Trajectories of the Plate-Ball Problem

Vladimir Pulov ${ }^{1}$
Mariana Hadzhilazova, ${ }^{2}$ Ivailo Mladenov ${ }^{2}$
${ }^{1}$ Department of Physics, Technical University of Varna
${ }^{2}$ Institute of Biophysics, Bulgarian Academy of Science
Geometry, Integrability and Quantization June 3-8, 2016

Outline

Trajectories of the Plate-Ball Problem

1. The Plate-Ball Problem

Statement of the Problem
Mathematical Prerequisites
Mathematical Model
2. Explicit Parametrization

Via the Jacobian Elliptic Functions and Elliptic Integrals
The Plate-Ball Problem and the Eulerian Elastica
Trajectories via Mathematica ${ }^{\circledR}$

The Problem of a Rolling Sphere
(David Kendall, Oxford, 1950s)

- A spherical ball rests on an infinite horizontal table.
- The ball has to be transferred from a given initial state to an arbitrary final state, meaning its position and orientation in space via a sequence of moves.
- Each move consists of rolling the ball along some straight line on the table.
- The axis of rotation must be horizontal and there must be no slipping between the ball and the table.

The Problem of a Rolling Sphere (David Kendall, Oxford, 1950s)

How many moves, N, will be necessary and sufficient to reach any final state?

$$
\text { Ans: } N=3 \text { (Hammersley, 1983) }
$$

The Plate-Ball Problem

Rolling Along a Curve of Shortest Length (Hammersley, 1983)

Which is the shortest curved path between the prescribed initial and final states?

The Plate-Ball Problem

Mathematical Prerequisites

Quaternions and Rotations

A quaternion, q, is a combination of a scalar and a vector

$$
q=\rho_{0}+\rho_{1} \mathbf{i}+\rho_{2} \mathbf{j}+\rho_{3} \mathbf{k}
$$

A quaternion product, $\mathbf{v} \mathbf{w}$, of two vectors \mathbf{v} and \mathbf{w} is a quaternion

$$
\mathbf{v} \mathbf{w}=-\mathbf{v} \cdot \mathbf{w}+\mathbf{v} \times \mathbf{w}
$$

A rotation through angle φ about the unit vector \mathbf{u} is represented by the quaternion pair

$$
\pm q= \pm \mathrm{e}^{\frac{1}{2} \varphi \mathbf{u}}= \pm\left(\cos \frac{1}{2} \varphi+\mathbf{u} \sin \frac{1}{2} \varphi\right)= \pm \mathbf{u}_{2} \mathbf{u}_{1}
$$

The Plate-Ball Problem

Optimal Control Problem

State equation: $\dot{\mathbf{x}}=f(\mathbf{x}, \mathbf{h}), \mathbf{x} \in R^{n}, \quad \mathbf{h} \in \mathbb{R}^{r}$
Control function: $\mathbf{h}=\mathbf{h}(t) \in \Delta$ (admissible controls)
Trajectory of the controlled system: $\mathbf{x}=\mathbf{x}(t)$
Cost function: $\mathcal{J}(\mathbf{h})=\int_{0}^{T} f_{0}(t, \mathbf{x}(\mathbf{t}), \mathbf{h}(t)) \mathrm{d} t$
Given an initial point $\mathbf{x}(0)=\mathbf{x}_{0}$ and a final point $\mathbf{x}(T)=\mathbf{x}_{E}$, find optimal control $\mathbf{h}^{\star}(t)$, such that minimizes the cost function

$$
\mathcal{J}\left(\mathbf{h}^{\star}\right) \leq \mathcal{J}(\mathbf{h})
$$

The Plate-Ball Problem

Pontryagin Maximum Principle (free-final-time problem)

