

ON CHARGE CONSERVATION IN A GRAVITATIONAL FIELD

Mayeul Arminjon ^{1,2} ¹ Lab. 3SR (Grenoble-Alpes University & CNRS), Grenoble, France. ² CNRS (Section of Theoretical Physics), France.

XIXth International Conference "Geometry, Integrability and Quantization" Varna, Bulgaria, 2 – 7 June 2017

Outline	Motivation	Main Equations	Weak Field Approx.	Example Fields	Reason & Solution	Conclusion

MAIN MOTIVATIONS FOR SCALAR ETHER THEORY (SET) (I)

Lorentz-Poincaré version of special relativity with an ether:

obtains Lorentz transfo. and "relativistic" effects as following from

- (i) "Absolute" effects of motion through that ether,
- (ii) Clock synchronization.

In it, "v < c" is not absolute, concerns mass particles. SET extends it to situation with gravitation.

SET makes gravity thinkable as the pressure force of the ether: Archimedes' thrust on extended particles seen as organized flows in the ether.

MAIN MOTIVATIONS FOR SCALAR ETHER THEORY (SET) (II)

Despite its successes, GR has problems:

- Unavoidable singularities (in gravitat¹ collapse & big bang).
- Interpretation of the necessary gauge condition.
- Coupling with quantum is problematic.
- Need for dark energy. Need for dark matter.
- SET has no singularity.
- No gauge condition.
- Avoids non-uniqueness problem of covariant Dirac theory.
- Predicts accelerated expansion. Preferred-frame effects more important at large scales.

Т

MAIN EQUATIONS OF E.M. FIELD IN SET

NB. SET has a preferred reference frame \mathcal{E} . It has also a curved spacetime metric γ . The spatial metric in frame \mathcal{E} is noted \boldsymbol{g} .

First Maxwell group unchanged. In terms of field tensor F:

$$F_{\lambda\mu,\nu} + F_{\mu\nu,\lambda} + F_{\nu\lambda,\mu} = F_{\lambda\mu;\nu} + F_{\mu\nu;\lambda} + F_{\nu\lambda;\mu} = 0.$$
(1)

2nd group: SET has an eqn for continuum dynamics. Apply it to *charged medium* subjected to *Lorentz force* and assume that:

(i) Total energy-momentum tensor $\mathbf{T} = \mathbf{T}_{charged medium} + \mathbf{T}_{field}$. (ii) Total energy-momentum tensor \mathbf{T} obeys the general equation for continuum dynamics, without any non-gravitational force.

his gives
$$F^{\mu}{}_{\lambda}F^{\lambda\nu}{}_{;\nu} = \mu_0 \left[b^{\mu} \left(\mathbf{T}_{\text{field}} \right) - F^{\mu}{}_{\lambda}J^{\lambda} \right]$$
, where (2)
 $b^0(\mathbf{T}) \equiv \frac{\gamma^{00}}{2} g_{ij,0} T^{ij}, \quad b^i(\mathbf{T}) \equiv \frac{1}{2} g^{ij}{}_{\Box} g_{jk,0} T^{0k}{}_{A} = 0$ (3)

CHARGE BALANCE: EXACT EQUATIONS

If def $\mathbf{F} \neq 0$, where $\mathbf{F} \equiv (F^{\mu}{}_{\nu})$ (i.e. $\mathbf{E}.\mathbf{B} \neq 0$) we get from Eq. (2):

$$\hat{\rho} \equiv J^{\mu}_{;\mu} = (G^{\mu}_{\ \nu} \, b^{\nu}(\mathsf{T}_{\mathsf{field}}))_{;\mu}, \quad (G^{\mu}_{\ \nu}) \equiv (F^{\mu}_{\ \nu})^{-1}. \tag{4}$$

Thus, charge conservation $(J^{\mu}_{;\mu} = 0)$ is not true in general, according to Eq. (2). [MA, Open Physics 2016]

Let Ω be any "substantial" domain of the charged continuum. One can prove that the evolution rate of the charge contained in Ω is

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\left(\int_{\Omega}\delta q\right) = \int_{\Omega}\hat{\rho}\,\sqrt{-\gamma}\,\mathrm{d}^{3}\,x \qquad (\gamma \equiv \det(\gamma_{\mu\nu})) \qquad (5)$$

in any coordinates x^{μ} . $(t \equiv x^0/c.)$ Of course the domain Ω as well as its boundary depend on t in general spatial coordinates x^i .

