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MAIN MOTIVATIONS FOR SCALAR ETHER THEORY (SET)
Q)

Lorentz-Poincaré version of special relativity with an ether:
obtains Lorentz transfo. and “relativistic” effects as following from

@ (i) “Absolute” effects of motion through that ether,

@ (ii) Clock synchronization.

Init, “v < ¢" is not absolute, concerns mass particles.
SET extends it to situation with gravitation.

SET makes gravity thinkable as the pressure force of the ether:
Archimedes’ thrust on extended particles seen as organized flows in
the ether.
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MAIN MOTIVATIONS FOR SCALAR ETHER THEORY (SET)
(1N

Despite its successes, GR has problems:

Unavoidable singularities (in gravitat' collapse & big bang).
Interpretation of the necessary gauge condition.

Coupling with quantum is problematic.

Need for dark energy. Need for dark matter.

SET has no singularity.
No gauge condition.

Avoids non-uniqueness problem of covariant Dirac theory.

Predicts accelerated expansion. Preferred-frame effects more
important at large scales.
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MAIN EQUATIONS OF E.M. FIELD IN SET

NB. SET has a preferred reference frame £. It has also a curved

spacetime metric 7. The spatial metric in frame £ is noted g.

First Maxwell group unchanged. In terms of field tensor F:
F)\M,V"i_F;w,)\"i_Fw\,p:FA;L;V+F;LU;A+FVA;M:0- (]-)

2nd group: SET has an egn for continuum dynamics. Apply it to

charged medium subjected to Lorentz force and assume that:

(i) Total energy-momentum tensor T = Tcharged medium + Tield-

(ii) Total energy-momentum tensor T obeys the general equation
for continuum dynamics, without any non-gravitational force.

This gives F*, F™, = g [b“ (Theia) — F*, /M|, where  (2)

0 7% I
b (T) 7 g,'j70 TU, b’(T)
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CHARGE BALANCE: EXACT EQUATIONS

If det F # 0, where F = (F",) (i.e. E.B # 0) we get from Eq.
(2):

p=J = (G" b"(Thei)),,»  (GH))=(F",)""  (4)

HTR

Thus, charge conservation (J!, = 0) is not true in general,
according to Eq. (2). [MA, Open Physics 2016]

Let Q2 be any “substantial” domain of the charged continuum. One
can prove that the evolution rate of the charge contained in Q is

cff(lzaq):/ﬂ,smd?’x (y=det(y)) (5)

in any coordinates x*. (t = x%/c.) Of course the domain Q as well
as its boundary depend on t in general spatial coordinates x'.
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WEAK FIELD APPROXIMATION: |. GRAVITATIONAL FIELD

The gravitational field is assumed weak and slowly varying for the
system of interest S (e.g. the Earth with some e.m. source on it).

Use an asymptotic post-Newtonian (PN) scheme. Associates with
S a family (S,) of systems, depending on A — 0, A =1/c? in
specific A-dependent units. Writes Taylor expansions w.r.t. \. E.g.

B=\00=1-U/c®+0(c™), (6)

where U = Newtonian potential, obeys Poisson eqn.
Spatial metric assumed in the theory:

g=05"g° (7)

with g% = invariable Euclidean metric. We deduce from (6)—(7):

Igij _ _
aTJ =2c¢7207Us8; + O(c™™). (8)

(We will take Cartesian coordinates for g9, i.e., gg =0jj.)
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WEAK FIELD APPROXIMATION: Il. E.M. FIELD & CURRENT

Assume F and J depend smoothly on A, hence they too admit
Taylor expansions w.r.t. ¢~2 but the orders n and m not known:

F=c" <I(3' YN O(c4)> (9)
o J=cm (3 + 2] + O(c“‘)) : (10)

The integers n and m can be positive, negative, or zero.
Remind: A = 1/c? = gravitational weak-field parameter.

Also, F not assumed slowly varying (nor weak). Means expansions
(9)—-(10) are post-Minkowskian (PM) expansions.
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EXPANSION OF THE MODIFIED MAXWELL 2ND GROUP (l)

For the PM expansions (9)-(10), the time variable (such that the
expansions are true at a fixed value of it) is x° = c¢T, not T as it is
for PN expansions. (Not neutral since ¢ = A71))

Hence, in the modified 2nd group (2), the term F*”, is of order c”

as is the term F",.