Optimal control $\mathbf{h}^{\star}(t)$ and optimal trajectory $\mathbf{x}^{\star}(t)$ are known. Hence, there exists adjoint function $\lambda^{\star}(t) \in \mathbb{R}^{n+1}$ satisfying

$$
\dot{\lambda}=-\frac{\partial \mathcal{H}}{\partial \mathbf{x}}\left(\lambda(t), \mathbf{x}^{\star}(t), \mathbf{h}^{\star}(t)\right)
$$

where the Hamiltonian is given by

$$
\mathcal{H}(\lambda, \mathbf{x}, \mathbf{h})=\sum_{\alpha=0}^{n} \lambda_{\alpha} f_{\alpha}(\mathbf{x}, \mathbf{h})
$$

and the Pontryagin maximum principle holds

$$
\max _{h \in \Delta} \mathcal{H}\left(\lambda, \mathbf{x}^{\star}, \mathbf{h}\right)=\mathcal{H}\left(\lambda, \mathbf{x}^{\star}, \mathbf{h}^{\star}\right) \equiv 0, \quad \lambda_{0} \leq 0
$$

The Plate-Ball Problem

Mathematical Model

Differential Equation of the Rolling Sphere (Hammersley, 1983)

The sphere is rolled along a unit speed curve Γ, parameterized by the arc length t. The resultant rotation at t is given by the quaternion

$$
q(t)=\rho_{0}(t)+\rho_{1}(t) \mathbf{i}+\rho_{2}(t) \mathbf{j}+\rho_{3}(t) \mathbf{k}
$$

The instantaneous axis of rotation is specified by the unit vector $h(t)$ along the axis of rotation

$$
\mathbf{h}(t)=h_{1}(t) \mathbf{i}+h_{2}(t) \mathbf{j}
$$

The differential equation of the rolling sphere is of the form:

$$
\dot{q}=\frac{1}{2} h q
$$

The Plate-Ball Problem

Rolling a Sphere Along a Curve of the Shortest Length

 (a "minimum-time" optimal control problem)Cost function: $\mathcal{J} \equiv T=\int_{0}^{T} 1 . \mathrm{d} t \quad(T-$ length of the curve)
Control function: $\mathbf{h}=\mathbf{h}(t) \in \Delta \quad(\Delta=\{\mathbf{h}:|\mathbf{h}|=1\})$
Initial position and orientation: $O(0,0), q(0)=(1,0,0,0)$
Final position:

$$
x(T) \equiv \int_{0}^{T} h_{2}(t) \mathrm{d} t=x_{E}, \quad z(T) \equiv \int_{0}^{T} h_{1}(t) \mathrm{d} t=-z_{E}
$$

Final orientation: $q(T)=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$

The Plate-Ball Problem

Mathematical Model

The Plate-Ball Problem

Mathematical Model
State Variables and State Equations
State variables: $\rho=\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{-1}, \rho_{4}, \rho_{5}\right)$
$\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}\right)$ - coordinates of the quaternion q
($\rho_{-1}, \rho_{4}, \rho_{5}$) - state variable inferred from the integrals $\int_{0}^{T} 1 \mathrm{~d} t=T, \quad \int_{0}^{T} h_{2}(t) \mathrm{d} t=x_{E}, \quad \int_{0}^{T} h_{1}(t) \mathrm{d} t=-z_{E}$

State equations:

$$
\begin{array}{ll}
\dot{\rho}_{0}=-\frac{1}{2}\left(h_{1} \rho_{1}+h_{2} \rho_{2}\right), & \dot{\rho}_{1}=\frac{1}{2}\left(h_{1} \rho_{0}+h_{2} \rho_{3}\right) \\
\dot{\rho}_{2}=\frac{1}{2}\left(-h_{1} \rho_{3}+h_{2} \rho_{0}\right), & \dot{\rho}_{3}=\frac{1}{2}\left(h_{1} \rho_{2}-h_{2} \rho_{1}\right) \\
\dot{\rho}_{-1}=1, & \dot{\rho}_{4}=\frac{1}{2} h_{1},
\end{array} \dot{\rho}_{5}=\frac{1}{2} h_{2}-1 .
$$

The Plate-Ball Problem

Mathematical Model

Adjoint Variables and the Hamiltonian (Arthurs and Walsh, 1986)

Adjoint variables: $\lambda=\left(\lambda_{-1}, \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right)$
The Hamiltonian:

$$
\begin{aligned}
\mathcal{H}= & \lambda_{-1}-\frac{1}{2} \lambda_{0}\left(h_{1} \rho_{1}+h_{2} \rho_{2}\right)+\frac{1}{2} \lambda_{1}\left(h_{1} \rho_{0}+h_{2} \rho_{3}\right) \\
& +\frac{1}{2} \lambda_{2}\left(-h_{1} \rho_{3}+h_{2} \rho_{0}\right)+\frac{1}{2} \lambda_{3}\left(h_{1} \rho_{2}-h_{2} \rho_{1}\right) \\
& +\frac{1}{2} \lambda_{4} h_{1}+\frac{1}{2} \lambda_{5} h_{2}
\end{aligned}
$$

