Projective Bivector Parametrization of Isometries Part II: Hamilton and Cayley's Contribution

Danail S. Brezov ${ }^{\dagger}$

${ }^{\dagger}$ Department of Mathematics, UACEG

International Summer School on Hyprcomplex Numbers, Lie Algebras and Their Applications, Varna, June 09-12, 2017

New Hope...

O. Rodrigues [1840]

W. Hamilton [1843]

A. Cayley [1846]

The Vector-Parameter

Some major advantages of Rodrigues' construction:

- compact expressions and no excessive parameters whatsoever
- topologically correct parametrization of $\mathrm{SO}(3) \cong \mathbb{R} \mathbb{P}^{3}$, instead of coordinates on \mathbb{T}^{3} (e.g., Euler angles), which yield singularities
- allows for rational expressions for the rotation's matrix entries

$$
\mathcal{R}(\mathbf{c})=\frac{\left(1-\mathbf{c}^{2}\right) \mathcal{I}+2 \mathbf{c c}^{t}+2 \mathbf{c}^{\times}}{1+\mathbf{c}^{2}}
$$

- an efficient composition to replace the usual matrix multiplication

$$
\left\langle\mathbf{c}_{2}, \mathbf{c}_{1}\right\rangle=\frac{\mathbf{c}_{2}+\mathbf{c}_{1}+\mathbf{c}_{2} \times \mathbf{c}_{1}}{1-\left(\mathbf{c}_{2}, \mathbf{c}_{1}\right)} \Leftrightarrow \mathcal{R}\left(\mathbf{c}_{2}\right) \mathcal{R}\left(\mathbf{c}_{1}\right)=\mathcal{R}\left(\left\langle\mathbf{c}_{2}, \mathbf{c}_{1}\right\rangle\right)
$$

- numerically fast and analytically convenient representation.

Quaternions and the Spin Cover $\mathrm{SU}(2) \xrightarrow{\mathbb{Z}_{2}} \mathrm{SO}(3)$

We identify vectors $\mathbf{x} \in \mathbb{R}^{3}$ with imaginary (skew-hermitian) quaternions

$$
\mathbf{x} \quad \longrightarrow \quad \mathbf{X}=x_{1} \mathbf{i}+x_{2} \mathbf{j}+x_{3} \mathbf{k} \in \mathbb{H} .
$$

Similarly, elements of $\mathrm{SU}(2) \cong \mathbb{S}^{3}$ are presented as unit quaternions

$$
\mathbb{S}^{3} \ni \zeta=\left(\zeta_{0}, \boldsymbol{\zeta}\right)=\zeta_{\circ}+\zeta_{1} \mathbf{i}+\zeta_{2} \mathbf{j}+\zeta_{3} \mathbf{k}, \quad|\zeta|^{2}=\operatorname{det}(\zeta)=1
$$

Then, the adjoint action of \mathbb{S}^{3} in its algebra \mathbb{R}^{3}

$$
\operatorname{Ad}_{\zeta}: \mathbf{X} \longrightarrow \zeta \mathbf{X} \zeta^{-1}, \quad \zeta^{-1}=\bar{\zeta}=\left(\zeta_{0},-\zeta\right)
$$

preserves metric and orientation, so it represents $\mathrm{SO}(3) \cong \mathbb{R P}^{3}$, namely as

$$
\mathcal{R}(\zeta)=\left(\zeta_{0}^{2}-\zeta^{2}\right) \mathcal{I}+2 \zeta \zeta^{t}+2 \zeta_{0} \zeta^{\times} .
$$

The, the famous Rodrigues' rotation formula follows with the substitution

$$
\zeta_{0}=\cos \frac{\varphi}{2}, \quad \zeta=\sin \frac{\varphi}{2} \mathbf{n} .
$$