WEAK FIELD APPROXIMATION: I. GRAVITATIONAL FIELD

The gravitational field is assumed weak and slowly varying for the system of interest S (e.g. the Earth with some e.m. source on it).

Use an asymptotic *post-Newtonian* (PN) scheme. Associates with S a *family* (S_{λ}) of systems, depending on $\lambda \rightarrow 0$, $\lambda = 1/c^2$ in specific λ -dependent units. Writes Taylor expansions w.r.t. λ . E.g.

$$\beta \equiv \sqrt{\gamma_{00}} = 1 - U/c^2 + O(c^{-4}),$$
 (6)

where U = Newtonian potential, obeys Poisson eqn. Spatial metric assumed in the theory:

$$\boldsymbol{g} = \beta^{-2} \boldsymbol{g}^0 \tag{7}$$

with g^0 = invariable Euclidean metric. We deduce from (6)–(7):

$$\frac{\partial g_{ij}}{\partial T} = 2c^{-2}\partial_T U\delta_{ij} + O(c^{-4}).$$
(8)

(We will take Cartesian coordinates for $m{g}^0$, i.e., $m{g}^0_{ij}=\delta_{ij}$)

WEAK FIELD APPROXIMATION: II. E.M. FIELD & CURRENT

Assume **F** and **J** depend smoothly on λ , hence they too admit Taylor expansions w.r.t. c^{-2} but the orders *n* and *m* not known:

$$\boldsymbol{F} = c^n \left(\boldsymbol{\tilde{F}} + c^{-2} \, \boldsymbol{\tilde{F}}^1 + O(c^{-4}) \right) \tag{9}$$

and

$$\mathbf{J} = c^{m} \left(\mathbf{J}^{0} + c^{-2} \mathbf{J}^{1} + O(c^{-4}) \right).$$
 (10)

The integers *n* and *m* can be positive, negative, or zero. Remind: $\lambda = 1/c^2 =$ gravitational weak-field parameter.

Also, F not assumed slowly varying (nor weak). Means expansions (9)–(10) are *post-Minkowskian* (PM) expansions.

EXPANSION OF THE MODIFIED MAXWELL 2ND GROUP (1)

For the PM expansions (9)-(10), the time variable (such that the expansions are true at a fixed value of it) is $x^0 = cT$, not T as it is for PN expansions. (Not neutral since $c^2 = \lambda^{-1}$.)

Hence, in the modified 2nd group (2), the term $F^{\lambda\nu}_{\ ;\nu}$ is of order c^n as is the term $F^{\mu}_{\ \lambda}$.

One thus finds that the r.h.s. of (2) is of order c^{2n} . The l.h.s. is of order c^{n+m+2} , for $\mu_0 = \mu_{00}c^2$ (from dimension and λ -dependent units).

Hence we must have

$$2n = n + m + 2$$
, i.e. $m = n - 2$. (11)

EXPANSION OF THE MODIFIED MAXWELL 2ND GROUP (II)

Using the foregoing, one gets the lowest-order term in the weak-field expansion of (2) as

$${}^{0}_{F}{}^{\mu}{}_{\lambda}{}^{0}_{F}{}^{\lambda\nu}{}_{,\nu} = -\mu_{00}{}^{0}_{F}{}^{\mu}{}_{\lambda}{}^{0}_{J}{}^{\lambda}.$$
 (12)

Thus if $\stackrel{0}{F} \equiv (\stackrel{0}{F} \stackrel{\lambda}{}_{\nu})$ is invertible, $\stackrel{0}{F}$ is an exact solution of the flat-spacetime Maxwell equation, $\stackrel{0}{F} \stackrel{\lambda\nu}{}_{\nu}{}_{\nu} = -\mu_{00} \stackrel{0}{J}^{\lambda}$.