The Plate-Ball Problem

Mathematical Model

Adjoint Equations

(Arthurs and Walsh, 1986)

Vector form: $\quad \dot{\lambda}=-\frac{\partial \mathcal{H}}{\partial \rho}$
Coordinate form:

$$
\begin{array}{ll}
\dot{\lambda}_{-1}=0, & \dot{\lambda}_{4}=0,
\end{array} \dot{\lambda}_{5}=0, ~ \begin{array}{ll}
\dot{\lambda}_{1}=\frac{1}{2}\left(h_{1} \lambda_{0}+h_{2} \lambda_{3}\right) \\
\dot{\lambda}_{0}=-\frac{1}{2}\left(h_{1} \lambda_{1}+h_{2} \lambda_{2}\right), & \dot{\lambda}_{3}=\frac{1}{2}\left(h_{1} \lambda_{2}-h_{2} \lambda_{1}\right)
\end{array}
$$

The Plate-Ball Problem

Mathematical Model

Rolling a Sphere Along a Curve of the Shortest Length (a "minimum-time" optimal control problem)

Given the initial position $x(0)=z(0)=0$ and the final position

$$
x(T) \equiv \int_{0}^{T} h_{2}(t) \mathrm{d} t=x_{E}, \quad z(T) \equiv \int_{0}^{T} h_{1}(t) \mathrm{d} t=-z_{E}
$$

the initial and final orientation of the sphere

$$
q(0)=(1,0,0,0), \quad q(T)=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)
$$

find the optimal control ($h_{1}^{\star}, h_{2}^{\star}$) (the optimal unit vector \mathbf{h}^{\star} along the axis of rotation) such that minimizes the cost function $\mathcal{J} \equiv T$ (minimizes the length T of the curve).

The Plate-Ball Problem

Mathematical Model

> Optimal Controls (applying Pontryagin maximum principle)

The optimal controls ($h_{1}^{\star}, h_{2}^{\star}$) are found by choosing

$$
\lambda_{-1}=-1
$$

(as for "minimum-time" problem) and maximizing the Hamiltonian \mathcal{H} amongst the admissible controls

$$
h_{1}^{2}+h_{2}^{2}-1=0
$$

The optimal controls are found to be (Hammersley, 1983)

$$
\begin{aligned}
& h_{1}^{\star}=\lambda_{4}-\lambda_{0} \rho_{1}+\lambda_{1} \rho_{0}-\lambda_{2} \rho_{3}+\lambda_{3} \rho_{2} \\
& h_{2}^{\star}=\lambda_{5}-\lambda_{0} \rho_{2}+\lambda_{1} \rho_{3}+\lambda_{2} \rho_{0}-\lambda_{3} \rho_{1}
\end{aligned}
$$

The Plate-Ball Problem

Mathematical Model

Curvature Equation I (Arthurs and Walsh, 1986)

The coordinates of \mathbf{h} are given by

$$
\begin{equation*}
h_{1}=\cos \psi, \quad h_{1}=\sin \psi \tag{1}
\end{equation*}
$$

where ψ is the angle between \mathbf{h} and the coordinate axis $O x$.
The curvature κ of a plane curve Γ is given by

$$
\begin{equation*}
\kappa=\dot{\psi} \tag{2}
\end{equation*}
$$

Based on the state and adjoint equations ($\dot{\lambda}=-\frac{\partial \mathcal{H}}{\partial \rho}, \dot{\rho}=\frac{\partial \mathcal{H}}{\partial \lambda}$), and the expression for ($h_{1}^{\star}, h_{2}^{\star}$), it is deduced from (1) and (2) that

$$
\dot{\kappa}=\lambda \cos (\psi+\varepsilon), \quad \lambda, \varepsilon=\mathrm{const}
$$