One thus finds that the r.h.s. of (2) is of order ¢?". The I.h.s. is of
order ¢"t™+2 for g = pooc? (from dimension and A-dependent
units).

v

Hence we must have

2n=n+m+2, Le. m=n-2. (11)
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EXPANSION OF THE MODIFIED MAXWELL 2ND GROUP
(1N

Using the foregoing, one gets the lowest-order term in the
weak-field expansion of (2) as

OM 0)\1/ OM 0)\
FUOF™, = —ugo F"y J™. (12)

0o 0 0
Thus if F = (F?,) is invertible, F is an exact solution of the

0 0
flat-spacetime Maxwell equation, F’\”’Z, = —pgo J .
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EXPANSION OF THE CHARGE PRODUCTION RATE
Using (9) and (8) in (4) gives us

0 0 . 0 .0 .
p=c"ug ! KG HTI— G T°’> aTU] +0(c""), (13)
s

0 0 0 0 0 0 0
where G = (G",) = F 1. Due to (9)-(10), F, G, T and J do not
have the physical dimensions of the corresponding fields F, G, ...

Let F' and J' be solutions of the flat-spacetime Maxwell equation
with the correct dimensions in the Sl units:

= )\1/71/ = —Lo J/A, (14)

Define the associated e.m. T-tensor T’. Assume matrix
F' = (F'* ) is invertible. Define G’ = F' ~1. Eq. (13) rewrites as

ﬁ — C—3 [(GIILO T/jj _ G/Mi TlOi) aTU] . + O(C_5). (15)
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EXPLICIT EXPRESSION OF CHARGE PRODUCTION RATE

To use (15) so as to assess the charge production: conversely,
assume that to any solution (F’,J’) of the full flat Maxwell, it
corresponds a unique solution (F, J) of the first group (1) and the
gravitationally-modified second group (2), such that (F’,J) be the
main terms in the PM expansion of (F,J). Expectable from
perturbative arguments.

Expressing F in terms of electric and magnetic fields E and B we
rewrite (15) as

p=c2(e'orl)  + 0(c™), (16)

B13 24 By By? 2+ B1 B32 c?+B1 E12—B1 B2 —B1 E3242 By By B> +2 B3 E1 E3
2cpo (B1 E1+B; E»+B3 E3)
ol — B1% By 242 By Ey Ex+B3 24 By B3? 2—By E1*+B) Ex*>—By E3°+2 B3 E> E3
2cpo (B1 E1+By E»+Bs E3)
B12 B3 c?42 By E1 E34-By2 B3 242 By 5 E34-B3® c?— B3 E12— B3 £, 4 B3 E3?
2cpo (B1 E1+B2 Ex+Bs E3)
(17)
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ASSESSING d7U AND 01 (VU) (D)

These time derivatives must be evaluated in the preferred reference
frame £ assumed by the theory.

The system of interest producing the e.m. field should move
through &: velocity field v with |v| ~ 10 — 1000 km/s?

We have dU/d T = 07U + v.VU = 0 exactly for self potential of
a body with rigid motion (e.g. the Earth).

(For the Earth, the external potential due to the Sun is nearly
constant also. The most important departure from dU/d T =0
should come from the Moon.)

For a rigidly rotating spherical body, v.VU =V.VU, V = a.
a(T) : body center.
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ASSESSING dtU AND a7 (VU) (D)

=- Main contribution to d7U: translation motion of a nearly
spherically symmetric body through &:

GM(r)

orU~-V.VU ~ Ve, r=|x—a(T)|, e =(x—a(T))/r,

(18)
M(r) = 4r [y u?p(u) du; p(r) : Newtonian density.

On the Earth's surface, this gives

O1U ~ gV, <10V ~ 10° (MKSA) | for km/s.

If moreover the rotating spherical body is homogeneous, we have

GM(r
91V = r3( v. (19)
On Earth:
OrVU ~gV/R| |07rVU|~1072 MKSA, V = 10km/s.
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CASE OF A PLANE WAVE

A monochromatic plane e.m. wave || Ox:

E' =0, E' = Ejcos(kx—wT+¢;) (i=2,3), cB=eAE. (20)

Then of course field matrix F = (F“l,) not invertible. But may add
any constant e.m. field (E’, B’). Then generically F is invertible.