EXPANSION OF THE CHARGE PRODUCTION RATE

Using (9) and (8) in (4) gives us

$$\hat{\rho} = c^{n-5} \mu_{00}^{-1} \left[\left(\overset{0}{G}^{\mu 0} \overset{0}{T}^{jj} - \overset{0}{G}^{\mu i} \overset{0}{T}^{0i} \right) \partial_{\tau} U \right]_{,\mu} + O(c^{n-7}),$$
(13)

where $\overset{0}{\boldsymbol{G}} \equiv (\overset{0}{\boldsymbol{G}}^{\mu}{}_{\nu}) \equiv \overset{0}{\boldsymbol{F}}{}^{-1}$. Due to (9)-(10), $\overset{0}{\boldsymbol{F}}$, $\overset{0}{\boldsymbol{G}}$, $\overset{0}{\boldsymbol{T}}$ and $\overset{0}{\boldsymbol{J}}$ do not have the physical dimensions of the corresponding fields $\boldsymbol{F}, \boldsymbol{G}, \dots$

Let F' and J' be solutions of the flat-spacetime Maxwell equation with the correct dimensions in the SI units:

$$F^{\prime \lambda \nu}_{,\nu} = -\mu_0 J^{\prime \lambda}. \tag{14}$$

Define the associated e.m. T-tensor T'. Assume matrix $\mathbf{F}' \equiv (F'{}^{\lambda}{}_{\nu})$ is invertible. Define $\mathbf{G}' \equiv \mathbf{F}'{}^{-1}$. Eq. (13) rewrites as

$$\hat{\rho} = c^{-3} \left[\left(G'^{\mu 0} T'^{jj} - G'^{\mu i} T'^{0i} \right) \partial_T U \right]_{,\mu} + O(c^{-5}).$$
(15)

Main Equations

Weak Field Approx.

c. Example Fields

elds Reason & Solution

Conclusion

EXPLICIT EXPRESSION OF CHARGE PRODUCTION RATE

To use (15) so as to assess the charge production: *conversely*, assume that to any solution $(\mathbf{F}', \mathbf{J}')$ of the full flat Maxwell, it corresponds a unique solution (\mathbf{F}, \mathbf{J}) of the first group (1) and the gravitationally-modified second group (2), such that $(\mathbf{F}', \mathbf{J}')$ be the main terms in the PM expansion of (\mathbf{F}, \mathbf{J}) . Expectable from perturbative arguments.

Expressing F in terms of electric and magnetic fields E and B we rewrite (15) as

$$\hat{\rho} = c^{-3} \left(e^i \partial_T U \right)_{,i} + O(c^{-5}),$$
(16)

 $e^{i} = \begin{pmatrix} \frac{B_{1}^{3}c^{2} + B_{1}B_{2}^{2}c^{2} + B_{1}B_{3}^{2}c^{2} + B_{1}E_{1}^{2} - B_{1}E_{2}^{2} - B_{1}E_{3}^{2} + 2B_{2}E_{1}E_{2} + 2B_{3}E_{1}E_{3}}{2c\mu_{0}(B_{1}E_{1} + B_{2}E_{2} + B_{3}E_{3})} \\ \frac{B_{1}^{2}B_{2}c^{2} + 2B_{1}E_{1}E_{2} + B_{2}^{3}c^{2} + B_{2}B_{3}^{2}c^{2} - B_{2}E_{1}^{2} + B_{2}E_{2}^{2} - B_{2}E_{3}^{2} + 2B_{3}E_{2}E_{3}}{2c\mu_{0}(B_{1}E_{1} + B_{2}E_{2} + B_{3}E_{3})} \\ \frac{B_{1}^{2}B_{3}c^{2} + 2B_{1}E_{1}E_{3} + B_{2}^{2}B_{3}c^{2} + 2B_{2}E_{2}E_{3} + B_{3}^{3}c^{2} - B_{3}E_{1}^{2} - B_{3}E_{2}^{2} + B_{3}E_{3}^{2}}{2c\mu_{0}(B_{1}E_{1} + B_{2}E_{2} + B_{3}E_{3})} \end{pmatrix}.$

Assessing $\partial_T U$ and $\partial_T (\nabla U)$ (I)

These time derivatives must be evaluated in the preferred reference frame ${\cal E}$ assumed by the theory.

The system of interest producing the e.m. field should move through \mathcal{E} : velocity field **v** with $|\mathbf{v}| \simeq 10 - 1000 \text{ km/s}$?

We have d $U/dT \equiv \partial_T U + \mathbf{v} \cdot \nabla U = 0$ exactly for self potential of a body with rigid motion (e.g. the Earth).

(For the Earth, the external potential due to the Sun is nearly constant also. The most important departure from d U/d T = 0 should come from the Moon.)

For a rigidly rotating *spherical* body, $\mathbf{v} \cdot \nabla U = \mathbf{V} \cdot \nabla U$, $\mathbf{V} \equiv \dot{\mathbf{a}}$. $\mathbf{a}(T)$: body center.