The Projective Map

Projecting onto the hyperplane $\zeta_{\circ}=1$ we obtain the vector-parameter

$$
\mathbf{c}=\frac{\zeta}{\zeta_{0}}=\tau \mathbf{n} \in \mathbb{R P}^{3}, \quad \tau=\tan \frac{\varphi}{2}
$$

also known as Rodrigues' vector. Quaternion multiplication

$$
\left(\xi_{0}, \boldsymbol{\xi}\right) \otimes\left(\zeta_{0}, \boldsymbol{\zeta}\right) \rightarrow\left(\xi_{0} \zeta_{\circ}-(\boldsymbol{\xi}, \boldsymbol{\zeta}), \xi_{0} \boldsymbol{\zeta}+\zeta_{0} \boldsymbol{\xi}+\boldsymbol{\xi} \times \boldsymbol{\zeta}\right)
$$

yields upon the above projection the efficient composition law

$$
\left\langle\mathbf{c}_{2}, \mathbf{c}_{1}\right\rangle=\frac{\mathbf{c}_{2}+\mathbf{c}_{1}+\mathbf{c}_{2} \times \mathbf{c}_{1}}{1-\left(\mathbf{c}_{2}, \mathbf{c}_{1}\right)} .
$$

that obviously constitutes a representation as it is associative and satisfies

$$
\langle\mathbf{c}, 0\rangle=\langle 0, \mathbf{c}\rangle=\mathbf{c}, \quad\langle\mathbf{c},-\mathbf{c}\rangle=0 .
$$

Cayley's Transform

Instead of the exponential map one may use Cayley's transform

$$
\operatorname{Cay}(\xi)=\frac{1+\xi}{1-\xi}
$$

that maps the imaginary axis to the unit circle in \mathbb{C}. More generally, if ξ is skew-hemritian, Cay (ξ) is obviously unitary and

$$
\text { Cay: } \quad \mathfrak{s o}(p, q) \longrightarrow \mathrm{SO}(p, q) .
$$

In the case of $\mathrm{SO}(3)$ we have

$$
\operatorname{Cay}\left(\mathbf{c}^{\times}\right)=\exp \left(\mathbf{s}^{\times}\right)
$$

which reduces to a polynomial due to Hamilton-Cayley's theorem.

Lorentzian $2+1$ Space

We use the duality between the Lie algebras $\mathfrak{s o}(3)$ and $\mathfrak{s o}(2,1) \cong \mathfrak{s l}(2, \mathbb{R})$

- quaternions $(\mathbb{H}) \longrightarrow$ split quaternions $\left(\mathbb{H}^{\prime}\right)$
- Euclidean metric \longrightarrow Lorentz metric

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =(\mathbf{u}, \eta \mathbf{v}), \quad \eta=\operatorname{diag}(1,1,-1) \\
\mathbf{c}^{\times} \rightarrow \mathbf{c}^{\curlywedge} & =\eta \mathbf{c}^{\times} \in \mathfrak{s o}(2,1), \quad \mathbf{u}^{t} \rightarrow \mathbf{u}^{T}=\eta \mathbf{u}^{t} .
\end{aligned}
$$

- the hyperbolic composition law

$$
\left\langle\mathbf{c}_{2}, \mathbf{c}_{1}\right\rangle=\frac{\mathbf{c}_{2}+\mathbf{c}_{1}+\mathbf{c}_{2} \curlywedge \mathbf{c}_{1}}{1+\mathbf{c}_{2} \cdot \mathbf{c}_{1}}
$$

rational expression for the pseudo-rotation matrix

$$
\Lambda(\mathbf{c})=\operatorname{Cay}\left(\mathbf{c}^{\curlywedge}\right)=\frac{\left(1+\mathbf{c}^{2}\right) \mathcal{I}-2 \mathbf{c c}^{T}+2 \mathbf{c}^{\curlywedge}}{1-\mathbf{c}^{2}}
$$

