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New Hope...

O. Rodrigues [1840] W. Hamilton [1843] A. Cayley [1846]
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The Vector-Parameter

Some major advantages of Rodrigues' construction:

compact expressions and no excessive parameters whatsoever

topologically correct parametrization of SO(3) ∼= RP3, instead of
coordinates on T3 (e.g., Euler angles), which yield singularities

allows for rational expressions for the rotation's matrix entries

R(c) =
(1− c2) I + 2 cct + 2 c×

1 + c2

an e�cient composition to replace the usual matrix multiplication

〈 c2, c1〉 =
c2 + c1 + c2 × c1

1− (c2, c1)
⇔ R(c2)R(c1)=R(〈c2, c1〉)

numerically fast and analytically convenient representation.
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Quaternions and the Spin Cover SU(2)
Z2−→ SO(3)

We identify vectors x ∈ R3 with imaginary (skew-hermitian) quaternions

x −→ X = x1 i + x2 j + x3 k ∈ H.

Similarly, elements of SU(2) ∼= S3 are presented as unit quaternions

S3 3 ζ = (ζ◦, ζ) = ζ◦ + ζ1 i + ζ2 j + ζ3 k, | ζ |2 = det(ζ) = 1.

Then, the adjoint action of S3 in its algebra R3

Ad ζ : X −→ ζ X ζ−1, ζ−1 = ζ̄ = (ζ◦,−ζ)

preserves metric and orientation, so it represents SO(3) ∼= RP3, namely as

R(ζ) = (ζ2◦ − ζ2)I + 2ζζt + 2ζ◦ζ
×.

The, the famous Rodrigues' rotation formula follows with the substitution

ζ◦ = cos
ϕ

2
, ζ = sin

ϕ

2
n.
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The Projective Map

Projecting onto the hyperplane ζ◦ = 1 we obtain the vector-parameter

c =
ζ

ζ◦
= τn ∈ RP3, τ = tan

ϕ

2

also known as Rodrigues' vector. Quaternion multiplication

(ξ◦, ξ)⊗ (ζ◦, ζ) → (ξ◦ζ◦ − (ξ, ζ), ξ◦ζ + ζ◦ξ + ξ × ζ)

yields upon the above projection the e�cient composition law

〈 c2, c1〉 =
c2 + c1 + c2 × c1

1− (c2, c1)
·

that obviously constitutes a representation as it is associative and satis�es

〈 c, 0 〉 = 〈 0, c 〉 = c, 〈 c, −c 〉 = 0.
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Cayley's Transform

Instead of the exponential map one may use Cayley's transform

Cay(ξ) =
1 + ξ

1− ξ

that maps the imaginary axis to the unit circle in C. More generally, if ξ
is skew-hemritian, Cay(ξ) is obviously unitary and

Cay : so(p, q) −→ SO(p, q).

In the case of SO(3) we have

Cay(c×) = exp(s×)

which reduces to a polynomial due to Hamilton-Cayley's theorem.
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Lorentzian 2 + 1 Space

We use the duality between the Lie algebras so(3) and so(2, 1) ∼= sl(2,R)

quaternions (H) −→ split quaternions (H′)

Euclidean metric −→ Lorentz metric

u · v = (u, η v), η = diag(1, 1,−1)

c× → cf = η c× ∈ so(2, 1), ut → uT = η ut .

the hyperbolic composition law

〈c2, c1〉 =
c2 + c1 + c2 f c1

1 + c2 · c1

rational expression for the pseudo-rotation matrix

Λ(c) = Cay(cf) =
(1 + c2)I − 2 ccT + 2 cf

1− c2
·

Danail S. Brezov Projective Bivector Parametrization of Isometries



byul ogo

Recollection Quaternion Construction The Hyperbolic Case Applications Six-Dimensional Groups

Analogues of Rodrigues' Rotation Formula

Depending on the geometric type of the invariant axis Λ(c) is

Hyperbolic: TrΛ > 3, ζ2 = ζ2◦ − 1 > 0 (space-like) ⇒ τ =th
ϕ

2

Λ(n, ϕ) = chϕ I + (1− chϕ)nnT + shϕnf.

Elliptic: TrΛ < 3, ζ2 < 0 (time-like) ⇒ τ = tan
ϕ

2

Λ(n, ϕ) = cosϕ I + (cosϕ− 1)nnT + sinϕnf.

Parabolic: TrΛ = 3, ζ2 = 0 (isotropic) ⇒ τ =
ϕ

2

Λ(n, ϕ) = I + ϕnf − ϕ2

2
nnT .