The Plate-Ball Problem

Mathematical Model

Curvature Equation II

 (Arthurs and Walsh, 1986)On integrating the last equation

$$
\dot{\kappa}=\lambda \cos (\psi+\varepsilon), \quad \lambda>0, \varepsilon=\text { const }
$$

and making use of

$$
\dot{x}=\sin (\psi+\varepsilon), \quad \dot{z}=-\cos (\psi+\varepsilon), \quad \varepsilon=\text { const }
$$

it is obtained that the curvature of Γ satisfies the equation

$$
\kappa=-\lambda z-\mu, \quad \lambda>0, \mu=\mathrm{const}
$$

which is equivalently written as

$$
\frac{z^{\prime \prime}}{\left(1+z^{\prime 2}\right)^{3 / 2}}=-\lambda z-\mu \quad\left(z^{\prime}=\mathrm{d} z / \mathrm{d} x\right)
$$

The Plate-Ball Problem

Mathematical Model

Curvature Equation III

On integrating the last equation

$$
\frac{z^{\prime \prime}}{\left(1+z^{\prime 2}\right)^{3 / 2}}=-\lambda z-\mu \quad\left(z^{\prime}=\mathrm{d} z / \mathrm{d} x\right)
$$

under the initial condition

$$
z^{\prime}=0 \text { for } z=\eta=\text { maximum deflection ordinate }
$$

it is obtained the equation

$$
\left(z^{\prime}\right)^{2}=\frac{1-\left[1+\frac{\lambda}{2}\left(z^{2}-\eta^{2}\right)+\mu(z-\eta)\right]^{2}}{\left[1+\frac{\lambda}{2}\left(z^{2}-\eta^{2}\right)+\mu(z-\eta)\right]^{2}}, \quad \lambda>0, \mu, \eta=\mathrm{const}
$$

The Plate-Ball Problem

Mathematical Model

Curvature Equation IV The Intrinsic Equation of the Trajectory

On introducing the arc length parameter t, it follows from

$$
\begin{aligned}
& \kappa=-\lambda z-\mu \\
& \left(\frac{\mathrm{d} z}{\mathrm{~d} x}\right)^{2}=\frac{1-\left[1+\frac{\lambda}{2}\left(z^{2}-\eta^{2}\right)+\mu(z-\eta)\right]^{2}}{\left[1+\frac{\lambda}{2}\left(z^{2}-\eta^{2}\right)+\mu(z-\eta)\right]^{2}}
\end{aligned}
$$

the intrinsic equation of the trajectory

$$
\frac{\mathrm{d} \kappa}{\mathrm{~d} t}=\frac{1}{4}\left(\sigma^{2}-\kappa^{2}\right)\left(\kappa^{2}+4 \lambda-\sigma^{2}\right), \quad \sigma=\mu+\eta \lambda
$$

The Plate-Ball Problem

Mathematical Model

The Plate-Ball Problem and the Eulerian Elastica

On substituting with

$$
z=\zeta-\frac{\mu}{\lambda}, \quad \sigma^{2}=2(1-\nu) \lambda
$$

where ζ is a new coordinate and $\nu<1$ is a new parameter, the equations of the plate-ball problem are reduced to the equations of the Eulerian elastica (Djondjorov, Hadzhilazova, Mladenov and Vassilev, 2008)

$$
\begin{gathered}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\lambda \zeta^{2}}{2}+\nu \\
\left(\frac{\mathrm{d} \zeta}{\mathrm{~d} t}\right)^{2}=-\frac{\lambda^{2} \zeta^{4}}{4}-\lambda \nu \zeta^{2}-\nu^{2}+1
\end{gathered}
$$

Explicit Parametrization

Via the Jacobian Elliptic Functions and Elliptic Integrals

Trajectories of the Plate-Ball Problem

$$
\nu \in(-1,1)
$$

$$
x(t)=\frac{2}{\sqrt{\lambda}} E(\operatorname{am}(\sqrt{\lambda} t, k), k)-t, \quad z(t)=a \operatorname{cn}(\sqrt{\lambda} t, k)-\frac{\mu}{\lambda}
$$

where

$$
\begin{aligned}
& a=\sqrt{\frac{2(1-\nu)}{\lambda}}, \quad k=\sqrt{\frac{1-\nu}{2}}, \quad \nu=1-\frac{\sigma^{2}}{2 \lambda} \\
& \sigma=\mu+\eta \lambda
\end{aligned}
$$