Analogues of Rodrigues' Rotation Formula

Depending on the geometric type of the invariant axis $\Lambda(\mathbf{c})$ is

- Hyperbolic: $\operatorname{Tr} \Lambda>3, \zeta^{2}=\zeta_{0}^{2}-1>0$ (space-like) $\Rightarrow \tau=\operatorname{th} \frac{\varphi}{2}$

$$
\Lambda(\mathbf{n}, \varphi)=\operatorname{ch} \varphi \mathcal{I}+(1-\operatorname{ch} \varphi) \mathbf{n n}^{T}+\operatorname{sh} \varphi \mathbf{n}^{\curlywedge} .
$$

- Elliptic: $\operatorname{Tr} \Lambda<3, \zeta^{2}<0$ (time-like) $\Rightarrow \tau=\tan \frac{\varphi}{2}$

$$
\Lambda(\mathbf{n}, \varphi)=\cos \varphi \mathcal{I}+(\cos \varphi-1) \mathbf{n n}^{T}+\sin \varphi \mathbf{n}^{\curlywedge} .
$$

- Parabolic: $\operatorname{Tr} \Lambda=3, \zeta^{2}=0$ (isotropic) $\Rightarrow \tau=\frac{\varphi}{2}$

$$
\Lambda(\mathbf{n}, \varphi)=\mathcal{I}+\varphi \mathbf{n}^{\curlywedge}-\frac{\varphi^{2}}{2} \mathbf{n n}^{T} .
$$

- Non-Orthochronous: $\Lambda_{33}<0, \zeta^{2}=\zeta_{0}^{2}+1 \Rightarrow \tau=\operatorname{coth} \frac{\varphi}{2}$

$$
\Lambda(\mathbf{n}, \varphi)=-\operatorname{ch} \varphi \mathcal{I}+(1+\operatorname{ch} \varphi) \mathbf{n n}^{T}-\operatorname{sh} \varphi \mathbf{n}^{\curlywedge} .
$$

The Decomposition Problem

Adopting the notation $\epsilon_{k}=\hat{\mathbf{c}}_{k}^{2}$ we obtain the condition

$$
\Delta=-\left|\begin{array}{ccc}
\epsilon_{1} & g_{12} & r_{31} \\
g_{21} & \epsilon_{2} & g_{23} \\
r_{31} & g_{32} & \epsilon_{3}
\end{array}\right| \geq 0
$$

and the corresponding solutions in the form

$$
\tau_{k}^{ \pm}=\frac{\rho^{k}}{\omega_{k} \mp \sqrt{\Delta}}, \quad \rho^{k}=\varepsilon^{i j k}\left(g_{i j}-r_{i j}\right), \quad i>j
$$

with

$$
\omega_{1}=\left(\hat{\mathbf{c}}_{1}, \hat{\mathbf{c}}_{2}, \Lambda^{-1}(\mathbf{c}) \hat{\mathbf{c}}_{3}\right), \quad \omega_{2}=\omega, \quad \omega_{3}=\left(\Lambda(\mathbf{c}) \hat{\mathbf{c}}_{1}, \hat{\mathbf{c}}_{2}, \hat{\mathbf{c}}_{3}\right)
$$

and in the case of two axes

$$
\tau_{1}=\frac{r_{22}-\epsilon_{2}}{\stackrel{\grave{\omega}}{1}}, \quad \tau_{2}=\frac{r_{11}-\epsilon_{1}}{\stackrel{\circ}{\omega}_{2}}
$$

where we denote

$$
\stackrel{\circ}{\omega}_{1}=\left(\hat{\mathbf{c}}_{1}, \hat{\mathbf{c}}_{2}, \Lambda^{-1}(\mathbf{c}) \hat{\mathbf{c}}_{2}\right), \quad \stackrel{\circ}{\omega}_{2}=\left(\Lambda(\mathbf{c}) \hat{\mathbf{c}}_{1}, \hat{\mathbf{c}}_{1}, \hat{\mathbf{c}}_{2}\right) .
$$