Non-Orthochronous: Λ33 < 0, ζ2 = ζ2◦ + 1 ⇒ τ = coth
ϕ

2
Λ(n, ϕ) = −chϕ I + (1 + chϕ)nnT − shϕnf.
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The Decomposition Problem

Adopting the notation εk = ĉ2k we obtain the condition

∆ = −

∣∣∣∣∣∣
ε1 g12 r31
g21 ε2 g23
r31 g32 ε3

∣∣∣∣∣∣ ≥ 0

and the corresponding solutions in the form

τ±k =
ρk

ωk ∓
√

∆
, ρk = εijk(gij − rij), i > j

with

ω1 =
(
ĉ1, ĉ2,Λ

−1(c) ĉ3
)
, ω2 = ω, ω3 = (Λ(c) ĉ1, ĉ2, ĉ3)

and in the case of two axes

τ1 =
r22 − ε2
ω̊1

, τ2 =
r11 − ε1
ω̊2

where we denote

ω̊1 =
(
ĉ1, ĉ2,Λ

−1(c) ĉ2
)
, ω̊2 = (Λ(c) ĉ1, ĉ1, ĉ2) .
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Discriminant Conditions and Geometric Restrictions

The condition ∆ ≥ 0 is necessary and su�cient only in the regular case.
On the other hand, there is the gimbal lock singularity

ĉ3 = ±Λ(c) ĉ1

in which the solutions are given by

τ2 =
r11 − ε1
ω̊2

, τ̃1 =
τ1 ± τ3

1± ε1τ1τ3
=

r22 − ε2
ω̊1

and it is not su�cient as ∆ = ε1(r21 − g21)2 ≥ 0 does not imply the
two-axes condition r21 = g21 in the space-like and null cases ε1 ≥ 0.

We have the restrictions |τk | 6= 1 in the space-like case εk = 1 and

|τk | <∞ in the isotropic one εk = 0, so that Λ is well-de�ned.
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The Light Cone Singularity

In the case when {ĉk} ∈ c⊥◦ for some null vector c◦ ∈ R2,1, Λ(c) is
decomposable i� c ∈ c⊥◦ and the solutions are given by

τ1 =
(ĉ2fn)◦τ

υ2ĉ◦1τ − g12n◦τ − (ĉ1fĉ2)◦
, τ2 =

(ĉ1fn)◦τ

(ĉ1fĉ2)◦ + g12n◦τ − υ1ĉ◦2τ

for the case of two axes and respectively, by the one-parameter set

τ1 =
(σ32 + (υ3ĉ◦2 − g23n◦)τ) τ2 − κ3τ

(g13ĉ◦2 − g23ĉ◦1 + (σ13υ2 − σ23υ1 + g12κ3)τ) τ2 − (υ3ĉ◦1 − g13n◦)τ + σ13

τ3 =
(σ12 − (υ1ĉ◦2 − g12n◦)τ) τ2 − κ1τ

(g12ĉ◦3 − g13ĉ◦2 + (σ12υ3 − σ13υ2 + g23κ1)τ) τ2 + (υ1ĉ◦3 − g13n◦)τ + σ31

for the three-axes case, where we denote x◦=(x, c◦) ∀ x ∈ R2,1 as well as

υk = (n, ĉk), σij = (ĉifĉj)
◦, κi = (ĉifn)◦.
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Change of Coordinates

Bryan to Iwasawa parameters:

θ = 2 arctan
sin φ̃(ch ϑ̃− sh ϑ̃ ch ψ̃)− cos φ̃ sh ψ̃

cos φ̃(ch ϑ̃− sh ϑ̃ ch ψ̃) + sin φ̃ sh ψ̃ + ch ϑ̃ ch ψ̃ − sh ϑ̃

β = 2 arcth
1 + sh ϑ̃− ch ϑ̃ ch ψ̃

1− sh ϑ̃+ ch ϑ̃ ch ψ̃
, λ =

sh ψ̃

ch ψ̃ − th ϑ̃
·

Iwasawa to Bryan parameters:

φ̃± = 2 arctan
2λeβ cos θ + (e2β + 1− λ2) sin θ

(e2β + 1− λ2) cos θ − 2λeβ sin θ ∓
√
D

ϑ̃± = 2 arcth
λ2 + e2β − 1

2eβ ±
√
D

, ψ̃± = 2 arcth
2λ

λ2 + e2β + 1±
√
D

with the notation D = λ4 + 2λ2(e2β − 1) + (e2β + 1)2.
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A Lift to the Spin Cover

The projective Rodrigues' vector allows for a double-valued lift

ζ±◦ = ±(1 + c2)−
1
2 , ζ± = ζ±◦ c

and thus, all results obtained for SO(3) can be extended to SU(2), e.g.

τ±i =
σi

ωi ±
√

∆
, ξk = ± 1√

1 + τ 2k

(
1 + τk ξ̂k

)
.