Assessing $\partial_T U$ and $\partial_T (\nabla U)$ (II)

 \Rightarrow Main contribution to $\partial_{\mathcal{T}} U$: translation motion of a nearly spherically symmetric body through \mathcal{E} :

$$\partial_T U \simeq -\mathbf{V} \cdot \nabla U \simeq \frac{GM(r)}{r^2} \mathbf{V} \cdot \mathbf{e}_r, \quad r \equiv |\mathbf{x} - \mathbf{a}(T)|, \quad \mathbf{e}_r \equiv (\mathbf{x} - \mathbf{a}(T))/r,$$
(18)

 $M(r) \equiv 4\pi \int_0^r u^2 \rho(u) \, du; \qquad \rho(r)$: Newtonian density.

On the Earth's surface, this gives $\partial_T U \simeq g V_r \preceq 10 V \simeq 10^5 \text{ (MKSA)} \text{ for } V = 10 \text{ km/s.}$

If moreover the rotating spherical body is homogeneous, we have

$$\partial_T \nabla U = \frac{GM(r)}{r^3} \mathbf{V}.$$
 (19)

On Earth: $\partial_T \nabla U \simeq g \mathbf{V}/R$, $|\partial_T \nabla U| \simeq 10^{-2} \text{ MKSA}$, V = 10 km/s. Outline Motivation Main Equations Weak Field Approx. Example Fields Reason & Solution Conclusion
CASE OF A PLANE WAVE

A monochromatic plane e.m. wave $\parallel Ox$:

$$E^{1} = 0, \ E^{i} = E_{0}^{i} \cos(kx - \omega T + \varphi_{i}) \ (i = 2, 3), \quad c\mathbf{B} = \mathbf{e}_{1} \wedge \mathbf{E}.$$
 (20)

Then of course field matrix $\mathbf{F} \equiv (F^{\mu}{}_{\nu})$ not invertible. But may add any constant e.m. field $(\mathbf{E}', \mathbf{B}')$. Then generically \mathbf{F} is invertible.

Moreover,
$$e^{i}$$
 [Eq. (16)] has $e^{i}_{,i} = 0$, for $e^{1} = 0$ and $e^{i} = e^{i}(x^{1})$.

Neglecting the term $c^{-3}e^i(\partial_T U)_{,i}$ in view of (19), we get that

$$\hat{\rho} = 0$$
 (Plane wave, $c^{-3}e^{i}(\partial_{T}U)_{,i}$ neglected). (21)

However, depending on the constant e.m. field, the neglected term may give high values of $\hat{\rho}$. (Check the case without the wave part.)

Main Equations

Weak Field Approx.

rox. Example Fields

Reason & Solution Conclusion

The case with Hertzian dipoles

Hertz's oscillating dipole: the charge distribution

$$o = T_{\mathbf{d},\mathbf{a},\omega} \equiv -e^{-i\omega t} \,\mathbf{d}.\nabla \delta_{\mathbf{b}}$$
(22)

($\mathbf{b} = dipole \text{ position}, \mathbf{d} = dipole \text{ vector}$). Associated 3-current:

$$\mathbf{j} = -i\omega \mathbf{d} \, e^{-i\omega t} \, \delta_{\mathbf{b}}.\tag{23}$$

Exact solution of the flat Maxwell eqs in distributional sense:

$$\mathbf{E} = \alpha \left\{ \frac{k^2}{r} \left(\mathbf{d} - (\mathbf{n}.\mathbf{d})\mathbf{n} \right) \cos \varphi + \left[3(\mathbf{n}.\mathbf{d})\mathbf{n} - \mathbf{d} \right] \left(\frac{\cos \varphi}{r^3} + \frac{k \sin \varphi}{r^2} \right) \right\},$$

$$\mathbf{B} = \beta k^2 (\mathbf{n} \wedge \mathbf{d}) \left(\frac{\cos \varphi}{r} - \frac{\sin \varphi}{kr^2} \right), \quad k = \frac{\omega}{c}, \quad \varphi \equiv kr - \omega t.$$
(25)
$$(\alpha \equiv \frac{1}{\sqrt{4\pi\epsilon_0}} = 3 \times 10^3, \quad \beta \equiv \sqrt{\frac{4\pi}{\mu_0}} = \sqrt{10^7}.)$$

Has $\mathbf{E}.\mathbf{B} = 0$. Adding dipoles with different **b** and **d** gives $\mathbf{E}.\mathbf{B} \neq 0$.