Discriminant Conditions and Geometric Restrictions

The condition $\Delta \geq 0$ is necessary and sufficient only in the regular case. On the other hand, there is the gimbal lock singularity

$$
\hat{\mathbf{c}}_{3}= \pm \Lambda(\mathbf{c}) \hat{\mathbf{c}}_{1}
$$

in which the solutions are given by

$$
\tau_{2}=\frac{r_{11}-\epsilon_{1}}{\stackrel{\circ}{\omega}_{2}}, \quad \tilde{\tau}_{1}=\frac{\tau_{1} \pm \tau_{3}}{1 \pm \epsilon_{1} \tau_{1} \tau_{3}}=\frac{r_{22}-\epsilon_{2}}{\stackrel{\circ}{\omega}_{1}}
$$

and it is not sufficient as $\Delta=\epsilon_{1}\left(r_{21}-g_{21}\right)^{2} \geq 0$ does not imply the two-axes condition $r_{21}=g_{21}$ in the space-like and null cases $\epsilon_{1} \geq 0$. We have the restrictions $\left|\tau_{k}\right| \neq 1$ in the space-like case $\epsilon_{k}=1$ and $\left|\tau_{k}\right|<\infty$ in the isotropic one $\epsilon_{k}=0$, so that Λ is well-defined.

The Light Cone Singularity

In the case when $\left\{\hat{\mathbf{c}}_{k}\right\} \in \mathbf{c}_{\circ}^{\perp}$ for some null vector $\mathbf{c}_{\circ} \in \mathbb{R}^{2,1}, \Lambda(\mathbf{c})$ is decomposable iff $\mathbf{c} \in \mathbf{c}_{\circ}^{\perp}$ and the solutions are given by

$$
\tau_{1}=\frac{\left(\hat{\mathbf{c}}_{2} \curlywedge \mathbf{n}\right)^{\circ} \tau}{v_{2} \hat{\mathbf{c}}_{1}^{\circ} \tau-g_{12} \mathbf{n}^{\circ} \tau-\left(\hat{\mathbf{c}}_{1} \curlywedge \hat{\mathbf{c}}_{2}\right)^{\circ}}, \quad \tau_{2}=\frac{\left(\hat{\mathbf{c}}_{1} \curlywedge \mathbf{n}\right)^{\circ} \tau}{\left(\hat{\mathbf{c}}_{1} \curlywedge \hat{\mathbf{c}}_{2}\right)^{\circ}+g_{12} \mathbf{n}^{\circ} \tau-v_{1} \hat{\mathbf{c}}_{2}^{\circ} \tau}
$$

for the case of two axes and respectively, by the one-parameter set

$$
\begin{aligned}
& \tau_{1}=\frac{\left(\sigma_{32}+\left(v_{3} \hat{\mathbf{c}}_{2}^{\circ}-g_{23} \mathbf{n}^{\circ}\right) \tau\right) \tau_{2}-\kappa_{3} \tau}{\left(g_{13} \hat{\mathbf{c}}_{2}^{\circ}-g_{23} \hat{\mathbf{c}}_{1}^{\circ}+\left(\sigma_{13} v_{2}-\sigma_{23} v_{1}+g_{12} \kappa_{3}\right) \tau\right) \tau_{2}-\left(v_{3} \hat{\mathbf{c}}_{1}^{\circ}-g_{13} \mathbf{n}^{\circ}\right) \tau+\sigma_{13}} \\
& \tau_{3}=\frac{\left(\sigma_{12}-\left(v_{1} \hat{\mathbf{c}}_{2}^{\circ}-g_{12} \mathbf{n}^{\circ}\right) \tau\right) \tau_{2}-\kappa_{1} \tau}{\left(g_{12} \hat{\mathbf{c}}_{3}^{\circ}-g_{13} \hat{\mathbf{c}}_{2}^{\circ}+\left(\sigma_{12} v_{3}-\sigma_{13} v_{2}+g_{23} \kappa_{1}\right) \tau\right) \tau_{2}+\left(v_{1} \hat{\mathbf{c}}_{3}^{\circ}-g_{13} \mathbf{n}^{\circ}\right) \tau+\sigma_{31}}
\end{aligned}
$$

