappings we can restrict on the conditions $PQ = \varepsilon Id, g(X, QX) = 0, \bar{g}(X, QX) = 0$. This fact implies the following lemma:

Lemma 1.

If Q satisfies the conditions g(X, QX) = 0 and $\overline{g}(X, QX) = 0$ for $\varepsilon \neq 0$, then we obtain g(X, PX) = 0 and $\overline{g}(X, PX) = 0$.

4. F_2^{ε} -projective mapping with $\varepsilon \neq 0$

Due to the above properties, from formula (7) and Lemma 1, we can simplify the Definition 4.

Let g and \overline{g} be two (pseudo-) Riemannian metrics on an *n*-dimensional manifold M. Consider the regular (1, 1)-tensors F which are satisfying the following conditions

g(X, FX) = 0 and $\bar{g}(X, FX) = 0$ for all X. (11)

Definition 5.

The metrics g and \bar{g} are called F_2^{ε} -projective if for a certain gradient-like form ψ the Levi-Civita connections ∇ and $\bar{\nabla}$ of g and \bar{g} satisfy

 $(f^*\bar{\nabla}-\nabla)_XY=\psi(X)Y+\psi(Y)X-\varepsilon\,\psi(F^{-1}X)FY-\varepsilon\,\psi(F^{-1}Y)FX,$

for all vector fields X,Y and for all $x\in M,\,\varepsilon$ is non-zero constant.

From the discussion in section 3 we obtain the following proposition:

Proposition 1.

A $PQ^{\varepsilon}\text{-}\mathrm{projective}$ mapping can be understood as an F_2^{ε} with

$$P = \varepsilon F^{-1}$$
 and $Q = F$. (13)

We also prooved following theorem:

Theorem 2.

If a (pseudo-) Riemannian manifold (M, g, F) with regular structure F, for which $F^2 \neq \kappa Id$ and g(X, FX) = 0 for all X, admits an F_2^{ε} -projective mapping onto a (pseudo-) Riemannian manifold $(\overline{M}, \overline{g})$, then the linear system of differential equations

$$\nabla_k a_{ij} = \lambda_i g_{jk} + \lambda_j g_{ik} - \lambda_\alpha P_i^\alpha g_{j\beta} F_k^\beta - \lambda_\alpha P_j^\alpha g_{i\beta} F_k^\beta \qquad (14)$$

and

$$a_{i\alpha}F_j^{\alpha} + a_{j\alpha}F_i^{\alpha} = 0 \qquad (15)$$

hold, where $P = \varepsilon F^{-1}$, $\lambda_i = a_{\alpha\beta}T_i^{\alpha\beta}$ and $T_i^{\alpha\beta}$ is a certain tensor obtained from g_{ij} and F_i^h .

Proof.

We covariantly differentiate (15) and obtain

$$\nabla_k a_{i\alpha} F_j^{\alpha} + \nabla_k a_{j\alpha} F_i^{\alpha} = \overset{1}{T}_{ijk},$$

where $\overset{1}{T}_{ijk} = -a_{i\alpha} \nabla_k F_j^{\alpha} - a_{j\alpha} \nabla_k F_i^{\alpha}.$
Using formula (14), we obtain

$$\begin{split} \lambda_{i}g_{\alpha k}F_{j}^{\alpha} + \lambda_{\alpha}F_{j}^{\alpha}g_{ik} - \lambda_{\beta}P_{i}^{\beta}g_{\alpha\gamma}F_{j}^{\alpha}F_{k}^{\gamma} - \varepsilon\lambda_{j}g_{i\alpha}F_{k}^{\alpha} + \lambda_{j}g_{\alpha k}F_{i}^{\alpha} \\ + \lambda_{\alpha}F_{i}^{\alpha}g_{jk} - \lambda_{\beta}P_{j}^{\beta}g_{\alpha\gamma}F_{i}^{\alpha}F_{k}^{\gamma} - \varepsilon\lambda_{i}g_{j\alpha}F_{k}^{\alpha} = \overset{1}{T}_{ijk}. \end{split}$$

After some calculation we get

$$(\varepsilon+1)(g_{\alpha k}F_{j}^{\alpha}\lambda_{i}+g_{\alpha k}F_{i}^{\alpha}\lambda_{j})+\lambda_{\alpha}F_{j}^{\alpha}g_{ik}+\lambda_{\alpha}F_{i}^{\alpha}g_{jk}-\lambda_{\alpha}P_{i}^{\alpha}g_{\beta\gamma}F_{j}^{\beta}F_{k}^{\gamma}-\lambda_{\alpha}P_{j}^{\alpha}g_{\beta\gamma}F_{i}^{\beta}F_{k}^{\gamma}=\overset{1}{T}_{ijk}.$$
(16)