Case of a group of Hertzian dipoles

- \diamondsuit The dipoles are at rest in a common frame moving at \bm{V} w.r.t. $\mathcal{E}.$
- \Diamond Their e.m. field is Lorentz-transformed to \mathcal{E} .
- \Diamond In view of (16), compute

$$\hat{\rho} = c^{-3} \left(e^i \partial_T U \right)_{,i} \approx c^{-3} \int_{\partial C} e^i n_i \, \partial_T U \, \mathrm{d} \, S/v(C), \qquad (26)$$

with C a small cube moving at $\boldsymbol{V},$ centered at calculation point $\boldsymbol{x}.$

 \diamond For three dipoles with d = 100 nC.m, $\nu = 100 \text{ MHz}$ ($\lambda = 3 \text{ m}$), situated at $\leq \lambda$ from one another, get fields $E \approx$ a few 10 V/m, $B \approx$ a few 10^{-3} T .

 \diamond with V = 10 km/s, $\hat{\rho}(T, \mathbf{x})$ has peaks at $\approx \pm 10^5 e/m^3$ /period. Seems untenable!

 \Rightarrow This version of the gravitationally-modified Maxwell equations looks like being discarded.

WHY WERE THESE NOT THE RIGHT MAXWELL EQS OF THE THEORY?

Dynamical eqn in SET for general continuous medium (velocity field \mathbf{v}) subjected to external force density field \mathbf{f} :

$$T_{\text{medium };\nu}^{0\nu} = b^{0}(\mathbf{T}_{\text{medium}}) + \frac{\mathbf{f}.\mathbf{v}}{c\beta}, \quad T_{\text{medium };\nu}^{i\nu} = b^{i}(\mathbf{T}_{\text{medium}}) + f^{i}.$$
(27)
Assumption (i): total $\mathbf{T} = \mathbf{T}_{\text{charged medium}} + \mathbf{T}_{\text{field}}.$
Assumption (ii): $T_{;\nu}^{0\nu} = b^{0}(\mathbf{T}), \qquad T_{;\nu}^{i\nu} = b^{i}(\mathbf{T}).$
(i) + (ii) + (27) with "medium" = "charged medium" gives:
$$T_{\text{field };\nu}^{0\nu} = b^{0}(\mathbf{T}_{\text{field}}) - \frac{\mathbf{f}.\mathbf{v}}{c\beta}, \qquad T_{\text{field };\nu}^{i\nu} = b^{i}(\mathbf{T}_{\text{field}}) - f^{i}.$$
(28)
This has the form (27) (as it must), with $f_{\text{field}}^{i} = -f_{\text{charged medium}}^{i}$
and $\mathbf{v}_{\text{field}} = \mathbf{v}_{\text{charged medium}} \equiv \mathbf{v}$. But $\mathbf{v}_{\text{field}} \neq \mathbf{v}_{\text{charged medium}}$

Conclusion

WHAT ARE THE RIGHT MAXWELL FQS OF THE THEORY?

The assumption to be relaxed is (i): the problem with \mathbf{v} is solved if there is an interaction energy-momentum tensor $T_{interact}$ such that

total
$$\mathbf{T} = \mathbf{T}_{\text{charged medium}} + \mathbf{T}_{\text{field}} + \mathbf{T}_{\text{interact}}$$
. (29)

With (29), Assumption (ii) and (27) do not determine the 2nd group any more.

May postulate the standard gravitationally-modified second group (14):

$$F^{\lambda\nu}_{;\nu} = -\mu_0 J^{\lambda}, \tag{30}$$

which, one may show, is just writing the usual (3-vector-form) 2nd group in terms of the local time and the space metric in frame \mathcal{E} .

Maxwell eqs for the "scalar ether theory" of gravity (SET) were proposed. Predict charge non-conservation in a variable gravitational field.

This occurs already for a translation through SET's "ether".

Using asymptotic PN (respectively PM) expansions for the gravitational field (resp. the e.m. field), an explicit expression for the charge production rate $\hat{\rho}$ was obtained.

For a group of Hertz dipoles producing moderate e.m. field (& with a moderate translation velocity V = 10 km/s), $\hat{\rho}$ seems unrealistically high.

Actually: those Maxwell eqs are not consistent with continuum dynamics of SET applied to *the e.m. field itself*. Must assume an additional, "interaction", energy tensor. Then the standard gravitationally-modified Maxwell eqs are consistent with SET.