for the three-axes case, where we denote $\mathbf{x}^{\circ}=\left(\mathbf{x}, \mathbf{c}_{\circ}\right) \forall \mathbf{x} \in \mathbb{R}^{2,1}$ as well as

$$
v_{k}=\left(\mathbf{n}, \hat{\mathbf{c}}_{k}\right), \quad \sigma_{i j}=\left(\hat{\mathbf{c}}_{i} \curlywedge \hat{\mathbf{c}}_{j}\right)^{\circ}, \quad \kappa_{i}=\left(\hat{\mathbf{c}}_{i} \curlywedge \mathbf{n}\right)^{\circ} .
$$

Change of Coordinates

Bryan to Iwasawa parameters:

$$
\begin{gathered}
\theta=2 \arctan \frac{\sin \tilde{\phi}(\operatorname{ch} \tilde{\vartheta}-\operatorname{sh} \tilde{\vartheta} \operatorname{ch} \tilde{\psi})-\cos \tilde{\phi} \operatorname{sh} \tilde{\psi}}{\cos \tilde{\phi}(\operatorname{ch} \tilde{\vartheta}-\operatorname{sh} \tilde{\vartheta} \operatorname{ch} \tilde{\psi})+\sin \tilde{\phi} \operatorname{sh} \tilde{\psi}+\operatorname{ch} \tilde{\vartheta} \operatorname{ch} \tilde{\psi}-\operatorname{sh} \tilde{\vartheta}} \\
\beta=2 \operatorname{arcth} \frac{1+\operatorname{sh} \tilde{\vartheta}-\operatorname{ch} \tilde{\vartheta} \operatorname{ch} \tilde{\psi}}{1-\operatorname{sh} \tilde{\vartheta}+\operatorname{ch} \tilde{\vartheta} \operatorname{ch} \tilde{\psi}}, \quad \lambda=\frac{\operatorname{sh} \tilde{\psi}}{\operatorname{ch} \tilde{\psi}-\operatorname{th} \tilde{\vartheta}} .
\end{gathered}
$$

Iwasawa to Bryan parameters:

$$
\tilde{\phi}^{ \pm}=2 \arctan \frac{2 \lambda \mathrm{e}^{\beta} \cos \theta+\left(\mathrm{e}^{2 \beta}+1-\lambda^{2}\right) \sin \theta}{\left(\mathrm{e}^{2 \beta}+1-\lambda^{2}\right) \cos \theta-2 \lambda \mathrm{e}^{\beta} \sin \theta \mp \sqrt{D}}
$$

$\tilde{\vartheta}^{ \pm}=2 \operatorname{arcth} \frac{\lambda^{2}+\mathrm{e}^{2 \beta}-1}{2 \mathrm{e}^{\beta} \pm \sqrt{D}}, \quad \tilde{\psi}^{ \pm}=2 \operatorname{arcth} \frac{}{\lambda^{2}+\mathrm{e}^{2 \beta}}$
with the notation $D=\lambda^{4}+2 \lambda^{2}\left(\mathrm{e}^{2 \beta}-1\right)+\left(\mathrm{e}^{2 \beta}+1\right)^{2}$.

A Lift to the Spin Cover

The projective Rodrigues' vector allows for a double-valued lift

$$
\zeta_{0}^{ \pm}= \pm\left(1+\mathbf{c}^{2}\right)^{-\frac{1}{2}}, \quad \boldsymbol{\zeta}^{ \pm}=\zeta_{0}^{ \pm} \mathbf{c}
$$

and thus, all results obtained for $\mathrm{SO}(3)$ can be extended to $\mathrm{SU}(2)$, e.g.