By cyclic permutation of the indices i, j, k we obtain

$$\lambda_{\alpha}F_{j}^{\alpha}g_{ik} + \lambda_{\alpha}F_{i}^{\alpha}g_{jk} + \lambda_{\alpha}F_{k}^{\alpha}g_{ij} - \lambda_{\alpha}P_{i}^{\alpha}g_{\beta\gamma}F_{j}^{\beta}F_{k}^{\gamma} - \lambda_{\alpha}P_{j}^{\alpha}g_{\beta\gamma}F_{i}^{\beta}F_{k}^{\gamma} - \lambda_{\alpha}P_{k}^{\alpha}g_{\beta\gamma}F_{i}^{\beta}F_{j}^{\gamma} = \overset{1}{T}_{ijk} + \overset{1}{T}_{jki} + \overset{1}{T}_{kij}.$$
(17)

Next, we will subtract equations (16) and (17):

$$(\varepsilon+1)(g_{\alpha k}F_{j}^{\alpha}\lambda_{i}+g_{\alpha k}F_{i}^{\alpha}\lambda_{j})-\lambda_{\alpha}F_{k}^{\alpha}g_{ij}+\lambda_{\alpha}P_{k}^{\alpha}g_{\beta\gamma}F_{i}^{\beta}F_{j}^{\gamma}=\overset{2}{T}_{ijk}, (18)$$

where $\overset{2}{T}_{ijk}=-\overset{1}{T}_{jki}-\overset{1}{T}_{kij}.$

We write the homogeneous linear equation to equation (18)

$$g_{\alpha k}F_j^{\alpha}A_i + g_{\alpha k}F_i^{\alpha}A_j - B_kg_{ij} + C_kg_{\beta\gamma}F_i^{\beta}F_j^{\gamma} = 0, \quad (19)$$

where $A_i = (\varepsilon + 1)\lambda_i$, $B_k = \lambda_\alpha F_k^\alpha$, $C_k = \lambda_\alpha P_k^\alpha$.

Now we prove that (19) has only trivial solution. From that follows that $\lambda_i = T$, i.e. is a linear combination of the tensor components a_{ij} with coefficients generated by g and F on V_n .

If $A_i \neq 0$, from (19) follows rank $\left\| g_{\alpha k} F_j^{\alpha} \right\| \leq 3$, in the other case $g_{\alpha k} F_j^{\alpha}$ we can decompose into 3 bivectors.

And because the tensors g and F are regular, it follows that rank $\left\|g_{\alpha k}F_{j}^{\alpha}\right\| = n.$

We suppose that $n \ge 4$.

$$-B_k g_{ij} + C_k g_{\beta\gamma} F_i^{\beta} F_j^{\gamma} = 0.$$
 (20)

If B_k or $C_k \neq 0$:

$$g_{\beta\gamma}F_i^{\beta}F_j^{\gamma} = \rho g_{ij}, \qquad (21)$$

where ρ is a function.

We multiply formula (21) by P_k^i . From that follows $F^2 = \kappa Id$, where κ is a function, which is in contradiction with our assumption. For this reason in the formula (19) we suppose that $A_i = B_i = C_i = 0$. Therefore $\lambda_{\alpha} F_k^{\alpha} = T_k^3$, where T_k^3 is a tensor which is a linear combination of a_{ij} with coefficients generated by g and F. Let be $G = F^{-1}$, then $\lambda_i = T_k^3 G_i^k$. This means $\lambda_i = a_{\alpha\beta} T_i^{\alpha\beta}$.

References

- P. Topalov, Geodesic compatibility and integrability of geodesic flows, J. Math. Phys. 44 (2003), No. 2, 913–929.
- V. Matveev, S. Rosemann, Two remarks on PQ^ε-projectivity of Riemanninan metrics, Glasgow Math. J. 55 (2013), no. 1, 131–138.
- J. Mikeš, N.S. Sinyukov, On quasiplanar mappings of space of affine connection, Sov. Math. 27 (1983), 63–70; transl. from Izv. Vyssh. Uchebn. Zaved., Mat. (1983), 55–61.
- I. Hinterleitner, J. Mikeš, On F-planar mappings of spaces with affine connections, Note Mat. 27 (2007), 111–118.
- J. Mikeš, A. Vanžurová, I. Hinterleitner, Geodesic mappings and some generalizations. Palacky University Press, 2009.
- I. Hinterleitner, J. Mikeš and P. Peška, On F₂^ε-planar mappings of (pseudo-) Riemannian manifolds, Arch. Math. (Brno) 50 (5) (2014), 287-295.

Thank you for your attention!