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MAIN MOTIVATIONS FOR SCALAR ETHER THEORY (SET)
(I)

Lorentz-Poincaré version of special relativity with an ether:

obtains Lorentz transfo. and “relativistic” effects as following from

(i) “Absolute” effects of motion through that ether,

(ii) Clock synchronization.

In it, “v < c” is not absolute, concerns mass particles.
SET extends it to situation with gravitation.

SET makes gravity thinkable as the pressure force of the ether:
Archimedes’ thrust on extended particles seen as organized flows in
the ether.
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MAIN MOTIVATIONS FOR SCALAR ETHER THEORY (SET)
(II)

Despite its successes, GR has problems:

Unavoidable singularities (in gravitatl collapse & big bang).

Interpretation of the necessary gauge condition.

Coupling with quantum is problematic.

Need for dark energy. Need for dark matter.

SET has no singularity.

No gauge condition.

Avoids non-uniqueness problem of covariant Dirac theory.

Predicts accelerated expansion. Preferred-frame effects more
important at large scales.
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MAIN EQUATIONS OF E.M. FIELD IN SET

NB. SET has a preferred reference frame E . It has also a curved
spacetime metric γ. The spatial metric in frame E is noted g .

First Maxwell group unchanged. In terms of field tensor F :

Fλµ ,ν + Fµν,λ + Fνλ,µ = Fλµ ;ν + Fµν;λ + Fνλ;µ = 0. (1)

2nd group: SET has an eqn for continuum dynamics. Apply it to
charged medium subjected to Lorentz force and assume that:

(i) Total energy-momentum tensor T = Tcharged medium + Tfield.

(ii) Total energy-momentum tensor T obeys the general equation
for continuum dynamics, without any non-gravitational force.

This gives Fµλ F
λν

;ν = µ0

[
bµ (Tfield)− Fµλ J

λ
]
, where (2)

b0(T) ≡ γ00

2
gij ,0 T

ij , bi (T) ≡ 1

2
g ijgjk,0 T

0k . (3)
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CHARGE BALANCE: EXACT EQUATIONS

If detF 6= 0, where F ≡ (Fµν) (i.e. E.B 6= 0) we get from Eq.
(2):

ρ̂ ≡ Jµ;µ = (Gµ
ν b

ν(Tfield));µ , (Gµ
ν) ≡ (Fµν)−1. (4)

Thus, charge conservation (Jµ;µ = 0) is not true in general,
according to Eq. (2). [MA, Open Physics 2016]

Let Ω be any “substantial” domain of the charged continuum. One
can prove that the evolution rate of the charge contained in Ω is

d

d t

(∫
Ω
δq

)
=

∫
Ω
ρ̂
√
−γ d3 x ( γ ≡ det (γµν) ) (5)

in any coordinates xµ. (t ≡ x0/c .) Of course the domain Ω as well
as its boundary depend on t in general spatial coordinates x i .
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WEAK FIELD APPROXIMATION: I. GRAVITATIONAL FIELD

The gravitational field is assumed weak and slowly varying for the
system of interest S (e.g. the Earth with some e.m. source on it).

Use an asymptotic post-Newtonian (PN) scheme. Associates with
S a family (Sλ) of systems, depending on λ→ 0, λ = 1/c2 in
specific λ-dependent units. Writes Taylor expansions w.r.t. λ. E.g.

β ≡ √γ00 = 1− U/c2 + O(c−4), (6)

where U = Newtonian potential, obeys Poisson eqn.
Spatial metric assumed in the theory:

g = β−2g0 (7)

with g0 = invariable Euclidean metric. We deduce from (6)–(7):

∂gij
∂T

= 2c−2∂TUδij + O(c−4). (8)

(We will take Cartesian coordinates for g0, i.e., g0
ij = δij .)
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WEAK FIELD APPROXIMATION: II. E.M. FIELD & CURRENT

Assume F and J depend smoothly on λ, hence they too admit
Taylor expansions w.r.t. c−2 but the orders n and m not known:

F = cn
(

0
F + c−2

1
F + O(c−4)

)
(9)

and

J = cm
(

0
J + c−2

1
J + O(c−4)

)
. (10)

The integers n and m can be positive, negative, or zero.
Remind: λ = 1/c2 = gravitational weak-field parameter.

Also, F not assumed slowly varying (nor weak). Means expansions
(9)–(10) are post-Minkowskian (PM) expansions.
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EXPANSION OF THE MODIFIED MAXWELL 2ND GROUP (I)

For the PM expansions (9)-(10), the time variable (such that the
expansions are true at a fixed value of it) is x0 = cT , not T as it is
for PN expansions. (Not neutral since c2 = λ−1.)

Hence, in the modified 2nd group (2), the term Fλν;ν is of order cn

as is the term Fµλ.