$$
\tau_{i}^{ \pm}=\frac{\sigma_{i}}{\omega_{i} \pm \sqrt{\Delta}}, \quad \xi_{k}= \pm \frac{1}{\sqrt{1+\tau_{k}^{2}}}\left(1+\tau_{k} \hat{\xi}_{k}\right)
$$

Similarly, in the hyperbolic case one has

$$
\zeta_{0}^{ \pm}= \pm\left(1-\mathbf{c}^{2}\right)^{-\frac{1}{2}}, \quad \zeta^{ \pm}=\zeta_{0}^{ \pm} \mathbf{c}
$$

and thus, the decomposition is given as

$$
\tau_{i}^{ \pm}=\frac{\kappa_{i}}{\omega_{i} \mp \sqrt{\Delta}}, \quad \xi_{k}^{ \pm}= \pm \frac{1}{\sqrt{1-\epsilon_{k} \tau_{k}^{2}}}\left(1+\tau_{k} \hat{\xi}_{k}\right) .
$$

Hyperbolic Geometry and Quantum Scattering

The monodromy matrix in scattering theory

$$
\mathcal{M}=\frac{1}{t}\left(\begin{array}{cc}
1 & -\bar{r} \\
-r & 1
\end{array}\right) \in \operatorname{SU}(1,1)
$$

may be decomposed in various ways, e.g. as

$$
\mathcal{M}=\frac{1}{t}\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i}(\pi-\arg r)} & 0 \\
0 & \mathrm{e}^{\mathrm{i}(\arg r-\pi)}
\end{array}\right)\left(\begin{array}{cc}
1 & -|r| \\
-|r| & 1
\end{array}\right)\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i}(\arg r-\pi)} & 0 \\
0 & \mathrm{e}^{\mathrm{i}(\pi-\arg r)}
\end{array}\right) .
$$

The composition of two pure reflectors yields a phase factor

$$
\vartheta=2 \arg \left(1+r_{1} \bar{r}_{2}\right)
$$

known as Wigner's rotation and respectively, Thomas precession:

$$
\tau_{\vartheta}=\Im \int_{\gamma} \frac{r \mathrm{~d} \bar{r}}{1+|r|^{2}}
$$

Rational Space-Time

Euler-type decompositions in rational Euclidean and hyperbolic 3-spaces:

$$
\tau_{k}^{ \pm}=\frac{\sigma^{k}}{\omega_{k} \pm \sqrt{\Delta}}, \quad \sigma^{k}=\varepsilon^{i j k}\left(g_{i j}-r_{i j}\right), \quad i>j
$$

Pythagorean relations in the Davenport setting

$$
\Delta=1-r_{31}^{2} .
$$

Rational points on the hyperboloid \rightarrow ultra-hyperbolic quadruples:

$$
a^{2}+b^{2}=c^{2}+d^{2}
$$

Iwasawa decomposition in $\mathrm{SO}(2,1)$ yields
$\tau_{1}=\frac{\Lambda_{12}-\Lambda_{32}}{\Lambda_{31}+\Lambda_{13}-\Lambda_{11}-\Lambda_{33}}, \quad \tau_{2}=\frac{1+\Lambda_{13}-\Lambda_{33}}{1-\Lambda_{13}+\Lambda_{33}}, \quad \tau_{3}=\frac{\Lambda_{23}}{2\left(\Lambda_{13}-\Lambda_{33}\right)}$.

Recommended Readings

國 Kuvshinov V．，Tho N．，Local Vector Parameters of Groups，The Cartan Form and Applications to Gauge and Chiral Field Theory， Physics of Elementary Particles and the Nucleus 25 （1994）．

围 Lévay P．，The Geometry of Entanglement：Metrics，Connections and the Geometric Phase，J．Phys．A：Math．\＆Gen． 37 （2004）．
（in Brezov D．，Mladenova C．and Mladenov I．，Vector－parameters in Classical Hyperbolic Geometry，J．Geom．Symmetry Phys． 30 （2013）．

Erezov D．，Mladenova C．and Mladenov I．，The Geometry of Pythagorean Quadruples and Rational Decomposition of Pseudo－Rotations，In：Mathematics in Industry，Cambridge Scholars Publishing，Newcastle upon Tyne 2014.