Similarly, in the hyperbolic case one has

ζ±◦ = ±(1− c2)−
1
2 , ζ± = ζ±◦ c

and thus, the decomposition is given as

τ±i =
κi

ωi ∓
√

∆
, ξ±k = ± 1√

1− εkτ 2k

(
1 + τk ξ̂k

)
.
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Hyperbolic Geometry and Quantum Scattering

The monodromy matrix in scattering theory

M =
1

t

(
1 −r̄
−r 1

)
∈ SU(1, 1)

may be decomposed in various ways, e.g. as

M =
1

t

(
ei(π−argr) 0

0 ei(argr−π)

)(
1 −|r |
−|r | 1

)(
ei(argr−π) 0

0 ei(π−argr)

)
·

The composition of two pure re�ectors yields a phase factor

ϑ = 2 arg(1 + r1r̄2)

known as Wigner's rotation and respectively, Thomas precession:

τϑ = =
∫
γ

r dr̄

1 + |r |2
·
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Rational Space-Time

Euler-type decompositions in rational Euclidean and hyperbolic 3-spaces:

τ±k =
σk

ωk ±
√

∆
, σk = εijk(gij − rij), i > j .

Pythagorean relations in the Davenport setting

∆ = 1− r231.

Rational points on the hyperboloid → ultra-hyperbolic quadruples:

a2 + b2 = c2 + d2

Iwasawa decomposition in SO(2, 1) yields

τ1 =
Λ12−Λ32

Λ31+Λ13−Λ11−Λ33
, τ2 =

1 + Λ13−Λ33

1− Λ13+Λ33
, τ3 =

Λ23

2 (Λ13−Λ33)
·
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The Group SO(4)

Note that so(4) ∼= so(3)⊕ so(3) and consider the representation

R4 3 x→ X = x1i + x2j + x3k + x4, detX = x21 + x22 + x23 + x24

which allows for an explicit isometry

X→ ζ X ζ̃−1, ζ, ζ̃ ∈ SU(2).

Introducing the vector-parameters c =
ζ

ζ◦
and c̃ =

ζ̃

ζ◦
, one obtains

R(c⊗ c̃) = λ−1

 1− (c, c̃) + cc̃t + c̃ct + (c+ c̃)× c− c̃ + c̃×c

(c̃− c + c̃×c)t 1 + (c, c̃)


with λ =

√
(1 + c2)(1 + c̃2) .
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...

Conversely, given a rotation matrix R ∈ SO(4), we easily derive

c =
1

trR

 R̃32 + R̃14

R̃13 + R̃24

R̃21 + R̃34

 , c̃ =
1

trR

 R̃32 − R̃14

R̃13 − R̃24

R̃21 − R̃34


where the notation R̃ = R−Rt is used.
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The Group SO(2, 2)

Using the isomorphism so(2, 2) ∼= so(2, 1)⊕ so(2, 1) and denoting
λ =

√
(1− c2)(1− c̃2) we obtain

Λ(c⊗ c̃) = λ−1

 1 + c·c̃− cc̃T − c̃cT + (c + c̃)f c− c̃ + c̃fc

(c− c̃− c̃fc)T 1− c·c̃


With the notation

Λ̃=Λ−ΛT =Λ−η̃ Λt η̃−1, η̃ = diag(1, 1,−1,−1)

we obtain the vector-parameter for a given pseudo-rotation as

c =
1

trΛ

 Λ̃14 − Λ̃32

Λ̃24 + Λ̃13

Λ̃34 + Λ̃21

 , c̃ = − 1

trΛ

 Λ̃14 + Λ̃32

Λ̃24 − Λ̃13

Λ̃34 + Λ̃12


which gives the solution based on the ones in the three-dimensional case.
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The Group SO∗(4)

This is the symmetry group of the complex quadric

ω(x, x̄) = (x ∧ x̄)31 − (x ∧ x̄)42, x ∈ C4.

Its Lie algebra is so∗(4) ∼= so(3)⊕ sl(2,R) and the block-matrix form is

W(c⊗ c̃) =

(
a ζ b ζ
c ζ d ζ

)
where a, b, c , d ∈ R with ad − bc = 1 and ζ ∈ SU(2). This yields

c =
− i

W11 + W22

 W11 −W22

iW12 − iW21

W12 + W21

 , c̃ =
1

a + d

 b + c
a− d
b − c

 ·
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The Invariant Axis Problem

Two distinct problems:

for n = 2k invariant axes do not exist in general (Euler)

for n > 3 (pseudo-)rotations are not restricted to a plane (Pl�ucker)

In SO(4) and SO(2, 2) we have such an axis (and plane) if and only if

α+ ⊥ α−, α± = c± c̃.

We shall address this problem more thoroughly in the next lecture...
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Thank You!

THANKS FOR YOUR PATIENCE!
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