One thus finds that the r.h.s. of (2) is of order c2n. The l.h.s. is of
order cn+m+2, for µ0 = µ00c

2 (from dimension and λ-dependent
units).

Hence we must have

2n = n + m + 2, i.e. m = n − 2. (11)
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EXPANSION OF THE MODIFIED MAXWELL 2ND GROUP

(II)

Using the foregoing, one gets the lowest-order term in the
weak-field expansion of (2) as

0
F µ

λ

0
F λν

,ν = −µ00

0
F µ

λ

0
J λ. (12)

Thus if
0
F ≡ (

0
F λ

ν) is invertible,
0
F is an exact solution of the

flat-spacetime Maxwell equation,
0
F λν

,ν = −µ00

0
J λ.
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EXPANSION OF THE CHARGE PRODUCTION RATE

Using (9) and (8) in (4) gives us

ρ̂ = cn−5µ −1
00

[(
0
G µ0

0
T jj −

0
G µi

0
T 0i

)
∂TU

]
,µ

+ O(cn−7), (13)

where
0
G ≡ (

0
G µ

ν) ≡
0
F −1. Due to (9)-(10),

0
F ,

0
G ,

0
T and

0
J do not

have the physical dimensions of the corresponding fields F ,G , ...

Let F ′ and J′ be solutions of the flat-spacetime Maxwell equation
with the correct dimensions in the SI units:

F ′ λν,ν = −µ0 J
′ λ. (14)

Define the associated e.m. T-tensor T′. Assume matrix
F ′ ≡ (F ′ λ ν) is invertible. Define G ′ ≡ F ′ −1. Eq. (13) rewrites as

ρ̂ = c−3
[(
G ′ µ0 T ′ jj − G ′ µi T ′ 0i

)
∂TU

]
,µ

+ O(c−5). (15)



Outline Motivation Main Equations Weak Field Approx. Example Fields Reason & Solution Conclusion

EXPLICIT EXPRESSION OF CHARGE PRODUCTION RATE

To use (15) so as to assess the charge production: conversely,
assume that to any solution (F ′, J′) of the full flat Maxwell, it
corresponds a unique solution (F , J) of the first group (1) and the
gravitationally-modified second group (2), such that (F ′, J′) be the
main terms in the PM expansion of (F , J). Expectable from
perturbative arguments.

Expressing F in terms of electric and magnetic fields E and B we
rewrite (15) as

ρ̂ = c−3
(
e i∂TU

)
,i

+ O(c−5), (16)

e i =


B1

3 c2+B1 B2
2 c2+B1 B3

2 c2+B1 E1
2−B1 E2

2−B1 E3
2+2B2 E1 E2+2B3 E1 E3

2 c µ0 (B1 E1+B2 E2+B3 E3)
B1

2 B2 c2+2B1 E1 E2+B2
3 c2+B2 B3

2 c2−B2 E1
2+B2 E2

2−B2 E3
2+2B3 E2 E3

2 c µ0 (B1 E1+B2 E2+B3 E3)
B1

2 B3 c2+2B1 E1 E3+B2
2 B3 c2+2B2 E2 E3+B3

3 c2−B3 E1
2−B3 E2

2+B3 E3
2

2 c µ0 (B1 E1+B2 E2+B3 E3)

 .

(17)



Outline Motivation Main Equations Weak Field Approx. Example Fields Reason & Solution Conclusion

ASSESSING ∂TU AND ∂T (∇U) (I)

These time derivatives must be evaluated in the preferred reference
frame E assumed by the theory.

The system of interest producing the e.m. field should move
through E : velocity field v with |v| ' 10− 1000 km/s?

We have dU/ dT ≡ ∂TU + v.∇U = 0 exactly for self potential of
a body with rigid motion (e.g. the Earth).

(For the Earth, the external potential due to the Sun is nearly
constant also. The most important departure from dU/ dT = 0
should come from the Moon.)

For a rigidly rotating spherical body, v.∇U = V.∇U, V ≡ ȧ.
a(T ) : body center.
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ASSESSING ∂TU AND ∂T (∇U) (II)

⇒ Main contribution to ∂TU: translation motion of a nearly
spherically symmetric body through E :

∂TU ' −V.∇U '
GM(r)

r2
V.er , r ≡ |x− a(T )| , er ≡ (x−a(T ))/r ,

(18)
M(r) ≡ 4π

∫ r
0 u2ρ(u) d u; ρ(r) : Newtonian density.

On the Earth’s surface, this gives

∂TU ' gVr � 10V ' 105 (MKSA) for V = 10 km/s.