囯 Brezov D．，Mladenova C．and Mladenov I．，Factorizations in Special Relativity and Quantum Scattering on the Line，In：Advanced Computing in Industrial Mathematics 681，Springer，Berlin 2017.

The Group SO(4)

Note that $\mathfrak{s o}(4) \cong \mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$ and consider the representation

$$
\mathbb{R}^{4} \ni \mathbf{x} \rightarrow \mathbf{X}=x_{1} \mathbf{i}+x_{2} \mathbf{j}+x_{3} \mathbf{k}+x_{4}, \quad \operatorname{det} \mathbf{X}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}
$$

which allows for an explicit isometry

$$
\mathbf{X} \rightarrow \zeta \mathbf{X} \tilde{\zeta}^{-1}, \quad \zeta, \tilde{\zeta} \in \operatorname{SU}(2)
$$

Introducing the vector-parameters $\mathbf{c}=\frac{\boldsymbol{\zeta}}{\zeta_{0}}$ and $\tilde{\mathbf{c}}=\frac{\tilde{\boldsymbol{\zeta}}}{\zeta_{0}}$, one obtains
$\mathcal{R}(\mathbf{c} \otimes \tilde{\mathbf{c}})=\lambda^{-1}\left(\begin{array}{cc}1-(\mathbf{c}, \tilde{\mathbf{c}})+\mathbf{c} \tilde{\mathbf{c}}^{t}+\tilde{\mathbf{c}}^{t}+(\mathbf{c}+\tilde{\mathbf{c}})^{\times} & \mathbf{c}-\tilde{\mathbf{c}}+\tilde{\mathbf{c}} \times \mathbf{c} \\ (\tilde{\mathbf{c}}-\mathbf{c}+\tilde{\mathbf{c}} \times \mathbf{c})^{t} & 1+(\mathbf{c}, \tilde{\mathbf{c}})\end{array}\right)$
with $\lambda=\sqrt{\left(1+\mathbf{c}^{2}\right)\left(1+\tilde{\mathbf{c}}^{2}\right)}$.

Conversely, given a rotation matrix $\mathcal{R} \in \mathrm{SO}(4)$, we easily derive

$$
\mathbf{c}=\frac{1}{\operatorname{tr} \mathcal{R}}\left(\begin{array}{c}
\tilde{\mathcal{R}}_{32}+\tilde{\mathcal{R}}_{14} \\
\tilde{\mathcal{R}}_{13}+\tilde{\mathcal{R}}_{24} \\
\tilde{\mathcal{R}}_{21}+\tilde{\mathcal{R}}_{34}
\end{array}\right), \quad \tilde{\mathbf{c}}=\frac{1}{\operatorname{tr} \mathcal{R}}\left(\begin{array}{c}
\tilde{\mathcal{R}}_{32}-\tilde{\mathcal{R}}_{14} \\
\tilde{\mathcal{R}}_{13}-\tilde{\mathcal{R}}_{24} \\
\tilde{\mathcal{R}}_{21}-\tilde{\mathcal{R}}_{34}
\end{array}\right)
$$

where the notation $\tilde{\mathcal{R}}=\mathcal{R}-\mathcal{R}^{t}$ is used.