Moreover, e’ [Eq. (16)] has e”',- =0, for e’ =0 and e’ = e/(x}).

Neglecting the term c=3e/(97U) ; in view of (19), we get that

p=0  (Plane wave, c3e'(d1U),; neglected).| (21)

However, depending on the constant e.m. field, the neglected term
may give high values of p. (Check the case without the wave part.)



=
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THE CASE WITH HERTZIAN DIPOLES
Hertz's oscillating dipole: the charge distribution
p=Taaw=—€"“"d.Vé (22)
(b = dipole position, d = dipole vector). Associated 3-current:
j= —iwde 5, (23)

Exact solution of the flat Maxwell eqs in distributional sense:

k2 ksi
E=a {r (d — (n.d)n) cos ¢ + [3(n.d)n — d] (cors;p + srlg 4 ;

(24)
B = Sk2(n Ad) (CO:@ - S}(”ff) L k== p=kr—wt. (25)

(a ﬂlﬂzw 103, 5;1/%@:\/107.)

Has E.B = 0. Adding dipoles with different b and d gives E.B # 0.




Outline Motivation Main Equations Weak Field Approx. Example Fields Reason & Solution Conclusion

CASE OF A GROUP OF HERTZIAN DIPOLES

¢ The dipoles are at rest in a common frame moving at V w.r.t. £.
¢ Their e.m. field is Lorentz-transformed to £.
¢ In view of (16), compute
p=c3(eorU)  ~ c—3/ eindrUdS/v(C),  (26)
’ oC
with C a small cube moving at V, centered at calculation point x.

< For three dipoles with d = 100nC.m, v = 100 MHz (A = 3 m),
situated at < A from one another, get fields E ~ a few 10V/m,
B~ afew 1073T.

¢ with V = 10km/s, p(T,x) has peaks at ~ +10° e/m3 /period.
Seems untenable!

= This version of the gravitationally-modified Maxwell equations
looks like being discarded.
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WHY WERE THESE NOT THE RIGHT MAXWELL EQS OF THE
THEORY?

Dynamical eqn in SET for general continuous medium (velocity
field v) subjected to external force density field f:

f.v

Trpnuedium v bO(Tmedium)"i‘av r!rleedium o bi(Tmedium)+fi'
(27)
Assumption (i): total T = Tcharged medium + Tield-
Assumption (ii): T% = b%(T), Tv, = b(T).
(i) + (ii) + (27) with “medium” = “charged medium” gives:
Ov 0 f.v iv i i
Tiad L= b (Tfelq) — Ea field ;v — b'(Tieiq) — ' (28)

This has the form (27) (as it must), with £, = 7fcihorged medium

and Vfglg = Vcharged medium =V - But vfielq # Vcharged medium !
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WHAT ARE THE RIGHT MAXWELL EQS OF THE THEORY?

The assumption to be relaxed is (i): the problem with v is solved if
there is an interaction energy-momentum tensor Tinterget Such that

total T = Tcharged medium + Thield + Tinteract - (29)

With (29), Assumption (ii) and (27) do not determine the 2nd
group any more.

May postulate the standard gravitationally-modified second group
(14):

F)\V;V = —Ho JA) (30)
which, one may show, is just writing the usual (3-vector-form) 2nd
group in terms of the local time and the space metric in frame &.
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CONCLUSION

Maxwell egs for the “scalar ether theory” of gravity (SET) were
proposed. Predict charge non-conservation in a variable
gravitational field.

This occurs already for a translation through SET's “ether”.

Using asymptotic PN (respectively PM) expansions for the
gravitational field (resp. the e.m. field), an explicit expression for
the charge production rate p was obtained.

For a group of Hertz dipoles producing moderate e.m. field (&
with a moderate translation velocity V = 10km/s), p seems
unrealistically high.

Actually: those Maxwell egs are not consistent with continuum
dynamics of SET applied to the e.m. field itself. Must assume an
additional, “interaction”, energy tensor. Then the standard
gravitationally-modified Maxwell eqs are consistent with SET.
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