$E(u, k)$ incomplete elliptic integral of second order am (u, k) Jacobian amplitude function $\mathrm{cn}(u, k)$ Jacobian elliptic cosine function

Explicit Parametrization

Trajectories of the Plate-Ball Problem
 $$
\nu=-1
$$

$$
\begin{aligned}
& x(t)=\frac{4 \tanh (\sqrt{\lambda} t)}{\sqrt{\lambda}}-t, \quad z(t)=\frac{4 \operatorname{sech}(\sqrt{\lambda} t)}{\sqrt{\lambda}}-\frac{\mu}{\lambda} \\
& \nu=1-\frac{\sigma^{2}}{2 \lambda}, \quad \sigma=\mu+\eta \lambda
\end{aligned}
$$

Explicit Parametrization

Trajectories of the Plate-Ball Problem

$$
\nu<-1
$$

$$
\begin{aligned}
& x(t)=a E\left(\operatorname{am}\left(\sqrt{\frac{\lambda(1-\nu)}{2}} t, k\right), k\right)+\nu t \\
& z(t)=a \operatorname{dn}\left(\sqrt{\frac{\lambda(1-\nu)}{2}} t, k\right)-\frac{\mu}{\lambda}
\end{aligned}
$$

where

$$
a=\sqrt{\frac{2(1-\nu)}{\lambda}}, \quad k=\sqrt{\frac{2}{1-\nu}}, \quad \nu=1-\frac{\sigma^{2}}{2 \lambda}, \quad \sigma=\mu+\eta \lambda
$$

$E(u, k)$ incomplete elliptic integral of second order am (u, k) Jacobian amplitude function $\operatorname{dn}(u, k)$ Jacobian elliptic delta function

Explicit Parametrization

Trajectories via Mathematica ${ }^{\circledR}$

Explicit Parametrization

Trajectories via Mathematica ${ }^{\circledR}$

Case II

A Trajectory of the Plate-Ball Problem
(Arc of the Eulerian Elastica for $\lambda=4, \sigma=2.83$)

Explicit Parametrization

Trajectories via Mathematica ${ }^{\circledR}$

Case III

A Trajectory of the Plate-Ball Problem
(Arc of the Eulerian Elastica for $\lambda=4, \sigma=3.35$)

Explicit Parametrization

Trajectories via Mathematica ${ }^{\circledR}$

Case IV
 A Trajectory of the Plate-Ball Problem
 (Arc of the Eulerian Elastica for $\lambda=4, \sigma=3.63564$)

Explicit Parametrization

Trajectories via Mathematica ${ }^{\circledR}$

Case V
 A Trajectory of the Plate-Ball Problem (Arc of the Eulerian Elastica for $\lambda=4, \sigma=3.9$)

Explicit Parametrization

Trajectories via Mathematica ${ }^{\circledR}$

Case VI

A Trajectory of the Plate-Ball Problem (Arc of the Eulerian Elastica for $\lambda=4, \sigma=4$)

Explicit Parametrization

Trajectories via Mathematica ${ }^{\circledR}$

Case VII

A Trajectory of the Plate-Ball Problem

 (Arc of the Eulerian Elastica for $\lambda=4, \sigma=4.2$)

References

- Hammersley J. (2008) Oxford Commemoration Ball, In Probability, Statistics and Analysis, London Math. Soc. Lecture Note Series, Cambridge University Press, 79, 112-142.
- Arthurs A. and Walsh G. (1986) On Hammersley's Minimum Problem for a Rolling Sphere, Math. Proc. Camb. Phil. Soc., 529-534.
- Jurdjevic V.(1993) The geometry of the plate-ball problem, Arch. Rat. Mech. Anal. 124 305-328.
- Djondjorov P., Hadzhilazova M., Mladenov I. and Vassilev V. (2008) Explicit Parametrization of Euler's Elastica, Geometry Integrability \& Quantization. 9 175-186.
- Mladenov I. and Hadzhilazova M. (2013) The Many Faces of Elastica (in Bulgarian), Avangard Prima, Sofia.
- Abramowitz M. and Stegun I. (1972) Handbook of Mathematical Functions, New York, Dover.