The Group SO $(2,2)$

Using the isomorphism $\mathfrak{s o}(2,2) \cong \mathfrak{s o}(2,1) \oplus \mathfrak{s o}(2,1)$ and denoting $\lambda=\sqrt{\left(1-\mathbf{c}^{2}\right)\left(1-\tilde{\mathbf{c}}^{2}\right)}$ we obtain

$$
\Lambda(\mathbf{c} \otimes \tilde{\mathbf{c}})=\lambda^{-1}\left(\begin{array}{cc}
1+\mathbf{c} \cdot \tilde{\mathbf{c}}-\mathbf{c} \tilde{\mathbf{c}}^{T}-\tilde{\mathbf{c}} \mathbf{c}^{T}+(\mathbf{c}+\tilde{\mathbf{c}})^{\curlywedge} & \mathbf{c}-\tilde{\mathbf{c}}+\tilde{\mathbf{c}} \curlywedge \mathbf{c} \\
(\mathbf{c}-\tilde{\mathbf{c}}-\tilde{\mathbf{c}} \curlywedge \mathbf{c})^{T} & 1-\mathbf{c} \cdot \tilde{\mathbf{c}}
\end{array}\right)
$$

With the notation

$$
\tilde{\Lambda}=\Lambda-\Lambda^{T}=\Lambda-\tilde{\eta} \Lambda^{t} \tilde{\eta}^{-1}, \quad \tilde{\eta}=\operatorname{diag}(1,1,-1,-1)
$$

we obtain the vector-parameter for a given pseudo-rotation as

$$
\mathbf{c}=\frac{1}{\operatorname{tr} \Lambda}\left(\begin{array}{l}
\tilde{\Lambda}_{14}-\tilde{\Lambda}_{32} \\
\tilde{\Lambda}_{24}+\tilde{\Lambda}_{13} \\
\tilde{\Lambda}_{34}+\tilde{\Lambda}_{21}
\end{array}\right), \quad \tilde{\mathbf{c}}=-\frac{1}{\operatorname{tr} \Lambda}\left(\begin{array}{l}
\tilde{\Lambda}_{14}+\tilde{\Lambda}_{32} \\
\tilde{\Lambda}_{24}-\tilde{\Lambda}_{13} \\
\tilde{\Lambda}_{34}+\tilde{\Lambda}_{12}
\end{array}\right)
$$

which gives the solution based on the ones in the three-dimensional case.

The Group SO* (4)

This is the symmetry group of the complex quadric

$$
\omega(\mathbf{x}, \overline{\mathbf{x}})=(\mathbf{x} \wedge \overline{\mathbf{x}})_{31}-(\mathbf{x} \wedge \overline{\mathbf{x}})_{42}, \quad \mathbf{x} \in \mathbb{C}^{4} .
$$

Its Lie algebra is $\mathfrak{s o}^{*}(4) \cong \mathfrak{s o}(3) \oplus \mathfrak{s l}(2, \mathbb{R})$ and the block-matrix form is

$$
\mathrm{W}(\mathbf{c} \otimes \tilde{\mathbf{c}})=\left(\begin{array}{ll}
a \zeta & b \zeta \\
c \zeta & d \zeta
\end{array}\right)
$$

where $a, b, c, d \in \mathbb{R}$ with $a d-b c=1$ and $\zeta \in \operatorname{SU}(2)$. This yields

$$
\mathbf{c}=\frac{-\mathrm{i}}{W_{11}+W_{22}}\left(\begin{array}{c}
W_{11}-W_{22} \\
\mathrm{i} W_{12}-\mathrm{i} W_{21} \\
W_{12}+W_{21}
\end{array}\right), \quad \tilde{\mathbf{c}}=\frac{1}{a+d}\left(\begin{array}{c}
b+c \\
a-d \\
b-c
\end{array}\right) .
$$

The Invariant Axis Problem

Two distinct problems:

- for $n=2 k$ invariant axes do not exist in general (Euler)
- for $n>3$ (pseudo-)rotations are not restricted to a plane (Plücker)

In SO(4) and $\mathrm{SO}(2,2)$ we have such an axis (and plane) if and only if

$$
\boldsymbol{\alpha}_{+} \perp \boldsymbol{\alpha}_{-}, \quad \boldsymbol{\alpha}_{ \pm}=\mathbf{c} \pm \tilde{\mathbf{c}} .
$$

We shall address this problem more thoroughly in the next lecture...

Thank You!

THANKS FOR YOUR PATIENCE!