If moreover the rotating spherical body is homogeneous, we have

∂T∇U =
GM(r)

r3
V. (19)

On Earth:
∂T∇U ' gV/R , |∂T∇U| ' 10−2 MKSA, V = 10 km/s.
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CASE OF A PLANE WAVE

A monochromatic plane e.m. wave ‖ Ox :

E 1 = 0, E i = E i
0 cos(kx−ωT+ϕi ) (i = 2, 3), cB = e1∧E. (20)

Then of course field matrix F ≡ (Fµν) not invertible. But may add
any constant e.m. field (E′,B′). Then generically F is invertible.

Moreover, e i [Eq. (16)] has e i,i = 0, for e1 = 0 and e i = e i (x1).

Neglecting the term c−3e i (∂TU),i in view of (19), we get that

ρ̂ = 0 (Plane wave, c−3e i (∂TU),i neglected). (21)

However, depending on the constant e.m. field, the neglected term
may give high values of ρ̂. (Check the case without the wave part.)
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THE CASE WITH HERTZIAN DIPOLES

Hertz’s oscillating dipole: the charge distribution

ρ = Td,a,ω ≡ −e−iωt d.∇δb (22)

(b = dipole position, d = dipole vector). Associated 3-current:

j = −iωd e−iωt δb. (23)

Exact solution of the flat Maxwell eqs in distributional sense:

E = α

{
k2

r
(d− (n.d)n) cosϕ+ [3(n.d)n− d]

(
cosϕ

r3
+

k sinϕ

r2

)}
,

(24)

B = βk2(n∧ d)

(
cosϕ

r
− sinϕ

kr2

)
, k =

ω

c
, ϕ ≡ kr −ωt. (25)

(α ≡ 1√
4πε0

= 3× 103, β ≡
√

4π
µ0

=
√

107.)

Has E.B = 0. Adding dipoles with different b and d gives E.B 6= 0.
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CASE OF A GROUP OF HERTZIAN DIPOLES

♦ The dipoles are at rest in a common frame moving at V w.r.t. E .

♦ Their e.m. field is Lorentz-transformed to E .

♦ In view of (16), compute

ρ̂ = c−3
(
e i∂TU

)
,i
≈ c−3

∫
∂C

e ini ∂TU dS/v(C), (26)

with C a small cube moving at V, centered at calculation point x.

♦ For three dipoles with d = 100 nC.m, ν = 100 MHz (λ = 3 m),
situated at � λ from one another, get fields E ≈ a few 10 V/m,
B ≈ a few 10−3 T.

♦ with V = 10 km/s, ρ̂(T , x) has peaks at ≈ ±105 e/m3/period.
Seems untenable!

⇒ This version of the gravitationally-modified Maxwell equations
looks like being discarded.
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WHY WERE THESE NOT THE RIGHT MAXWELL EQS OF THE

THEORY?

Dynamical eqn in SET for general continuous medium (velocity
field v) subjected to external force density field f:

T 0ν
medium ;ν = b0(Tmedium)+

f.v

cβ
, T iν

medium ;ν = bi (Tmedium)+f i .

(27)
Assumption (i): total T = Tcharged medium + Tfield.

Assumption (ii): T 0ν
;ν = b0(T), T iν

;ν = bi (T).

(i) + (ii) + (27) with “medium” = “charged medium” gives:

T 0ν
field ;ν = b0(Tfield)− f.v

cβ
, T iν

field ;ν = bi (Tfield)− f i . (28)

This has the form (27) (as it must), with f ifield = −f icharged medium
and vfield = vcharged medium ≡ v . But vfield 6= vcharged medium!
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WHAT ARE THE RIGHT MAXWELL EQS OF THE THEORY?

The assumption to be relaxed is (i): the problem with v is solved if
there is an interaction energy-momentum tensor Tinteract such that

totalT = Tcharged medium + Tfield +Tinteract . (29)

With (29), Assumption (ii) and (27) do not determine the 2nd
group any more.

May postulate the standard gravitationally-modified second group
(14):

Fλν;ν = −µ0 J
λ, (30)

which, one may show, is just writing the usual (3-vector-form) 2nd
group in terms of the local time and the space metric in frame E .
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CONCLUSION

Maxwell eqs for the “scalar ether theory” of gravity (SET) were
proposed. Predict charge non-conservation in a variable
gravitational field.

This occurs already for a translation through SET’s “ether”.

Using asymptotic PN (respectively PM) expansions for the
gravitational field (resp. the e.m. field), an explicit expression for
the charge production rate ρ̂ was obtained.

For a group of Hertz dipoles producing moderate e.m. field (&
with a moderate translation velocity V = 10 km/s), ρ̂ seems
unrealistically high.

Actually: those Maxwell eqs are not consistent with continuum
dynamics of SET applied to the e.m. field itself. Must assume an
additional, “interaction”, energy tensor. Then the standard
gravitationally-modified Maxwell eqs are consistent with SET.
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